تثبيت النيتروجين

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Other languages square icon.svg لا يزال النص الموجود في هذه الصفحة في مرحلة الترجمة من الإنجليزية إلى العربية. إذا كنت تعرف اللغة الإنجليزية، لا تتردد في الترجمة من النص الأصلي باللغة الإنجليزية.
(إنجليزية) en:Nitrogen_fixation ← (عربية) تثبيت النيتروجين
تصنيف=صفحات تحتاج إلى استكمال الترجمة
عقد مستجذرات جذرية على نباتات الفصة الحولية - لاحظ النبات على يسار الصورة لا يحتوي عقداً جذرية نظراً لعدم القيام بتلقيحه بالمستجذرة

تثبيت النيتروجين (بالإنجليزية: Nitrogen fixation) هو العملية التي يتحول فيها النيتروجين (N2) الموجود في الجو إلى أمونيوم[1] النيتروجين الجوي أو النيتروجين الجزيئي (N2) هو خامل نسبياً: فلا يتفاعل مع مواد كيميائية أخرى مولداً مركبات جديدة. تقوم عملية تثبيت النيتروجين على تحويله من الشكل الثنائي (N2) حتى يستخدم بطرق أخرى.

تثبيت النيتروجين الطبيعي والصناعي هو جوهري لجميع أشكال الحياة لأنه ضروري للتكوين البيولوجي لكتل البناء الأساسية في النباتات والحيوانات وغيرها من أشكال الحياة. مثلا: النوكليوتيدات والحمض النووي والحموض الأمينية للبروتينات. لذا فإن تثبيت النيتروجين هام للزراعة وصناعة الأسمدة. كما أنه هام في صناعة المتفجرات (مثل البارود والديناميت والتي إن تي). يحدث تثبيت النيتروجين بشكل طبيعي عند حدوث البرق.[2][3]

كما يشير تثبيت النيتروجين إلى تحويلات حيوية أخرى للنيتروجين، كتحويله إلى ثنائي أكسيد النيتروجين. الميكروبات التي بإمكانها تثبيت النيتروجين هي بدائيات النوى (بكتيريا وعتائق معاً موزعين في ممالكهم الخاصة) تدعى دايازتروف. طورت بعض النباتات والحيوانات (مثل أرضة) علاقة تعايش مع الدايازتروف.

التثبيت الحيوي للنيتروجين[عدل]

مخطط توضيحي لدورة النيتروجين تم إهمال تثبيت النيتروجين للاأحيائي.

اكتشف التثبيت الحيوي للنيتروجين كل من المهندس الزراعي الألماني هيرمان هيلريغل وعالم الميكروبات الهولندي مارتينوس بايرينك. يحدث التثبيت الحيوي للنيتروجين (BNF) عندما يتحول النيتروجين الجوي إلى أمونيا عن طريق أنزيمات النيتروجيناز.[1] وتفاعل التثبيت الحيوي للنيتروجين هو:

N2 + 8 H+ + 8 e → 2 NH3 + H2

العملية مقرونة بحلمهة 16 مكافئ من ثلاثي فوسفات الأدينوسين ويرافقها تشكل جزيئ H2. في الدايازتروف التي تعيش بشكل حر تهضم الأمونيا التي ولدها النيتروجيناز إلى غلوتامات عن طريق أنزيم غلوتامين سينثيتاز.

الجينات الميكروبية المطلوبة لتثبيت النيتروجين موزعة على نطاق عريض في البيئات المتنوعة. [4][5]

الأنزيمات المسئولة عن عمل النيتروجيناز حساسة جداً للتخريب بالأوكسيجين. كثير من البكتيريا تتوقف عن إنتاج الأنزيمات في وجود الأوكسيجين.[1] توجد الكثير من أحياء تثبيت النيتروجين فقط في ظروف لا هوائية، وتتنفس لإنقاص معدلات الأوكسيجين، أو تربطة ببروتين مثل ليغيموغلوبين.[1]

الميكروبات التي تثبت النيتروجين[عدل]

الدايازتروفات هي زراقم مثل التريكوديزميوم و الخضربيات و الآزوتيات و الريزوبيا و الفرانكيا.

