هذه المقالة يتيمة. ساعد بإضافة وصلة إليها في مقالة متعلقة بها

فضاء ثنائي الأبعاد

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
نظام الإحداثيات الديكارتي ثنائي الأبعاد

التفاصيل[عدل]

الفضاء ثنائي الأبعاد هو نموذج هندسي للإسقاط المستوي للكون المادي الذي نعيش فيه. ويطلق على البعدين عادة اسم الطول والعرض. ويقع الاتجاهان في نفس المستوى.

في الفيزياء و الرياضيات، المتتالي للقيمة n أرقام يمكن أن يفهم على أنه موقع في n-البعد الفضائي. عندما تكون n = 2، فإن مجموعة جميع هذه المواقع تسمى فضاء إقليديًا ثنائي الأبعاد أو فضاء إقليديًا ذا بعدين.

في الفيزياء، ينظر إلى الفضاء ثنائي الأبعاد كتمثيل مستوٍ للفضاء الذي نتحرك فيه، ويوصف على أنه فضاء ثنائي الأبعاد أو فضاء ذو بعدين.

الهندسة ثنائية الأبعاد[عدل]

متعدد الرؤوس[عدل]

في بعدين، يوجد عدد غير محدود من الأشكال متعددة الرؤوس المنتظمة: المضلعات. فيما يلي بعض منها:

المحدب[عدل]

يمثل الرمز الاسكلافلي {p} متعدد رؤوس منتظمًا

الاسم مثلث
(متساوي الضلعين)
المربع
(المربع الثنائي)
(المكعب - ثنائي)
المخمس المسدس المسبع المثمن
الاسكلافلي {3} {4} {5} {6} {7} {8}
Image Regular triangle.svg Regular quadrilateral.svg Regular pentagon.svg Regular hexagon.svg Regular heptagon.svg Regular octagon.svg
الاسم التساعي المعشر الأحادي عشري ثنائي عشر ثلاثي عشري رباعي عشري
الاسكلافلي {9} {10} {11} {12} {13} {14}
Image Regular nonagon.svg Regular decagon.svg Regular hendecagon.svg Regular dodecagon.svg Regular tridecagon.svg Regular tetradecagon.svg
الاسم خماسي عشري سداسي عشري سباعي عشري ثماني عشري تساعي عشري العشريني ...n-gon
الاسكلافلي {15} {16} {17} {18} {19} {20} {n}
Image Regular pentadecagon.svg Regular hexadecagon.svg Regular heptadecagon.svg Regular octadecagon.svg Regular enneadecagon.svg Regular icosagon.svg

الشكل المنحرف (الكروي)[عدل]

يمكن اعتبار المضلع الأحادي المنتظم {1} والمضلع الثنائي المنتظم {2} مضلعين منحرفين منظمين. ويمكن أن يتواجدا بشكل غير منحرف في الفضاءات غير الإقليدية كما في سطح الكرة أو الطارة.

الاسم المضلع الأحادي المضلع الثنائي
الاسكلافلي {1} {2}
Image Henagon.svg Digon.svg

غير المحدب[عدل]

يوجد عدد غير منتهٍ من المضلعات المنتظمة غير المحدبة في الفضاء ثنائي الأبعاد، حيث تتكون الرموز الاسكلافلية من عدد كسري {n/m}. ويطلق عليها المضلعات النجمية ولها نفس ترتيب زوايا المضلعات المنتظمة المحدبة.

بشكل عام، لأي عدد طبيعي n، هناك رؤوس n- نجمية غير محدبة مضلعة ومنتظمة برموز اسكلافلية {n/m} ولكل m مثل هذه < n/2 (strictly speaking {n/m}={n/(n-m)}) and m and n are coprime.

الاسم Pentagram Heptagrams Octagram Enneagrams Decagram ...n-agrams
الاسكلافلي {5/2} {7/2} {7/3} {8/3} {9/2} {9/4} {10/3} {n/m}
Image Star polygon 5-2.svg Star polygon 7-2.svg Star polygon 7-3.svg Star polygon 8-3.svg Star polygon 9-2.svg Star polygon 9-4.svg Star polygon 10-3.svg  

Hypersphere[عدل]

CIRCLE 1.svg

The hypersphere in 2 dimensions is a circle, sometimes called a 1-sphere because its surface is one-dimensional. Its area is

A = \pi r^{2}

حيث r نصف القطر.

النظم الإحداثية في الفضاء ثنائي الأبعاد[عدل]

تعد النظم الإحداثية الأكثر انتشارًا هي نظام الإحداثيات الديكارتي، و نظام الإحداثيات القطبية ونظام الإحداثيات الجغرافية.

انظر أيضًا[عدل]