كرة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
كرة فراغية لدوائر تتلاقى في أقطاب الكرة.

الكرة أو الفلكة (بالإنجليزية: Sphere) هي سطح هندسي ثنائي تام التناظر، ينتج عن دوران دائرة حول أحد أقطارها. في الهندسة الإقليدية ثلاثية الأبعاد تعرف الكرة على أنها المحل الهندسي لمجموعة النقاط التي تبعد البعد نفسه وليكن r من نقطة معينة في الفضاء حيث r عدد موجب (ليس بالضرورة صحيحا دائما) ويسمى نصف القطر. تسمى النقطة المعينة بمركز الكرة. كرة الوحدة هي الكرة التي يكون نصف قطرها يساوي 1.

المساحة[عدل]

المساحة السطحية لكرة ذات نصف قطر r هي:

الحجم[عدل]

اسطوانة مقيدة بكُرة داخلها

في الفضاء ثلاثي الأبعاد، حجم كرة ذات نصف قطر r هو

أرخميدس هو أول من استنتج هذه الصيغة حيث وجد أن حجم كرة يساوي ثلثي حجم الأسطوانة المحيطة.

معادلات[عدل]

في الهندسة التحليلية، كرة بمركز (x0, y0, z0) ونصف قطر r تعرف على أنها جميع النقاط (x, y, z) التي تحقق المعادلة التالية:

هذه النقاط يمكن تمثيلها من خلال المعادلات القطبية التالية:

حيث و

أي كرة ذات أي قيمة لنصف قطرها ومركزها في نقطة الأصل تأخذ المعادلة التفاضلية التالية:

تبين هذه المعادلة أن متجه السرعة ومتجه الموقع لأي نقطة تتحرك على سطح الكرة دائما ما يكونا متعامدين.

التعميم للأبعاد الأخرى - طوبولوجيا[عدل]

  • الكرة-0 هي زوج من النقاط تحدد قطعة مستقيمة طولها 2r.
  • الكرة-1، هي دائرة نصف قطرها r.
  • الكرة-2 هي الكرة الاعتيادية في الفضاء الثلاثي الأبعاد.
  • الكرة-3 هي كرة في الفضاء الرباعي الأبعاد.

انظر أيضا[عدل]

مراجع[عدل]

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.