انتقل إلى المحتوى

هندسة المنحنيات التفاضلية

هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها
يرجى إضافة وصلات داخلية للمقالات المتعلّقة بموضوع المقالة.
من ويكيبيديا، الموسوعة الحرة

هذه نسخة قديمة من هذه الصفحة، وقام بتعديلها JarBot (نقاش | مساهمات) في 02:29، 7 نوفمبر 2020 (بوت:الإبلاغ عن رابط معطوب أو مؤرشف V5.1). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة، وقد تختلف اختلافًا كبيرًا عن النسخة الحالية.

هندسة المنحنيات التفاضلية هي فرع من الهندسة يهتم بالمنحنيات الملساء في المستوي والفضاء الاقليدي باستعمال طرائق حسبان التفاضل والتكامل.[1] ابتداء من العصور القديمة، قد حققت العديد من المنحنيات ملموسة بدقة باستخدام نهج الاصطناعية. الهندسة التفاضلية يأخذ طريقا آخر: يتم تمثيل المنحنيات في الصيغة البارامترية، و خصائصها الهندسية و كمياتها المختلفة والمرتبطة بها، مثل الانحناء وطول القوس، و يعبر بها عن طريق المشتقات و التكامل باستعمال حساب التفاضل والتكامل للمتجهات. واحدة من أهم الأدوات المستخدمة لتحليل منحنى هو الإطار Frenet ، إطار التحرك الذي يوفر نظام الإحداثيات في كل نقطة من المنحنى وهذا هو " أفضل تكييفها " ل منحنى قرب تلك النقطة.

نظرية المنحنيات هي أبسط من ذلك بكثير و أضيق نطاقا من نظرية السطوح والتعميمات في الفضاءات ذات الابعاد العليا، لأن المنحنى المنتظم في الفضاء الإقليدي لا يوجد لديه جوهرالهندسة intrinsic geometry. أي منحنى منتظم يمكن ان يكون بارامتريا بواسطة طول القوس ( في وضع الباراميتري الطبيعي ) . ان منحنيات الفضاء المختلفة تميز فقط من خلال الطريقة التي تثبت و تطور. من الناحية الكمية، وهذا يقاس بثوابت الهندسة التفاضلية يسمى انحناء و التواء المنحنى. النظرية الأساسية في منحنيات تؤكد أن معرفة هذه الثوابت يحدد تماما المنحنى.

مراجع

  1. ^ "معلومات عن هندسة المنحنيات التفاضلية على موقع academic.microsoft.com". academic.microsoft.com. مؤرشف من الأصل في 2020-04-07.