صفات معقدة (وراثة): الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
لا ملخص تعديل
سطر 4: سطر 4:
== تاريخ ==
== تاريخ ==
{{مفصلة|تاريخ علم الجينات}}
{{مفصلة|تاريخ علم الجينات}}
عندما أعيد اكتشاف أعمال [[مندل]] في الوراثة في عام 1900، ناقش العلماء ما إذا كانت قوانين مندل يمكن أن تفسر الاختلاف المستمر الملحوظ في العديد من السمات. وزعمت إحدى المجموعات المعروفة باسم مختصي الإحصاء الحيوي أن السمات المستمرة، مثل الطول كانت [[وروثية|وراثية]] إلى حد كبير، ولكن لا يمكن تفسيرها من خلال وراثة [[الوراثة المندلية|العوامل الوراثية المندلية]] الوحيدة. وكان العمل الذي قام به [[رونالد فيشر]] عام 1918 قد حسم في الغالب الجدل من خلال إظهار أن التباين في السمات المستمرة يمكن حسابه إذا كان هناك العديد من العوامل قد ساهمت بشكل إضافي في كل سمة.<ref>{{Cite journal | vauthors = Fisher RA | date=1919|title=XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance.|url=https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/xvthe-correlation-between-relatives-on-the-supposition-of-mendelian-inheritance/A60675052E0FB78C561F66C670BC75DE|journal=Earth and Environmental Science Transactions of the Royal Society of Edinburgh|volume=52|issue=2|pages=399–433|doi=10.1017/S0080456800012163 }}</ref> ومع ذلك، فإن عدد ال[[جينات]] المشاركة في مثل هذه السمات بقي غير محدد. وحتى وقت قريب، كان من المتوقع أن يكون لل[[موقع كروموسومي|مواقع الجينية]] أحجام تأثير معتدلة وكل منها يفسر نسبة من الوراثة.<ref>{{cite journal | vauthors = Gibson G | title = Rare and common variants: twenty arguments | journal = Nature Reviews. Genetics | volume = 13 | issue = 2 | pages = 135–45 | date = January 2012 | pmid = 22251874 | pmc = 4408201 | doi = 10.1038/nrg3118 | url = http://www.nature.com/articles/nrg3118 }}</ref> وبعد الانتهاء من [[مشروع الجينوم البشري]] في عام 2001، بدا أن ال[[تسلسل الحمض النووي|تسلسل]] ورسم الخرائط للعديد من الأفراد سيسمح قريبا بفهم كامل البنية الوراثية للصفات. ومع ذلك، فإن [[الاختلافات الوراثية]] التي تم اكتشافها من خلال دراسات الارتباط على مستوى الجينوم لم تمثل سوى نسبة صغيرة من التوريث المتوقع؛ على سبيل المثال، في حين يقدر أن الطول قابل للتوريث بنسبة 80-90٪، فإن الدراسات الأولية حددت فقط المتغيرات التي تمثل 5٪ من هذا التوريث.<ref name = "Manolio_2009">{{cite journal | vauthors = Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM | display-authors = 6 | title = Finding the missing heritability of complex diseases | journal = Nature | volume = 461 | issue = 7265 | pages = 747–53 | date = October 2009 | pmid = 19812666 | pmc = 2831613 | doi = 10.1038/nature08494 | url = http://www.nature.com/doifinder/10.1038/nature08494 }}</ref> وأظهرت الأبحاث اللاحقة أن معظم التوارث الناقص يمكن حسابه من خلال المتغيرات المشتركة التي أخطأتها دراسات الارتباط على مستوى ال[[جينوم]]؛ لأن أحجام تأثيرها انخفضت إلى أقل من عتبات الدلالة، وتم احتساب نسبة أصغر من المتغيرات النادرة ذات أحجام تأثير أكبر، على الرغم من أن بعض الصفات النادرة مثل ال[[توحد]] تلعب دورًا مهيمنًا أكثر.