انتقل إلى المحتوى

الدهر الجهنمي

من ويكيبيديا، الموسوعة الحرة
الدهر الجهنمي
Hadean
Ἀΐδας
اسماء اخرى
  • ماقبل السحيق
  • عصر البريسكوي
  • الحياة الخفية
الرمز HA
المستوى الزمني دهر
الأمد قبل الكامبري
علم الطبقات
البداية ≈4567 م.س.مضت
النهاية 4031 م.س.مضت
المدة 536 م.س تقريبا
 
الدهر السحيق
أهم الصخور تم العثور على صخور للدهر الجهنمي من غرينلاند الغربية، شمال غرب كندا،وأستراليا الغربية.
الجغرافيا القديمة والمناخ
رسم تخيلي للاصطدام العملاق الذي يُعتقد أن القمر قد وُلد منه.
رسم تخيلي للاصطدام العملاق الذي يُعتقد أن القمر قد وُلد منه.
رسم تخيلي للاصطدام العملاق الذي يُعتقد أن القمر قد وُلد منه.
(م.س : مليون سنة)

الدهر الجهنمي أو الحياة الخفية (باللاتينية: Hadean)، وهو أول دهر في تاريخ الأرض. بدأ بتكون الأرض منذ ≈ 4567 إلى 4031 مليون سنة مضت، لمدة 536 مليون سنة تقريبا[1][2]. يشكل الدهر الجهنمي الذي يعتبر أقدم تقسيم للزمن الجيولوجي، مجتمعا مع الدهرين التاليين السحيق، والطلائع ما يسمى بعصر ما قبل الكامبري.

تكاد تكون المعلومات الجيولوجية والبيولوجية لهذا الدهر محدودة وذلك بسبب ندرة الصخور القديمة أو المعادن والتحولات التي قد تعرضت لها بعد ذلك. وهي مكملة بدراسة صخور القمر والمريخ لنفس العمر.

التسمية[عدل]

اشتق الاسم اللاتيني (Hadean) للدهر الجهنمي من الأسطورة اليونانية هاديس (Hades) ملك العالم السفلي، إشارة إلى حالة الأرض «الجهنمية» في ذلك الوقت. وقد صاغ هذا المصطلح الجيولوجي بريستون كلود في عام 1972 لتسمية الفترة التي سبقت أقدم الصخور المعروفة على الأرض.[3][4]

وقد صاغ والتر بريان هارلاند [الإنجليزية] في وقت لاحق مصطلح مرادف: «عصر البريسكوي» أو «العصر العتيق» (باللاتينية: Priscoan period)، وتسمية أخرى أطلقت على هذا الدهر وهي ما قبل السحيق (باللاتينية: Pre-Archean).

تشكل النظام الشمسي[عدل]

رسم تخيلي لقرص كوكبي أولي

يعتبر النموذج القياسي لتشكل النظام الشمسي (بما فيها الأرض) هي فرضية السديم الشمسي.[5] وفي هذا النموذج، تشكل النظام الشمسي من سحابة كبيرة دوارة مكونة من غبار النجوم وغاز يسمى السديم الشمسي، كان يتكون من الهيدروجين والهيليوم نشأ بعد فترة وجيزة من الانفجار العظيم قبل 13.8 مليار سنة ومن عناصر أثقل قد تم طردها بواسطة المستعر الأعظم. وقبل حوالي 4.5 مليار سنة، بدأ السديم بالانكماش ربما بسبب موجة صادمة من مستعر أعظم آخر قريب جعلت من السديم أن يدور. وبدأت بالتسارع، وقد أدى به كل من الزخم الزاوي، والجاذبية، والقصور الذاتي بالانبساط ليتشكل ويصبح قرص كوكبي أولي متعامد مع محور دورانه. وقد أدت الاضطرابات الصغيرة الناتجة عن الاصطدامات والزخم الزاوي للحطام الكبير الآخر من جعل الكواكب الأولية التي يقدر حجمها بالكيلومتر أن تدور في مركز السديم.[6]

