خاصية أرخميدس

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Arwikify.svg يرجى إعادة صياغة هذه المقالة باستخدام التنسيق العام لويكيبيديا، مثل إضافة الوصلات والتقسيم إلى الفقرات وأقسام بعناوين.

خاصية أرخميدس: بمعرفتك لمجموعة الأعداد الحقيقية R وتصورك لخط الأعداد الحقيقية قد يبدو واضحاً أن مجموعة الأعداد الطبيعية N غير محدودة في مجموعة الأعداد الحقيقية R كيف نستطيع اثبات ذلك ؟ في الحقيقة لا نستطيع ان نفعل ذلك باستخدام الجبر وخصائص النظام , في الواقع يجب أن نستخدم completeness propertyفي R إضافة إلى خاصية الإستقراء في N حيث أن ( اذا كان n∈N فإن n+1 ∈N ) عند انعدام الحد العلوي لمجموعة الاعداد الطبيعية N يعني ذلك أن أي عدد حقيقي x يوجد عدد طبيعي n (يعتمد على x) بحيث x<n الإثبات : نريد أثبات أنه اذا كان x∈R اذا يوجد nx∈N بحيث x≤nx نفرض العكس للحصول على تناقض اذن نفترض : لكل n∈N بحيث x>n اذن x تمثل حداً علوياً للمجموعة N ومنها : اذن يوجد u∈R بحيث أن u=sup N يعنيu-1 ليس حد علوي اذن يوجد m∈N بحيث u-1<m u<m+1, m+1 ∈N اذنu ليس اصغر حد علوي لمجموعة Nاذن يوجد nx∈N بحيث x≤nx

  • نتيجه:

اذا كان S={1/n: n∈N} → inf S =0

الاثبات : S مجموعة غير خاليه ومحدوده من أسفل بالصفر , لنفرض أن w=inf S ومن الواضح أن w≥0 لكل ε>0 خاصية أرخميدس تعني أنه يوجد n∈N بحيث : ε<1/nاذن n>1/ε نجد أن لدينا: 0≤w≤1/n <ε ولكن لأي قيمة عشوائية لـ ε>0 فإن w=0

  • نتيجه:

اذا كانت t>0 يوجد nt∈N بحيث: 0<1/nt<t اثبات: عندما inf{1/n: n∈N}=0 و t>0 اذا t ليس حد سفلي للمجموعه {1/n حيث n∈N} وبالتالي يوجد nt∈N بحيث 0<1/nt<t

  • نتيجه:

اذا كانت y>0 يوجد nyN بحيث : ny-1≤ y ≤ny اثبات: خاصية أرخميدس يضمن المجموعة {Ey={m∈N : y<m الجزئية من الأعداد الطبيعية N غير خالية , ن طريق خاصية الترتيب الجيد للأعداد اذا مجموعة Ey تحتوي عنصر نرمز له بالرمز ny اذا ny-1 ليست داخل Ey اذا لديناny-1 ≤ y ≤ny

مثال على تطبيق خاصية ارخميدس في اثبات نظريات أخرى : -اثبتي أن المتتابعة (n) تباعدية. من خاصية أرخميدس نعلم أن الاعداد الطبيية غير محدودة إذاً المتتابعة n غير محدوده وبالتالي تكون تباعدية ومن المعاكس الايجابي لنظرية أن " كل متتابعة محدودة هي تقاربية " إذا كل غير محدوده تباعديه اذاً (n) تباعدية

المصدر: introduction to real analysysis Robert G.Bartlr 4thedithion

نتيجة 1 : المجموعة N محدودة من أسفل ولكن ليست محدودة من أعلى نتيجة 2 : لكل x ينتمي للأعداد الحقيقية الموجبة يوجد n ينتمي للاعداد الطبيعيةحيث:

 x>1/n

نتيجة 3 : لكل x ينتمي للأعداد الحقيقية يوجد m,n ينتمي للاعداد الصحيحةحيث:

 n>x>m

نتيجة 4 : لكل x ينتمي للأعداد الحقيقية الموجبة يوجد n ينتمي للاعداد الصحيحةحيث:

n+1>x ≥ n

نتيجة 5 : لكل x ينتمي للأعداد الحقيقية يوجد n ينتمي للاعداد الطبيعيةحيث:

x ≥ n> x-1

نتيجة 6 : لكل x ينتمي للأعداد الحقيقية يوجد n ينتمي للاعداد الطبيعية:

بحيث x> n ≥ x-1

مثال : لكل x ينتمي للأعداد الحقيقية الموجبة يوجد n ينتمي للاعداد الطبيعيةحيث:

  n(n+1)/2>x≥  n(n-1)/2

للعدد الحقيقي 1/2*(2x+ 1/4)√ من النتيجة 5 يوجد عدد وحيد n∈N بحيث : N+1>√(2x+ 1/4)+1/2≥n

n+1/2)^2> 2x+ 1/4 ≥ (n-1/2)^2) 

أو

n^2+n> 2x ≥ n^2-n 

أو

n(n+1)/2>x≥  n(n-1)/2

يوضح المثال بالأعلى أن كل عدد صحيح موجب nيستطيع أن يعرف فردياً كـ: n=(i(i-1))/2 +j لكل i,j∈N ^ 1≤ j ≤i في مثل هذا المثال الفريد من نوعه للعناصر الطبيعية يكون أحياناً مساعد لفحص مجموعة الاعداد القابله للعد

المصدر : الويكبيديا الإنجليزية Archimedean semi-group

ترجمة وتنسيق طالبات قسم الرياضيات - جامعة الدمام بإشراف الدكتورة فاطمةالرواجح