<ref>{{cite journal | vauthors = Shi H, Kichaev G, Pasaniuc B | title = Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data | journal = American Journal of Human Genetics | volume = 99 | issue = 1 | pages = 139–53 | date = July 2016 | pmid = 27346688 | pmc = 5005444 | doi = 10.1016/j.ajhg.2016.05.013 | url = https://doi.org/10.1016/j.ajhg.2016.05.013 }}</ref><ref name = "Marouli_2017" /><ref name=":3">{{cite journal | vauthors = Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, Raja A, Coe BP, Stessman HA, He ZX, Leal SM, Bernier R, Eichler EE | title = Excess of rare, inherited truncating mutations in autism | journal = Nature Genetics | volume = 47 | issue = 6 | pages = 582–8 | date = June 2015 | pmid = 25961944 | pmc = 4449286 | doi = 10.1038/ng.3303 | url = http://www.nature.com/articles/ng.3303 }}</ref> وفي حين أنه تم تحديد العديد من العوامل الوراثية المشاركة في الصفات المعقدة، فإن تحديد مساهماتها المحددة في أنماط المظهر الظاهري - وتحديدًا الآليات الجزيئية التي تعمل من خلالها - لا يزال يمثل تحديًا كبيرًا.<ref name=":1">{{cite journal | vauthors = Boyle EA, Li YI, Pritchard JK | title = An Expanded View of Complex Traits: From Polygenic to Omnigenic | journal = Cell | volume = 169 | issue = 7 | pages = 1177–1186 | date = June 2017 | pmid = 28622505 | pmc = 5536862 | doi = 10.1016/j.cell.2017.05.038 }}</ref>
عندما أعيد اكتشاف أعمال [[مندل]] في الوراثة في عام 1900، ناقش العلماء ما إذا كانت قوانين مندل يمكن أن تفسر الاختلاف المستمر الملحوظ في العديد من السمات. وزعمت إحدى المجموعات المعروفة باسم مختصي الإحصاء الحيوي أن السمات المستمرة، مثل الطول كانت [[وروثية|وراثية]] إلى حد كبير، ولكن لا يمكن تفسيرها من خلال وراثة [[الوراثة المندلية|العوامل الوراثية المندلية]] الوحيدة. وكان العمل الذي قام به [[رونالد فيشر]] عام 1918 قد حسم في الغالب الجدل من خلال إظهار أن التباين في السمات المستمرة يمكن حسابه إذا كان هناك العديد من العوامل قد ساهمت بشكل إضافي في كل سمة.<ref>{{Cite journal | vauthors = Fisher RA | date=1919|title=XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance.|url=https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/xvthe-correlation-between-relatives-on-the-supposition-of-mendelian-inheritance/A60675052E0FB78C561F66C670BC75DE|journal=Earth and Environmental Science Transactions of the Royal Society of Edinburgh|volume=52|issue=2|pages=399–433|doi=10.1017/S0080456800012163 }}</ref> ومع ذلك، فإن عدد ال[[جينات]] المشاركة في مثل هذه السمات بقي غير محدد. وحتى وقت قريب، كان من المتوقع أن يكون لل[[موقع كروموسومي|مواقع الجينية]] أحجام تأثير معتدلة وكل منها يفسر نسبة من الوراثة.<ref>{{cite journal | vauthors = Gibson G | title = Rare and common variants: twenty arguments | journal = Nature Reviews. Genetics | volume = 13 | issue = 2 | pages = 135–45 | date = January 2012 | pmid = 22251874 | pmc = 4408201 | doi = 10.1038/nrg3118 | url = http://www.nature.com/articles/nrg3118 }}</ref> وبعد الانتهاء من [[مشروع الجينوم البشري]] في عام 2001، بدا أن ال[[تسلسل الحمض النووي|تسلسل]] ورسم الخرائط للعديد من الأفراد سيسمح قريبا بفهم كامل البنية الوراثية للصفات. ومع ذلك، فإن [[الاختلافات الوراثية]] التي تم اكتشافها من خلال دراسات الارتباط على مستوى الجينوم لم تمثل سوى نسبة صغيرة من التوريث المتوقع؛ على سبيل المثال، في حين يقدر أن الطول قابل للتوريث بنسبة 80-90٪، فإن الدراسات الأولية حددت فقط المتغيرات التي تمثل 5٪ من هذا التوريث.