يقل الزخم الزاوي في مركز السديم، وبالتالي فإنه ينهار بسرعة، ويزيد الضغط من درجة حرارته حتى يبدأ الاندماج النووي للهيدروجين في الهيليوم. وبعد المزيد من الانكماش، يشتعل نجم تي الثور ويتطور إلى الشمس. وفي نفس الوقت، تسبب جاذبية الجزء الخارجي من السديم في انحصار المادة حول اضطرابات الكثافة وجزيئات غبار، وتبدأ بقية القرص الكوكبي بالتفكك إلى حلقات. وفي عملية تعرف باسم التنامي الهارب، وتتجمع شظايا الغبار والحطام معا لتشكل الكواكب.[6] وعلى هذا النحو تشكلت الأرض منذ حوالي 4.54 مليارات سنة (مع شكوك بنسبة 1%)[7][8][9][10] وتم اكتمالها خلال 10-20 مليون سنة.[11] وأزالت الرياح الشمسية لنجم تي الثور الحديث معظم المواد الموجودة في القرص التي لم تتكاثف إلى أجسام كبيرة. ومن المتوقع أن ينتج من نفس العملية أقراص تراكمية حول كل النجوم التي تشكلت حديثا في الكون، وبعضها ينتج كواكب.[12] نمت الأرض البدائية بالتراكم حتى أصبح باطنه ساخنا بما يكفي لإذابة المعادن المحبة للحديد (siderophile) الثقيلة، وتملك كثافة أعلى من السيليكات، مما يجعل هذه المعادن أن تنغمر لباطن الأرض. أطلق على هذه العملية كارثة الحديد التي أدت إلى فصل الوشاح البدائي والنواة (المعدنية) بعد 10 ملايين سنة فقط من بدء تكوين الأرض، أنتج بنية أرضية طبقية وتشكيل مجال مغناطيسي للأرض.[13] كان «جي أي جاكوبس»[14] أول من اقترح أن اللب الداخلي -المركز الصلب يتميز عن اللب الخارجي السائل- يتجمد وينمو للب الخارجي السائل بسبب البرودة التدريجية لباطن الأرض (حوالي 100 درجة مئوية لكل مليار سنة.[15])

الصخور[عدل]

مشهد تخيلي للدهر الجهنمي

في العقود الأخيرة من القرن العشرين، اكتشف الجيولوجيون عدد قليل من صخور الدهر الجهنمي في غرب جرينلاند، وشمال غرب كندا، وكذلك في أستراليا الغربية. وفي عام 2015، تم العثور على آثار لمعادن الكربون تبين أنها «لبقايا حيوية» في صخور عمرها 4.1 مليار سنة في أستراليا الغربية.[16][17]

وجدت بلورات زركون محاطة برصيص حجر رملي متحول يعود تاريخها إلى 4.404 ± 0.008 مليار سنة مضت، وهي تمثل أقدم بلورات مؤرخة. وقد عثر عليها العلماء في مرتفعات جاك عند «حوض نارير جنيس» الواقعة في أستراليا الغربية.[18] ويعد هذا الزركون ضئيل جدا وهو أقدم ما تم تأريخه، قبل 4.35 مليار سنة،[18] أي حوالي 200 مليون سنة بعد الوقت المفترض لتشكل الأرض.

وفي عدة مناطق أخرى، تشير الصخور الدخيلة لزركون الدهر الجهنمي الموجود في الصخور الحديثة إلى أنها قد تشكلت داخل أراضٍ قديمة واندمجت مع بعض المواد القديمة. كما حدث في درع غيانا من تشكل إيووكراما جنوب غيانا حيث تم تأريخ الزركون في 4.22 مليار سنة مضت.[19]

الغلاف الجوي والمحيطات[عدل]

فرضية الاصطدام العملاق.

