المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.

معادلة فولتيرا التكاملية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)

معادلة فولتيرا التكاملية في الرياضيات هي حالة خاصة من المعادلات التكاملية، وتنقسم إلي مجموعتين الأولي هي النوع الأول والثانية هي النوع الثاني.

فيتو فولتيرا

معادلة فولتيرا التكاملية الخطية من النوع الأول هي:

حيث ƒ هي دالة معطاة ومعروفة بينما x هي دالة غير معروفة والتي يتم الحل من أجلها.

أما معادلة فولتيرا التكاملية الخطية من النوع الثاني هي:

وتُدعي تلك المعادلات بمعامل فولتيرا حيث يتم وصفها هكذا في نظرية المُعامل ونظرية فريدهولم.

ومعادلة فولتيرا التكاملية الخطية هي معادلة التفاف إذا كان:

حيث الدالة في التكامل تُدعي كيرنيل، ومعادلات مثل هذه يُمكن أن يتم تحليلها وحلها بإستخدام طُرق تحويل لابلاس.

معادلات فولتيرا التكاملية تم تقديمها للعلن بواسطة العالم فيتو فولتيرا وقام العالم ترايين لاليسكو بشرحها في مؤلفاته عام 1908 "Sur les équations de Volterra" وتم كتابتها تحت إشراف العالم الفرنسي شارل إميل بيكار. في عام 1911، قام لاليكسو بكتابة أول كتاب له في المعادلات التكاملية.

معادلات فولتيرا التكاملية لها تطبيقات في علم التركيبة السكانية وكذلك دراسة المواد ذات المرونة اللزجة وكذلك في علم رياضيات المخاطر من خلال نظرية التجديد في نظرية الاحتمال.

مراجع[عدل]

  • Traian Lalescu, Introduction à la théorie des équations intégrales. Avec une préface de É. Picard, باريس: A. Hermann et Fils, 1912. VII + 152 pp.
  • Hazewinkel، Michiel, المحرر (2001)، "Volterra equation"، Encyclopedia of Mathematics، سبرنجر، ISBN 978-1-55608-010-4 
  • إيريك ويستاين، Volterra Integral Equation of the First Kind، ماثوورلد Mathworld (باللغة الإنكليزية).
Lebesgue Icon.svg
هذه بذرة مقالة عن التحليل الرياضي بحاجة للتوسيع. شارك في تحريرها.