مثلث باسكال

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
الصفوف الستة الأولى من مثلث باسكال

في الرياضيات مثلث باسكال أو مثلث خيام هو منظومة هندسية لمكافئ ثنائي في المثلث.[1][2][3] سميت على اسم بليز باسكال على الرغم من قيام العديد من العلماء بدراسته قبله في الهند وبلاد فارس والصين وإيطاليا. يتم ترقيم الصفوف في مثلث باسكال بدءًا من الصفر، وغالبًا ما تتوسط الأعداد في الصفوف ذات الأرقام الأعداد الموجودة في الصفوف الزوجية في المكان. يتم إنشاء المثلث ببساطة على النحو التالي:

  1. في الصف ذو الرقم صفر، اكتب فقط الرقم
  2. من أجل إنشاء عناصر الصف الثاني، اجمع العدد الموجود في أعلى ويمين العدد إلى العدد الموجود في أعلى ويسار العدد فينتج قيمة العنصر الجديد
  3. إذا لم يوجد عنصر في أعلى ويمين (أو أعلى ويسار العدد) اجمع صفر إلى العدد الآخر.مع الإنتباه للإشارة
كل عدد في مثلث باسكال هو مجموع العددين اللذان فوقه.

التاريخ[عدل]

Yang Hui مثلث باسكال، كما وصفه الصينيون باستعمال rod numerals.
صيغة المثلث كما رسمه بليز باسكال

مجموعة الأعداد اللواتي تكون مثلث باسكال كانت معروفة قبل باسكال. قد يعود هذا المثلث إلى العالم عمر الخيام.

مميزات مثلث باسكال[عدل]

PascalFibonacci.svg
  • الأعداد التي توجد على حافة المثلث هي كلها منتهية بالعدد .
  • العدد الذي بجانب الحافة في السطر (الترقيم يبدأ من ) هو .
  • مجموع الأعداد في السطر رقم (الترقيم يبدأ من ) هو .
  • مجموع الأعداد في الأماكن الزوجية في السطر مساو لمجموع الأعداد في الأماكن الفردية في نفس السطر.
  • يمكن من خلال مثلث باسكال نشر الحدانية من عدة الرتبات .

برمجة مثلث باسكال[عدل]

يمكن برمجة دالة مثلث باسكال بسهولة

def pascal_triangle(rows) :
    arr = [1]
    while True:
        if len(arr) is rows+1:
            break
        new_arr = [1]
        for count in range(0, len(arr) - 1):
            new_arr.append(arr[count] + arr[count+1])
        new_arr.append(1)
        arr = new_arr
    return arr
for n in range(0, 6):
    print(pascal_triangle(n))

            #       <- Output ->  
            #           [1]
            #           [1, 1]
            #           [1, 2, 1]
            #           [1, 3, 3, 1]
            #           [1, 4, 6, 4, 1]
            #           [1, 5, 10, 10, 5, 1]

تعميمات[عدل]

يمكن أن يعمم مثلث باسكال إلى أعداد سالبة للصفوف.

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ Peter Fox (1998). Cambridge University Library: the great collections. Cambridge University Press. صفحة 13. ISBN 978-0-521-62647-7. 
  2. ^ Pascal's triangle | World of Mathematics Summary نسخة محفوظة 04 مارس 2016 على موقع واي باك مشين.
  3. ^ Wolfram, S. (1984). "Computation Theory of Cellular Automata". Comm. Math. Phys. 96: 15–57. Bibcode:1984CMaPh..96...15W. doi:10.1007/BF01217347. 
Dodecahedron.svg
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. شارك في تحريرها.