تعيش الزراقم تقريباً في جميع البيئات المضائة وتلعب دوراً رئيسياً في دورة الكربون والنيتروجين في غلاف الأرض الحيوي. بشكل عام فيمكن للزراقم الاستفادة من مصادر متنوعة عضوية وغير عضوية من مركبات النيتروجين، مقل النيترات أو النتريت أو الأمونيوم أو اليوريا أو بعض الحموض الأمينية. ويمكن لبعض سلالات الزراقم تحقيق نمو دايازتروفي، وهي إمكانية كانت موجودة في آخر الأسلاف المعروفين للعتائق[6]

يمكن للزراقم في الشعاب المرجانية أن تثبت ضعف كمية النيتروجين على اليابسة، حيث يتم تثبيت حوالي 1.8 كغ من النيتروجين لكل هيكتار في اليوم. يعتقد أن الزراقم البحرية الاستعمارية التريكوديزميوم تثبت النيتروجين يعادل نصف النيتروجين المثبت في الأنظمة البحرية على مستوى العالم.[7]

تعايش العقد الجذرية[عدل]

فصيلة البقليات[عدل]

فصيلة البقليات هي من النباتات التي تشارك في تثبيت النيتروجين – بقوليات - أصناف من النفل و فول الصويا و البرسيم الحجازي و الترمس و الفول السوداني و Kudzu و Rooibos. حيث تحتوي على بكتيريا تعايشية تسمى ريزوبيا في عقد على جذورها، تنتج مركبات نيتروجينية تساعد النبات على النمو منافسة النباتات الأخرى. يتحرر النيتروجين عندما يموت النبات، مما يجعله متوافراً للنباتات الأخرى ويساعد في تسميد التربة.[1][8] معظم البقليات لديها هذا الارتباط، باستثناء بعض الأجناس مثل (Styphnolobium). في الزراعة العضوية و التقليدية يتم تدوير الحقول على عدة أنواع من المحاصيل، والتي عادة ما تتضمن النفل أو الحنطة السوداء (فصيلة البطباطية الغير بقلية) والتي تدعى أحياناً بالسماد الأخضر.

تعتمد الزراعة في أزقة الأنغا على الجنس البقولي إنغا، وهي شجرة استوائية صغيرة قاسية الأوراق مثبتة للنيتروجين.[9]

غير البقليات[عدل]

مقطع لعقدة جذرية لشجرة النغت.

بالرغم من أن الغالبية العظمى من النباتات المثبتة للنيتروجين عن طريق العقد الجذرية هي من الفصيلة البقولية، إلا أنه يوجد بعض الاستثنائات:

  • Parasponia، هي جنس استوائي من الفصيلة القنبية يمكنها التفاعل مع بكتيريا الريزوبيا مشكلة عقد مثبتة للنيتروجين[10]
  • النباتات شعاعية الجذر: مثل النغت والشمعاء (Myrica) يمكنها تشكيل عقد مثبتة للنيتروجين، بفضل العلاقة التعايشية مع بكتيريافرانكيا. تنتمي هذه النباتات إلى 25 جنس[11] موزعة على 8 فصائل نباتية.

قابلية تثبيت النيتروجين نادرة الوجود في هذه الفصائل. فمثلاً، 4 فقط من بين 122 جنس في الفصيلة الوردية يمكنها صنع النيتروجين. كل هذه الفصائل تنتمي إلى رتبة القرعيات والتي تشكل مع البلوطيات و الورديات و الفوليات فرع (eurosids). وفي هذا الفرع فإن الفوليات هي أول نسل يتفرع.

الفصيلة: الجنس

Betulaceae: Alnus (alders)

Cannabaceae: Trema

Casuarinaceae:

Allocasuarina
Casuarina
Ceuthostoma
Gymnostoma


Coriariaceae: Coriaria

Datiscaceae: Datisca

Elaeagnaceae:

Elaeagnus (silverberries)
Hippophae (sea-buckthorns)
Shepherdia (buffaloberries)


Myricaceae:

Comptonia (sweetfern)
Morella
Myrica (bayberries)


Rhamnaceae:

Ceanothus
Colletia
Discaria
Kentrothamnus
Retanilla
Talguenea
Trevoa


Rosaceae:

Cercocarpus (mountain mahoganies)
Chamaebatia (mountain miseries)
Dryas
Purshia/Cowania (bitterbrushes/cliffroses)

كما أن هناك عدة علاقات تعايش مثبتة للنيتروجين تستخدم الزراقم (مثل Nostoc):

  • بعض الأشنات مثل Lobaria و Peltigera
  • Mosquito fern
  • Cycads
  • Gunnera

التثبيت الصناعي للنيتروجين[عدل]

