متباينة المثلث

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
ثلاث أمثلة لمتراجحة المثلث لمثلثات طول أضلاعها هو x و y و z.المثلث الأول يظهر فرقا واضحا بين x+y و z. أما المثلث الثالث، فيبين الحالة حيث z قريب جدا من مجموع الضلعين الأخرين x+y.

متباينة المثلث أو متراجحة المثلث (بالإنكليزية: Triangle inequality) هي المتراجحة الشهيرة التي تنص على أن طول أي ضلع من أضلاع المثلث أصغر حتما من مجموع طول الضلعين الآخرين وأكبر حتماً من الفرق بينهما.

الهندسة الإقليدية[عدل]

الرسم لأقليدس في أثبات متباينة المثلث في الهندسة الأقليدية

أثبت أقليدس متباينة المثلث من خلال الهندسة الأقليدية من خلال الرسم.[1] لنفرض أن المثلث dBC متساوي الساقين، حيث الضلع BC يساوي الضلع BD, و AB هو امتداد له. أثبت أقليدس أن الزاوية β > α, ومنه AD > AC. لكن AD == AB + BD == AB + BC لذلك جمع الضلعين AB + BC > AC. هذا الأثبات ظهر في كتاب الأصول, كتاب1,المقترح 20.[2]

متراجحة المثلث العكسية[عدل]

[محل شك]

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ Harold R. Jacobs (2003). Geometry: seeing, doing, understanding (الطبعة 3rd). Macmillan. صفحة 201. ISBN 0-7167-4361-2. 
  2. ^ David E. Joyce (1997). "Euclid's elements, Book 1, Proposition 20". Euclid's elements. Dept. Math and Computer Science, Clark University. اطلع عليه بتاريخ 2010-06-25 
Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.