التسلسل الزمني لاكتشاف الجسيمات

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

هذه المقالة تدور حول التسلسل الزمني لاكتشاف الجسيمات دون الذرية ومعها جميع الجسيمات التي تم اكتشافها إلى الآن والتي تبدو أنها أولية (أي التي لا تتجزأ) والتي تعطي أفضل الأدلة المتوفرة. وتشمل أيضا اكتشاف الجسيمات المركبة والجسيمات المضادة حيث أن لها أهمية تاريخية خاصة

وبشكل أكثر دقة، فإن المعايير المضافة هي:

  • الجسيمات الأولية التابعة ل النموذج العياري لفيزياء الجسيمات التي تم ملاحظتها بشكل جيد. فالنموذج القياسي هو أشمل القوائم النموذجية لسلوك الجسيمات، فلم يكتشف بها إلى الآن أي اختلافات أو تناقضات جوهرية. وتم التحقق من جميع جسيمات النموذج العياري عدا بوزونات هيجز، وجميع الجسيمات الأخرى التي تم ملاحظتها هي مزيج لأكثر من نموذج قياسي للجسيمات.
  • الجسيمات المضادة والتي كان لها أهمية تاريخية في تطوير فيزياء الجسيمات، وبشكل خاص البوزيترون ومضاد بروتون. فاكتشاف تلك الجسيمات تطلب اجراء عمليات مخبرية مختلفة جدا عن نظيراتها العادية، وأعطى اثبات بأن جميع الجسيمات لها ضديد أو جسيم مضاد— وكانت فكرة جوهرية لنظرية المجال الكمي الإطار الرياضياتي الحديث لفيزياء الجسيمات. كان اكتشاف الجسيم وضديده في معظم حالات اكتشاف الجسيمات المتلاحقة يتم في آن واحد.
  • تحتوي الجسيمات المركبة التي هي أول اكتشافات الجسيم بشكل دقيق على عناصر أولية أساسية، أو الذي تم اكتشافه له أهمية بالغة في فهم فيزياء الجسيمات.

والجدير بالملاحظة بأن هناك العديد من الجسيمات المركبة قد تم اكتشافها، انظر قائمة الميزونات وقائمة الباريونات. وللإطلاع على قائمة الجسيمات بشكل عام، أنظر قائمة الجسيمات والتي من ضمنها الجسيمات الافتراضية.

مراجع[عدل]

  • V.V. Ezhela et al. (1996). Particle Physics: One Hundred Years of Discoveries: An Annotated Chronological Bibliography. Springer-Verlag New York. ISBN 1-56396-642-5. 
  1. ^ W.C. Röntgen (1895). "Über ein neue Art von Strahlen. Vorlaufige Mitteilung". Sitzber. Physik. Med. Ges. 137: 1. 
  2. ^ J. J. Thomson (1897). "Cathode Rays". Philosophical Magazine 44: 293. 
  3. ^ P. Villard (1900). "Sur la Réflexion et la Réfraction des Rayons Cathodiques et des Rayons Déviables du Radium". Compt. Ren. 130: 1010. 
  4. ^ E. Rutherford (1911). "The Scattering of α- and β- Particles by Matter and the Structure of the Atom". Philosophical Magazine 21: 669. 
  5. ^ E. Rutherford (1919). "Collision of α Particles with Light Atoms IV. An Anomalous Effect in Nitrogen". Philosophical Magazine 37: 581. 
  6. ^ J. Chadwick (129). "Possible Existence of a Neutron". Nature 1932: 312. 
  7. ^ E. Rutherford (1920). "Nuclear Constitution of Atoms". Proc. Roy. Soc. A97: 324. 
  8. ^ C.D. Anderson (1932). "The Apparent Existence of Easily Deflectable Positives". Science 76: 238. doi:10.1126/science.76.1967.238. PMID 17731542. 
  9. ^ S.H. Neddermeyer, C.D. Anderson (1937). "Note on the nature of Cosmic-Ray Particles". Phys. Rev. 51: 884. doi:10.1103/PhysRev.51.884. 
  10. ^ M. Conversi, E. Pancini, O. Piccioni (1947). "On the Disintegration of Negative Muons". Phys. Rev. 71: 209. doi:10.1103/PhysRev.71.209. 
  11. ^ C.D. Anderson (1935). "On the Interaction of Elementary Particles". Proc. Phys. Math. Soc. Jap. 17: 48. 
  12. ^ G.D. Rochester, C.C. Butler (1947). "Evidence for the Existence of New Unstable Elementary Particles". Nature 160: 855. doi:10.1038/160855a0. 
  13. ^ Chamberlain, Owen (1955). "Observation of Antiprotons". Physical Review 100: 947. doi:10.1103/PhysRev.100.947. 
  14. ^ Reines, FREDERICK (1956). "The Neutrino". Nature 178: 446. doi:10.1038/178446a0. 
  15. ^ Danby, G. (1962). "Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos". Physical Review Letters 9: 36. doi:10.1103/PhysRevLett.9.36. 
  16. ^ Bloom, E. D. (1969). "High-Energy Inelastic e-p Scattering at 6° and 10°". Physical Review Letters 23: 930. doi:10.1103/PhysRevLett.23.930. 
  17. ^ Breidenbach, M. (1969). "Observed Behavior of Highly Inelastic Electron-Proton Scattering". Physical Review Letters 23: 935. doi:10.1103/PhysRevLett.23.935. 
  18. ^ Aubert, J. J. (1974). "Experimental Observation of a Heavy Particle J". Physical Review Letters 33: 1404. doi:10.1103/PhysRevLett.33.1404. 
  19. ^ Augustin, J. -E. (1974). "Discovery of a Narrow Resonance in e+e- Annihilation". Physical Review Letters 33: 1406. doi:10.1103/PhysRevLett.33.1406. 
  20. ^ B. J. Bjorken and S. L. Glashow (1964). "Elementary Particles and SU(4)". Physics Letters 11: 255. doi:10.1016/0031-9163(64)90433-0. 
  21. ^ Perl, M. L. (1975). "Evidence for Anomalous Lepton Production in e+-e- Annihilation". Physical Review Letters 35: 1489. doi:10.1103/PhysRevLett.35.1489. 
  22. ^ Herb, S. W. (1977). "Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions". Physical Review Letters 39: 252. doi:10.1103/PhysRevLett.39.252. 
  23. ^ Barber, D. P. (1979). "Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA". Physical Review Letters 43: 830. doi:10.1103/PhysRevLett.43.830. 
  24. ^ Aubert, J (1983). "The ratio of the nucleon structure functions F2N for iron and deuterium". Physics Letters B 123: 275. doi:10.1016/0370-2693(83)90437-9. 
  25. ^ Arnison, G (1983). "Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider". Physics Letters B 126: 398. doi:10.1016/0370-2693(83)90188-0. 
  26. ^ F. Abe et al. (CDF collaboration) (1995). "Observation of Top quark production in \bar{p} p Collisions with the Collider Detector at Fermilab". Phys. Rev. Lett. 74: 2626. doi:10.1103/PhysRevLett.74.2626. 
  27. ^ S. Arabuchi et al. (D0 collaboration) (1995). "Observation of the Top quark". Phys. Rev. Lett. 74: 2632. doi:10.1103/PhysRevLett.74.2632. 
  28. ^ http://www.fnal.gov/pub/presspass/press_releases/donut.html