دالة ارتدادية
في الرياضيات، الدالة الارتدادية[1] أو الدالة ذاتية الانعكاس (بالإنجليزية: involutory function) هي دالة تساوي دالتها العكسية.[2] رياضياً: الدالة تُعدُّ ارتداديَّةً إذا وفقط إذا:
الخاصية الأساسية للعلاقة الالتفافية (أو الارتدادية) في الهندسة الوصفية
[عدل]لمعرفة ما إذا كانت علاقة إسقاطية معينة التفافية، من الضروري، التحقق مما إذا كان كل زوج من العناصر المتقابلة يتكون من عناصر متقابلة بطريقة مزدوجة.[3] وفي حالة القطوع المخروطية يمكن أن يقتصر التحقق على زوج واحد، بحكم النظرية التالية:
إذا نقطتين لشكلين متطابقين، يتقابلان بطريقة مزدوجة، فإن أي نقطتين آخرتين يتقابلان أيضا بطريقة مزدوجة.
مثلا معلوم رباعي A, B و C, D، وحيث تم تحديد بطريقة تحكمية نقطة X. مطلوب إنشاء نجمة ثمانية بحيث يكون بين رؤوسها علافة التفافية.
في هذه الحالة يكمن الحل في اعتماد اثنتين من العلاقات التقابلية الالتفافية: واحدة مركزها النقطة P ومحورها الخط p؛ والعلاقة الأخرى مركزها U ومحورها u. علما بأن النقاط المتقابلة تكون مصطفة مع مركز التقابل والخطوط المتقابلة تلتقي على طول محور التقابل.[4]
معرض صور
[عدل]-
خط بنقطة بعيدة نسبيا
-
علاقة التفافية على قطع ناقص- Involution
-
مقطع طولي يبين العلاقة الارتدادية بين سطحين من الدرجة الثانية (سطح ناقصي وكرة)
انظر أيضاً
[عدل]مراجع
[عدل]- ^ "LDLP - Librairie Du Liban Publishers". www.ldlp-dictionary.com. مؤرشف من الأصل في 2020-03-11. اطلع عليه بتاريخ 2020-03-11.
- ^ "معلومات عن دالة ذاتية الانعكاس على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2019-10-25.
- ^ Lezioni di geometria By Guido Castelnuovo نسخة محفوظة 2023-02-18 على موقع واي باك مشين.
- ^ The problem of tangency to three non-homothetic conics نسخة محفوظة 28 يونيو 2022 على موقع واي باك مشين.