زجاجة كلاين

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
تمثيل ثنائي الأبعاد مغمور في فضاء ثلاثي الأبعاد.

زجاجة كلاين في الرياضيات هي مثال على سطح غير قابل للتوجيه، حيث أنه لا يمكن التمييز بين داخل وخارج السطح. وكان أول وصف لزجاجة كلاين في عام 1882 من قبل عالم الرياضيات فيليكس كلاين الألماني. الأسم العلمي و الأكثر دقة لزجاجة كلاين هو Fläche Kleinsche "سطح كلاين" ولكن الترجمة الخاطئة أدت في نهاية المطاف إلى اعتماد هذا المصطلح في اللغة الألمانية كذلك، وهي عبارة عن سطح له وجه واحد (ليس له وجهان (داخلي و خارجي) وليس له حدود (مثل الكرة)

البناء[عدل]

سطح كلاين سطح طوبولوجي لا يمكن انشائه في فضاء ثلاثي الابعاد ، ولكن يمكن تكوين نموذج تقريبي له يشبه القارورة أو الزجاجة و هو يعتبر مسقط لسطح كلاين في فضاء ثلاثي الأبعاد.

و لصناعة هذا النموذج يجب استخدام صفيحة مربعة الشكل يتم طيها أولا لتشكيل أسطوانة ثم يتم إدخال أحد أطراف هذه الأسطوانة في جدار الطرف الأخر ثم إلصاق الطرفين معاً.

يستلزم وجود سطح كلاين فضاء رباعي الأبعاد [a] مما يسبب بعض المشاكل عند تمثيله في فضاء ثلاثي الأبعاد فأحدى هذه المشاكل هي تقاطع النموذج ثلاثي الأبعاد مع نفسه مما يعني أن أضرابا ما قد حدث للسطح،

ولكن رغم ذلك يمكن لهذا النموذج وصف بعض خصائص سطح كلاين و هي

  • تشكيل (سطح أحادي الوجه)
  • إظهار قدرة هذا السطح على أبقاء الفراغ بداخله متصلا مع الفراغ بخارجه
  • إظهار سطح لا يحوي أي حدود على عكس شريط موبيوس، مثال _ الكرة : سطح لا يحوي أي حدود

المقطع[عدل]

من أهم ميزات نموذج سطح كلاين في الفضاء ثلاثي الابعاد أن مقطعه يعطى على شكل شريط موبيوس و هو أحد الأشكال الطبولوجية أحادية الوجه (غير قابلة للتوجيه) وهذا سيعني أمكانية صناعة نموذج عن سطح كلاين عند ضم شريطي موربيوس و أستخدام شريط أخر ثنائي الوجه (عادي) لأخفاء الحواف. [1]

الثمثيل البياني لسطح كلاين[عدل]

رسم ثلاثي الأبعاد لزجاجة كلاين

تعطى المعادلات الوسيطية للنموذج ثلاثي الأبعاد لسطح كلاين كالتالي


مع العلم أن

انظر أيضاً[عدل]

ملاحظات[عدل]

  1. ^ يقصد بفضاء رباعي الأبعاد أي فضاء بأربع أبعاد مكانية و ليس ثلاث أبعاد مكانية و بعد زماني واحد

مراجع[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.