<ref name = "Manolio_2009">{{cite journal | vauthors = Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM | display-authors = 6 | title = Finding the missing heritability of complex diseases | journal = Nature | volume = 461 | issue = 7265 | pages = 747–53 | date = October 2009 | pmid = 19812666 | pmc = 2831613 | doi = 10.1038/nature08494 | url = http://www.nature.com/doifinder/10.1038/nature08494 }}</ref> وأظهرت الأبحاث اللاحقة أن معظم التوارث الناقص يمكن حسابه من خلال المتغيرات المشتركة التي أخطأتها دراسات الارتباط على مستوى ال[[جينوم]]؛ لأن أحجام تأثيرها انخفضت إلى أقل من عتبات الدلالة، وتم احتساب نسبة أصغر من المتغيرات النادرة ذات أحجام تأثير أكبر، على الرغم من أن بعض الصفات النادرة مثل ال[[توحد]] تلعب دورًا مهيمنًا أكثر.<ref>{{cite journal | vauthors = Shi H, Kichaev G, Pasaniuc B | title = Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data | journal = American Journal of Human Genetics | volume = 99 | issue = 1 | pages = 139–53 | date = July 2016 | pmid = 27346688 | pmc = 5005444 | doi = 10.1016/j.ajhg.2016.05.013 | url = https://doi.org/10.1016/j.ajhg.2016.05.013 }}</ref><ref name = "Marouli_2017">{{cite journal | vauthors = Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, Fine RS, Lu Y, Schurmann C, Highland HM, Rüeger S, Thorleifsson G, Justice AE, Lamparter D, Stirrups KE, Turcot V, Young KL, Winkler TW, Esko T, Karaderi T, Locke AE, Masca NG, Ng MC, Mudgal P, Rivas MA, Vedantam S, Mahajan A, Guo X, Abecasis G, Aben KK, Adair LS, Alam DS, Albrecht E, Allin KH, Allison M, Amouyel P, Appel EV, Arveiler D, Asselbergs FW, Auer PL, Balkau B, Banas B, Bang LE, Benn M, Bergmann S, Bielak LF, Blüher M, Boeing H, Boerwinkle E, Böger CA, Bonnycastle LL, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Burt AA, Butterworth AS, Carey DJ, Caulfield MJ, Chambers JC, Chasman DI, Chen YI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Galbany JC, Cox AJ, Cuellar-Partida G, Danesh J, Davies G, de Bakker PI, de Borst GJ, de Denus S, de Groot MC, de Mutsert R, Deary IJ, Dedoussis G, Demerath EW, den Hollander AI, Dennis JG, Di Angelantonio E, Drenos F, Du M, Dunning AM, Easton DF, Ebeling T, Edwards TL, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Faul JD, Feitosa MF, Feng S, Ferrannini E, Ferrario MM, Ferrieres J, Florez JC, Ford I, Fornage M, Franks PW, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Giedraitis V, Giri A, Girotto G, Gordon SD, Gordon-Larsen P, Gorski M, Grarup N, Grove ML, Gudnason V, Gustafsson S, Hansen T, Harris KM, Harris TB, Hattersley AT, Hayward C, He L, Heid IM, Heikkilä K, Helgeland Ø, Hernesniemi J, Hewitt AW, Hocking LJ, Hollensted M, Holmen OL, Hovingh GK, Howson JM, Hoyng CB, Huang PL, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jhun MA, Jia Y, Jiang X, Johansson S, Jørgensen ME, Jørgensen T, Jousilahti P, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SL, Karpe F, Kee F, Keeman R, Kiemeney LA, Kitajima H, Kluivers KB, Kocher T, Komulainen P, Kontto J, Kooner JS, Kooperberg