المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها
يرجى إضافة وصلات داخلية للمقالات المتعلّقة بموضوع المقالة.
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المُناسبة.

غاين سكاديولينغ

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
N write.svg
هذه مقالة جديدة غير مُراجعة. ينبغي أن يُزال هذا القالب بعد أن يُراجعها محررٌ ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المُناسبة. (ديسمبر 2005)
Arwikify.svg
هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2016)
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016)

الغاين سكاديولينغ Gain scheduling طريقة من طرائق التحكم وتطويع النظم. تعتمد هذه الطريقة على تخطيط نظام ما حول العديد من نقاط تشغيله ومعالجة إشكال التحكم في نظام غير خطي على أنه إشكال تحكم في نظام خطي ويتم تصميم العديد من المتحكمات كل منها مصمم لمجال معين حول نقطة التخطيط. الإشكال الذي نلاقيه في هذه الطريقة هو مدى إتساع هذه المجال أي السؤال: إلى أي مدى يتوافق تخطيط نظام ما حول نقطة تشغيل مع النموذج اللاخطي وحتي مع النظام الحقيقي. السؤال مهم حيث أنه يجب أن يكون المتحكم أو المتحكمات المصممة تغطي كل مجال عمل النظام. حيث أنه مثلا بالنسبة للطائرات يتم عمل المتحكمات بطرق مختلفة وإحداها هذه الطريقة. فمثلا الطائرة يجب أن تطير في ارتفاعات مختلفة يمكن أن نعتبرها نقاط تشغيل النظام حيث النظام هنا هو الطائرة. المتحكمات المصممة يجب أن تغطي جميع الارتفاعات التي يمكن أن تتحرك فيها الطائرة.

وصلات خارجية[عدل]

وصلة إلى ملف PDF باللغة الإنجليزية

Science-symbol-2.png
هذه بذرة مقالة عن موضوع علمي بحاجة للتوسيع. شارك في تحريرها.