انتقل إلى المحتوى

فضاء طوبولوجي

تحتوي هذه المقالة مصطلحات مُعرَّبة غير مُوثَّقة بمصادر.
من ويكيبيديا، الموسوعة الحرة
أمثلة على الفضاءات الطوبولوجية. المثال الموجود في أسفل ويسار الصورة ليس بفضاء طوبولوجي لأن اتحاد المجموعتين {2} و {3} (أي المجموعة {2،3}) لا ينتمي إلى المجموعة. أما المثال الموجود في أسفل ويمين الصورة، فهو ليس بفضاء طوبولوجي لأن تقاطع المجموعتين {1،2} و{2،3} (أي المجموعة {2}) لا ينتمي إلى المجموعة.

في الطوبولوجيا والمجالات المتعلقة بها من الرياضيات، تُسمّى الثنائيةَ (E, T) فضاءً طوبولوجياً، حيث E مجموعة ما وT مجموعةٌ عناصرها هي مجموعات جزئية لِ E، إذا تحققت الخاصياتُ الثلاثة الآتية مجتمعةً:

  1. الفراغُ والشمولُ: المجموعة الفارغة Ø و E عضوان في T.[1][2][3]
  2. الوَصْل: أيُ اتحادٍ لأعضاء من T ينتمي لِ T (إن كان نهائياً أو غير نهائي).
  3. البَيْن: تقاطع أي مجموعتين من T ينتمي هو أيضا لِـ T (ليس ضروريا أن ينتمي تقاطع عدد لا نهائي من المجموعات من داخل T إلى T).

و في هذه الحالة نسمي T طوبولوجيّةً الفضاء، والمجموعات الأعضاء فيها نسميهن المجموعات المفتوحة في الفضاء. مجموعةٌ التي مكَمّلتها مجموعة مفتوحة تُسمّى مجموعة مغلقة.

أمثلة

[عدل]

لأي فضاء E يمكننا تعريف طوبولوجية عليه {T={E, Ø. ومن الواضح أن هذه المجموعة تحقق كل الشروط المبيَّنة أعلاه. هذا النوع من الطوبولوجيات يسمّى الطوبولوجية البديهية.

لأي فضاء E يمكننا أيضا تعريف طوبولوجية عليه (T=P(E. أي, طوبولوجية التي فيها كل مجموعة جزية للفضاء E هي مجموعة مفتوحة. ومن الواضح, في هذه الحالة أيضا, أن هذه المجموعة تحقق كل الشروط المبيَّنة أعلاه, ولذلك هي طوبولوجية حسب التعريف. هذا النوع من الطوبولوجيات يسمّى الطوبولوجية المنفردة.

تعريفات مكافئة

[عدل]

انظر أيضا

[عدل]

مراجع

[عدل]
  1. ^ "معلومات عن فضاء طوبولوجي على موقع id.loc.gov". id.loc.gov. مؤرشف من الأصل في 2020-02-07.
  2. ^ "معلومات عن فضاء طوبولوجي على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2020-05-11.
  3. ^ "معلومات عن فضاء طوبولوجي على موقع britannica.com". britannica.com. مؤرشف من الأصل في 2016-03-10.

وصلات خارجية

[عدل]