يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

تجزئة مجموعة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
N write.svg
هذه مقالة جديدة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. (يونيو 2008)

تجزئة مجموعة M هي مجموعة من أجزاء M, غير فارغة وغير متقاطعة, تغطي M كليا.

التعريف[عدل]

لتكن M مجموعة ما. J مجموعة من أجزاء M . نقول أن J تجزئة ل M إذا كان :

  • كل عنصر من J مجموعة غير فارغة.
  • اتحاد عناصر J يساوي M
  • عناصر J مجموعات منفصلة (غير متقاطعة) مثنى مثنى.

عناصر J تسمى أجزاء التجزئة.

أمثلة[عدل]

  • M مجموعة ما. { J = { M تجزئة ل M.
  • المجموعة { M = {1, 2, 3 لها 5 تجزئات :

- { {1, 2, 3} },

- { {1, 2}, {3} },

- { {1, 3}, {2} },

- { {1}, {2, 3} },

- { {1}, {2}, {3} }

  • { {}, {1,3}, {2} } ليست تجزئة لأنها تضم مجموعة فارغة، * { {1, 2}, {2, 3} } ليست تجزئة لأن العناصر {1, 2} و{2, 3} متقاطعة,
  • { {1}, {2} } ليست تجزئة لأن العناصر لا تغطي M كليا.

التجزئات وعلاقات التكافؤ[عدل]

علاقة الترتيب على تجزئات مجموعة[عدل]

M مجموعة ما. J وI تجزئتين لM.

نقول أن J أدق من I ونكتب J < I إذا كان كل عنصر من J جزء من أحد عناصرI.

< تعرف علاقة ترتيب جزئية على مجموعة تجزئات M.

مثال { {1}, {2}, {3} }= J أدق من { {1}, {2, 3} }= I.

عدد تجزئات مجموعة منتهية[عدل]

نسمي عدد بيل Bn, عدد تجزئات مجموعة منتهية من n عنصر.

مثال : B0 = 1, B0 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203

الدالة الأسية المولدة للمتتالية Bn هي :

.

كما تحقق Bn علاقة الترجع التالية

انظر أيضا[عدل]

مراجع[عدل]