C, Kovacs P, Kriebel J, Kuivaniemi H, Küry S, Kuusisto J, La Bianca M, Laakso M, Lakka TA, Lange EM, Lange LA, Langefeld CD, Langenberg C, Larson EB, Lee IT, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu Y, Liu Y, Lophatananon A, Luan J, Lubitz SA, Lyytikäinen LP, Mackey DA, Madden PA, Manning AK, Männistö S, Marenne G, Marten J, Martin NG, Mazul AL, Meidtner K, Metspalu A, Mitchell P, Mohlke KL, Mook-Kanamori DO, Morgan A, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Nauck M, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Ntalla I, O'Connel JR, Oksa H, Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CN, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JR, Person TN, Pirie A, Polasek O, Posthuma D, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Reiner AP, Renström F, Ridker PM, Rioux JD, Robertson N, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sandow K, Sapkota Y, Sattar N, Schmidt MK, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah S, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith JA, Southam L, Spector TD, Speliotes EK, Starr JM, Steinthorsdottir V, Stringham HM, Stumvoll M, Surendran P, 't Hart LM, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Ulivi S, van der Laan SW, Van Der Leij AR, van Duijn CM, van Schoor NM, van Setten J, Varbo A, Varga TV, Varma R, Edwards DR, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vozzi D, Walker M, Wang F, Wang CA, Wang S, Wang Y, Wareham NJ, Warren HR, Wessel J, Willems SM, Wilson JG, Witte DR, Woods MO, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhao W, Zheng H, Zhou W, Rotter JI, Boehnke M, Kathiresan S, McCarthy MI, Willer CJ, Stefansson K, Borecki IB, Liu DJ, North KE, Heard-Costa NL, Pers TH, Lindgren CM, Oxvig C, Kutalik Z, Rivadeneira F, Loos RJ, Frayling TM, Hirschhorn JN, Deloukas P, Lettre G | display-authors = 6 | title = Rare and low-frequency coding variants alter human adult height | journal = Nature | volume = 542 | issue = 7640 | pages = 186–190 | date = February 2017 | pmid = 28146470 | pmc = 5302847 | doi = 10.1038/nature21039 }}</ref><ref name=":3">{{cite journal | vauthors = Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, Raja A, Coe BP, Stessman HA, He ZX, Leal SM, Bernier R, Eichler EE | title = Excess of rare, inherited truncating mutations in autism | journal = Nature Genetics | volume = 47 | issue = 6 | pages = 582–8 | date = June 2015 | pmid = 25961944 | pmc = 4449286 | doi = 10.1038/ng.3303 | url = http://www.nature.com/articles/ng.3303 }}</ref> وفي حين أنه تم تحديد العديد من العوامل الوراثية المشاركة في الصفات المعقدة، فإن تحديد مساهماتها المحددة في أنماط المظهر الظاهري - وتحديدًا الآليات الجزيئية التي تعمل من خلالها - لا يزال يمثل تحديًا كبيرًا.<ref name=":1">{{cite journal | vauthors = Boyle EA, Li YI, Pritchard JK | title = An Expanded View of Complex Traits: From Polygenic to Omnigenic | journal = Cell | volume = 169 | issue = 7 | pages = 1177–1186 | date = June 2017 | pmid = 28622505 | pmc = 5536862 | doi = 10.1016/j.cell.2017.05.038 }}</ref>