تم اكتشاف قابلية النيتروجين للتفاعل مع بعض المركبات للمرة الأولى على يد (Desfosses) في عام 1828. حيث لاحظ أن خليط الكربون مع أكاسيد المعادن القلوية يتفاعل مع النيتروجين عند درجات الحرارة العالية. في عام 1860 طور Margueritte و Sourdeval العملية الأولى المستخدمة تجارياً باستخدام كربونات الباريوم كمادة بادئة. حيث يمكن مفاعلة سيانيد الباريوم الناتج مع البخار معطياً الأمونيا. في عام 1898 فصل Adolph Frank و Nikodem Caro العملية حيث قاموا أولاً بإنتاج كربيد الكالسيوم ثم فاعلوه في خطوة لاحقة مع النيتروجين معطياً سياناميد الكالسيوم. اكتشفت عملية أوستوالد لإنتاج حمض الآزوت عام 1902. وسيطرت عملية فرانك-كارو وعملية أوستوالد على صناعة تثبيت النيتروجين حتى اكتشاف عملية هابر-بوش في عام 1909.[12][13] قبل 1900، اختبر نيكولا تسلا الإنتاج الصناعي للنيتروجين "باستخدام تيارات كهربائية ذات ترددات عالية جداً".[14] [15]

عملية هابر[عدل]

Artificial fertilizer production is now the largest source of human-produced fixed nitrogen in the Earth's ecosystem. Ammonia is a required precursor to fertilizers, explosives, and other products. The most common method is the Haber process. The Haber process requires high pressures (around 200 atm) and high temperatures (at least 400 °C), routine conditions for industrial catalysis. This highly efficient process uses natural gas as a hydrogen source and air as a nitrogen source.[16]

Much research has been conducted on the discovery of catalysts for nitrogen fixation, often with the goal of reducing the energy required for this conversion. However, such research has thus far failed to even approach the efficiency and ease of the Haber process. Many compounds react with atmospheric nitrogen to give dinitrogen complexes. The first dinitrogen complex to be reported was based on ruthenium,[Ru(NH3)5(N2)]2+.[17]

انقاص النيتروجين الجوي[عدل]

Catalytic chemical nitrogen fixation at temperatures considerably lower than the Haber process is an ongoing scientific endeavor. Nitrogen was converted to ammonia and hydrazine by Alexander E. Shilov in 1970.[18][19]

Few compounds will cleave the N2 molecule. Under an atmosphere of nitrogen, lithium metal converts to lithium nitride. Treatment of the resulting nitride gives ammonia. Another example of homolytic cleavage of dinitrogen under mild conditions was published in 1995. Two equivalents of a molybdenum complex reacted with one equivalent of dinitrogen, creating a triple bonded MoN complex.[20] Since then, this triple bonded complex has been used to make nitriles.[21]

Trimethylsilyl chloride, lithium, and nitrogen molecule react to give tris(trimethylsilyl)amine, under catalysis by nichrome wire or chromium trichloride in tetrahydrofuran.

3 Me3SiCl + 3 Li + 1/2 N2 → (Me3Si)3N + 3 LiCl

Tris(trimethylsilyl)amine can then be used for reaction with α,δ,ω-triketones to give tricyclic pyrroles.[22]

Catalytic systems for converting nitrogen to ammonia have been developed since the 1980s.[23] In 2003 another was reported based on molybdenum compound, a proton source, and a strong reducing agent.[24][25][26][27] However, this catalytic reduction fixates only a few nitrogen molecules.

Synthetic nitrogen reduction Yandulov 2006

In 2011 Arashiba et al. reported yet another system with a catalyst again based on molybdenum but with a diphosphorus pincer ligand.[28]

انظر أيضاً[عدل]

المراجع[عدل]

