يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

متباينة المثلث

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
N write.svg
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. (أكتوبر 2005)
ثلاث أمثلة لمتراجحة المثلث لمثلثات طول أضلاعها هو x و y و z.المثلث الأول يظهر فرقا واضحا بين x+y و z. أما المثلث الثالث، فيبين الحالة حيث z قريب جدا من مجموع الضلعين الأخرين x+y.

متباينة المثلث أو متراجحة المثلث (بالإنجليزية: Triangle inequality) هي المتراجحة الشهيرة التي تنص على أن طول أي ضلع من أضلاع المثلث أصغر حتما من مجموع طول الضلعين الآخرين وأكبر حتماً من الفرق بينهما.

الهندسة الإقليدية[عدل]

الرسم لأقليدس في أثبات متباينة المثلث في الهندسة الأقليدية

أثبت أقليدس متباينة المثلث من خلال الهندسة الأقليدية من خلال الرسم.[1] لنفرض أن المثلث dBC متساوي الساقين، حيث الضلع BC يساوي الضلع BD, و AB هو امتداد له. أثبت أقليدس أن الزاوية β > α, ومنه AD > AC. لكن AD == AB + BD == AB + BC لذلك جمع الضلعين AB + BC > AC. هذا الأثبات ظهر في كتاب الأصول, كتاب1,المقترح 20.[2]

متراجحة المثلث العكسية[عدل]

[محل شك]

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ Harold R. Jacobs (2003). Geometry: seeing, doing, understanding (الطبعة 3rd). Macmillan. صفحة 201. ISBN 0-7167-4361-2. 
  2. ^ David E. Joyce (1997). "Euclid's elements, Book 1, Proposition 20". Euclid's elements. Dept. Math and Computer Science, Clark University. اطلع عليه بتاريخ 2010-06-25. 
Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.