== الأساليب ==
== الأساليب ==

نسخة 20:22، 6 ديسمبر 2018

حجم الطماطم هو أحد الأمثلة على السمات المعقدة.

الصفات المعقدة (بالإنجليزية: Complex traits)‏، والمعروفة أيضًا باسم السمات الكمية (بالإنجليزية: quantitative traits)‏، هي سمات لا تتصرف وفقًا لقوانين الوراثة المندلية البسيطة. وبشكل أكثر تحديدًا، لا يمكن تفسير توارثها بالفصل الجيني لجين واحد، وتُظهر هذه السمات نطاقًا مستمرًا من الاختلاف وتتأثر بالعوامل البيئية والوراثية. وبالمقارنة مع الصفات المندلية الصارمة، فإن الصفات المعقدة أكثر شيوعًا بكثير، ولأنها يمكن أن تكون متعددة الجينات بشكل كبير، يتم دراستها باستخدام تقنيات إحصائية مثل رسم خرائط لموقع الصفة الكمي بدلاً من أساليب الوراثة الكلاسيكية.[1] وتشمل أمثلة السمات المعقدة الطول، والنظم اليومي، وحركية الإنزيمات، والعديد من الأمراض بما فيها داء السكري ومرض باركنسون. وأحد الأهداف الرئيسية للبحث الوراثي اليوم هو فهم أفضل للآليات الجزيئية التي تعمل من خلالها المتغيرات الجينية للتأثير على السمات المعقدة.

تاريخ

عندما أعيد اكتشاف أعمال مندل في الوراثة في عام 1900، ناقش العلماء ما إذا كانت قوانين مندل يمكن أن تفسر الاختلاف المستمر الملحوظ في العديد من السمات. وزعمت إحدى المجموعات المعروفة باسم مختصي الإحصاء الحيوي أن السمات المستمرة، مثل الطول كانت وراثية إلى حد كبير، ولكن لا يمكن تفسيرها من خلال وراثة العوامل الوراثية المندلية الوحيدة. وكان العمل الذي قام به رونالد فيشر عام 1918 قد حسم في الغالب الجدل من خلال إظهار أن التباين في السمات المستمرة يمكن حسابه إذا كان هناك العديد من العوامل قد ساهمت بشكل إضافي في كل سمة.[2] ومع ذلك، فإن عدد الجينات المشاركة في مثل هذه السمات بقي غير محدد. وحتى وقت قريب، كان من المتوقع أن يكون للمواقع الجينية أحجام تأثير معتدلة وكل منها يفسر نسبة من الوراثة.[3] وبعد الانتهاء من مشروع الجينوم البشري في عام 2001، بدا أن التسلسل ورسم الخرائط للعديد من الأفراد سيسمح قريبا بفهم كامل البنية الوراثية للصفات. ومع ذلك، فإن الاختلافات الوراثية التي تم اكتشافها من خلال دراسات الارتباط على مستوى الجينوم لم تمثل سوى نسبة صغيرة من التوريث المتوقع؛ على سبيل المثال، في حين يقدر أن الطول قابل للتوريث بنسبة 80-90٪، فإن الدراسات الأولية حددت فقط المتغيرات التي تمثل 5٪ من هذا التوريث.[4] وأظهرت الأبحاث اللاحقة أن معظم التوارث الناقص يمكن حسابه من خلال المتغيرات المشتركة التي أخطأتها دراسات الارتباط على مستوى الجينوم؛ لأن أحجام تأثيرها انخفضت إلى أقل من عتبات الدلالة، وتم احتساب نسبة أصغر من المتغيرات النادرة ذات أحجام تأثير أكبر، على الرغم من أن بعض الصفات النادرة مثل التوحد تلعب دورًا مهيمنًا أكثر.[5][6][7] وفي حين أنه تم تحديد العديد من العوامل الوراثية المشاركة في الصفات المعقدة، فإن تحديد مساهماتها المحددة في أنماط المظهر الظاهري - وتحديدًا الآليات الجزيئية التي تعمل من خلالها - لا يزال يمثل تحديًا كبيرًا.[8]

الأساليب

مؤامرة مانهاتن التي تظهر ارتباط الجينوم مع دوران الأوعية الدقيقة في الأوعية الشعرية.