  1. ^ أ ب ت ث ج Postgate, J. (1998). Nitrogen Fixation, 3rd Edition. Cambridge University Press, Cambridge UK. 
  2. ^ Slosson، Edwin (1919). Creative Chemistry. New York: The Century Co. صفحات 19–37. 
  3. ^ http://www.biology.ed.ac.uk/archive/jdeacon/microbes/nitrogen.htm
  4. ^ Gaby, J.C.; Buckley, D.H. (2011). "A global census of nitrogenase diversity.". Environmental Microbiology 13 (7): 1790–1799. doi:10.1111/j.1462-2920.2011.02488.x. 
  5. ^ Hoppe, B.; Kahl, T.; Karasch, P.; Wubet, T.; Bauhus, J.; Buscot, F.; Krüger, D. (2014). "Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.". PLoS ONE 9 (2): e88141. doi:10.1371/journal.pone.0088141. 
  6. ^ "The evolution of nitrogen fixation in cyanobacteria" N. Latysheva, V. L. Junker, W. J. Palmer, G. A. Codd and D. Barker; Bioinformatics; 2012: 28(5) pp 603–606; (Article) doi:10.1093/bioinformatics/bts008
  7. ^ Bergman, B.; Sandh, G.; Lin, S.; Larsson, H.; and Carpenter, E. J. (2012). "Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties". FEMS Microbiology Reviews 37 (3): 1–17. doi:10.1111/j.1574-6976.2012.00352.x. 
  8. ^ Smil, V (2000). Cycles of Life. Scientific American Library. 
  9. ^ Elkan, Daniel. "Slash-and-burn farming has become a major threat to the world's rainforest". The Guardian, 21 April 2004.
  10. ^ Op den Camp، Rik؛ Streng، A. et al. (2010). "LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume Parasponia". Science 331 (6019): 909–912. doi:10.1126/science.1198181. 
  11. ^ Dawson، J. O. (2008). Nitrogen-fixing Actinorhizal Symbioses. Springer. صفحات 199–234. 
  12. ^ "Die Umwandlungsgleichung Ba(Cn)2 → BaCN2 + C Im Temperaturgebiet von 500 Bis 1000 °C". Zeitschrift für Elektrochemie und angewandte physikalische Chemie 40 (10): 693–698. 1934. doi:10.1002/bbpc.19340401005 (غير نشط 2014-01-29). 
  13. ^ Curtis، Harry Alfred (1932). Fixed nitrogen. 
  14. ^ http://www.tfcbooks.com/tesla/1900-06-00.htm
  15. ^ THE PROBLEM OF INCREASING HUMAN ENERGY
  16. ^ http://www.epa.gov/watertrain/nitroabstr.html US Enivronmental Protection Agency: Human Alteration of the Global Nitrogen Cycle: Causes and Consequences by Peter M. Vitousek, Chair, John Aber, Robert W. Howarth, Gene E. Likens, Pamela A. Matson, David W. Schindler, William H. Schlesinger, and G. David Tilman
  17. ^ A. D. Allen, C. V. Senoff (1965). "Nitrogenopentammineruthenium(II) complexes". Journal of the Chemical Society, Chemical Communications (24): 621. doi:10.1039/C19650000621. 
  18. ^ "Catalytic reduction of molecular nitrogen in solutions" A. E. Shilov Russian Chemical Bulletin Volume 52, Number 12, 2555–2562, doi:10.1023/B:RUCB.0000019873.81002.60
  19. ^ "Reduction of dinitrogen" Richard R. Schrock PNAS 14 November 2006 vol. 103 no. 46 17087 doi:10.1073/pnas.0603633103
  20. ^ "Dinitrogen Cleavage by a Three-Coordinate Molybdenum(III) Complex" Catalina E. Laplaza and Christopher C. Cummins Science 12 May 1995: 861–863.10.1126/science.268.5212.861
  21. ^ "A Cycle for Organic Nitrile Synthesis via Dinitrogen Cleavage" John J. Curley, Emma L. Sceats, and Christopher C. Cummins J. Am. Chem. Soc., 2006, 128 (43), pp. 14036–14037 doi:10.1021/ja066090a
  22. ^ Brook، Michael A. (2000). Silicon in Organic, Organometallic, and Polymer Chemistry. New York: John Wiley & Sons, Inc. صفحات 193–194. 
  23. ^ C. J. Pickett, "The Chatt Cycle and the Mechanism of Enzymic Reduction of Molecular Nitrogen", J. Biol. Inorg. Chem. 1996 1, 601–606.
  24. ^ Synthesis and Reactions of Molybdenum Triamidoamine Complexes Containing Hexaisopropylterphenyl Substituents Dmitry V. Yandulov, Richard R. Schrock, Arnold L. Rheingold, Christopher Ceccarelli, and William M. Davis Inorg. Chem.; 2003; 42(3) pp 796–813; (Article) doi:10.1021/ic020505l
  25. ^ "Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center" Dmitry V. Yandulov and Richard R. Schrock Science 4 July 2003: Vol. 301. no. 5629, pp. 76–78 doi:10.1126/science.1085326
  26. ^ The catalyst is based on molybdenum(V) chloride and tris(2-aminoethyl)amine substituted with three very bulky hexa-isopropylterphenyl (HIPT) groups. Nitrogen adds end-on to the molybdenum atom, and the bulky HIPT substituents prevent the formation of the stable and nonreactive Mo-N=N-Mo dimer, and the nitrogen is reduced in an isolated pocket. The proton donor is a pyridinium cation, which is accompanied by a tetraborate counter ion. The reducing agent is decamethylchromocene. All ammonia formed is collected as the HCl salt by trapping the distillate with a HCl solution
  27. ^ Note also that, although the dinitrogen complex is shown in brackets, this species can be isolated and characterized. Here the brackets do not indicate that the intermediate is not observed.
  28. ^ Kazuya Arashiba, Yoshihiro Miyake Yoshiaki Nishibayashi "A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia" Nature Chemistry Volume: 3, Pages: 120–125 Year published:(2011) doi:10.1038/nchem.906

روابط خارجية[عدل]