تخطيط المواقع الجينية للصفات المعقدة

موقع السمة الكمية هو جزء من الجينوم المرتبط بالتغير في سمة كمية أو معقدة. ولتحديد ذلك الموقع، يتم إجراء رسم الخرائط له على أفراد ذوي أنماط جينية مختلفة. وفي كثير من الأحيان، ينحدر هؤلاء الأفراد من نفس السلف. وتشمل الخرائط إما تسلسل الجينوم الكامل أو التنميط الجيني للعديد من المواقع المحددة في جميع أنحاء الجينوم، ثم يتم قياس الظواهر ذات الأهمية. وعلى سبيل المثال، مستويات التعبير لكل جين في الجينوم هي نمط ظاهري واحد يتم قياسه بشكل شائع (تسمى المواقع المصاحبة بمواقع السمات الكمية التعبيرية (eQTLs)). وفي كل موقع، يتم تجميع الأفراد حسب نمطهم الوراثي، ويتم إجراء اختبارات إحصائية لتحديد ما إذا كانت قيم الصفات المقيسة لمجموعة واحدة تختلف بشكل كبير عن المتوسط الكلي لجميع المجموعات. وقد لا تكون المواقع المحددة عبارة عن مواقع السمات الكمية نفسها، ولكن من المحتمل أن تكون تلك المواقع بها اختلال في الارتباط مع الموقع الذي يؤثر فعليًا على السمات.

دراسة الارتباط على مستوى الجينوم

إن دراسة الارتباط على مستوى الجينوم هي طريقة شبيهة بتخطيط مواقع السمات الكمية المستخدم لتحديد المتغيرات المرتبطة بالصفات المركبة. ويختلف تخطيط الارتباط عن رسم خرائط المواقع بشكل أساسي في أن تخطيط الارتباط يتم فقط مع مجموعات التزاوج العشوائي؛ لأنه يتم اختبار جميع الأليلات في السكان في نفس الوقت، ويمكن مقارنة الأليلات المتعددة في كل موقع.[1]

البنية الجينية للصفات المعقدة

المراجع

  1. ^ أ ب Griffiths، Anthony J F؛ Wessler، Susan R؛ Carroll، Sean B؛ Doebley، John F. Introduction to genetic analysis (ط. Eleventh). New York, NY. ISBN:978-1-4641-0948-5. OCLC:900650999. {{استشهاد بكتاب}}: الوسيط غير المعروف |name-list-format= تم تجاهله يقترح استخدام |name-list-style= (مساعدة)
  2. ^ Fisher RA (1919). "XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. ج. 52 ع. 2: 399–433. DOI:10.1017/S0080456800012163.
  3. ^ Gibson G (يناير 2012). "Rare and common variants: twenty arguments". Nature Reviews. Genetics. ج. 13 ع. 2: 135–45. DOI:10.1038/nrg3118. PMC:4408201. PMID:22251874.
  4. ^ Manolio TA، Collins FS، Cox NJ، Goldstein DB، Hindorff LA، Hunter DJ، وآخرون (أكتوبر 2009). "Finding the missing heritability of complex diseases". Nature. ج. 461 ع. 7265: 747–53. DOI:10.1038/nature08494. PMC:2831613. PMID:19812666.
  5. ^ Shi H، Kichaev G، Pasaniuc B (يوليو 2016). "Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data". American Journal of Human Genetics. ج. 99 ع. 1: 139–53. DOI:10.1016/j.ajhg.2016.05.013. PMC:5005444. PMID:27346688.
  6. ^ Marouli E، Graff M، Medina-Gomez C، Lo KS، Wood AR، Kjaer TR، وآخرون (فبراير 2017). "Rare and low-frequency coding variants alter human adult height". Nature. ج. 542 ع. 7640: 186–190. DOI:10.1038/nature21039. PMC:5302847. PMID:28146470.
  7. ^ Krumm N، Turner TN، Baker C، Vives L، Mohajeri K، Witherspoon K، Raja A، Coe BP، Stessman HA، He ZX، Leal SM، Bernier R، Eichler EE (يونيو 2015). "Excess of rare, inherited truncating mutations in autism". Nature Genetics. ج. 47 ع. 6: 582–8. DOI:10.1038/ng.3303. PMC:4449286. PMID:25961944.
  8. ^ Boyle EA، Li YI، Pritchard JK (يونيو 2017). "An Expanded View of Complex Traits: From Polygenic to Omnigenic". Cell. ج. 169 ع. 7: 1177–1186. DOI:10.1016/j.cell.2017.05.038. PMC:5536862. PMID:28622505.