قد تكون المواد التي شكلت الأرض تحتوي على كمية كبيرة من الماء.[20] وقد تحررت جزيئات الماء من جاذبية الأرض بسهولة أكبر عندما كانت كثافتها أقل خلال تكوينها. من المتوقع تحرر الهيدروجين والهيليوم بشكل مستمر (حتى يومنا هذا) بسبب الهروب من الغلاف الجوي. وجزء من الكوكب القديم يفترض أنه تمزق بسبب الاصطدام الذي خلق القمر، وسبب في ذوبان منطقة أو منطقتين كبيرتين من الأرض. تبين التركيبة الحالية للأرض إلى أنه لم يكن هناك انصهار كامل لأنه من الصعب إذابة ومزج الكتل الصخرية الضخمة.[21] وبالتالي يجب أن يتبخر جزء من المواد بسبب هذا الاصطدام، وخلق غلاف جوي من بخار الصخور حول الكوكب الحديث. وسيتكيف بخار الصخور في غضون ألفي عام، تاركا وراءه مواد متطايرة ساخنة قد ينتج عنها غلاف جوي ثقيل من ثاني أكسيد الكربون مع بخار الهيدروجين والماء. ووجود محيطات مائية سائلة بالرغم من ارتفاع درجة حرارة السطح (230 درجة مئوية)، لأن الماء يضل سائلا عندما يكون ضغط الغلاف الجوي فوق 27 جو بسبب الغلاف الجوي الثقيل من ثاني أكسيد الكربون. ومع استمرار البرودة، أدى انجراف وانحلال مياه المحيطات إلى إزالة معظم ثاني أوكسيد الكربون من الغلاف الجوي، ولكن المستويات قد تذبذبت بشكل حاد مع ظهور دورات جديدة من الأسطح والدثار.[22] لقد بينت دراسات أجريت على الزركون أن الماء السائل كان موجودا منذ زمن بعيد قبل 4.4 مليارات سنة، أي بعد تشكل الأرض بزمن قليل،[23][24][25] وهذا يتطلب وجود غلاف جوي. ونظرية الأرض الباردة المبكرة تغطي فترة تقريبا من 4.4 إلى حوالي 4.1 مليار سنة مضت.

وأجريت دراسة في سبتمبر 2008 عن الزركون بينت أن صخور الدهر الجهنمي الأسترالية تحمل معادن تشير إلى وجود صفائح تكتونية قديمة أي قبل 4 مليارات سنة تقريبا.[26][27] وإذا كان هذا صحيحا، فهذا هو الوقت الذي انتهت فيه الأرض من الانتقال من وجود سطح ساخن منصهر وغلاف جوي مليء بشكل كامل بثاني أكسيد الكربون، لتصبح شبيهة جدا بما هي عليه اليوم، يمكن أن تؤرخ بشكل تقريبي إلى 4 مليارات سنة مضت. ساعد تحرك الصفائح التكتونية والمحيطات بحصر كميات هائلة من ثاني أكسيد الكربون، الذي بدوره قلل من تأثير الاحتباس الحراري وأدى إلى برودة السطح بكثير وتشكل الصخور الصلبة، وربما حتى الحياة.[26][27]

الأقسام الفرعية[عدل]

الأمد الدهر الحقبة العصر أهم الأحداث البداية (م.س.مضت)
قبل
الكمبري
الطلائع الطلائع الحديثة الإدياكاري أحافير بحالة جيدة لحيوانات بدائية. ازدهار الحيويات الإدياكارية واتنتشارها بجميع البحار. وربما ظهرت بعد انفجار، أو بسبب حدث أكسدة كبير.[28] ظهور حيوانات الفيندوبيونتا (تقارب غير معروف بين الحيوانات)، واللاسعات، وثنائيات التناظر. تشمل حيوانات الفينودوزوان الغامضة العديد من المخلوقات الهلامية اللينة على شكل أكياس أو أقراص أو لحاف (مثل الديكينسونيا). آثار حفرية بسيطة قد تكون لشبيهات الدودة مثل جحور تريبتكنوس وغيرها. تكون الجبال التاكونية [الإنجليزية] في أمريكا الشمالية. تكون سلسلة ارافالي [الإنجليزية] في شبه القارة الهندية. بداية تكون جبال عموم أفريقيا، مما أدى إلى تكوين قارة بانوتيا العملاقة القصيرة العمر في العصر الإدياكاري، والتي انقسمت بحلول نهاية العصر إلى لورنشيا، وبلطيقيا، وسيبيريا، وغندوانا. بداية تكون جبال بيترمان [الإنجليزية] في القارة الاسترالية. تكون جبال بيردمور في القارة القطبية الجنوبية قبل (633 - 620 مليون سنة). تشكل طبقة الأوزون. زيادة مستويات المعادن في المحيطات. ≈635
الكرايوجيني قد يكون عصر "الكرة الأرضية الثلجية". ولاتزال الأحافير نادرة. أواخر التناقص التدريجي لتكون جبال روكر/نيمرود في القارة القطبية الجنوبية. ظهور حفريات حيوانية غير مثيرة للجدل. ظهور الفطريات الأرضية[29] والنباتات الملتوية الافتراضية.[30] ≈720
التوني حدوث التجمع النهائي للقارة العظمى رودينيا في أوائل العصر التوني، مع بداية الانفصال منذ حوالي 800 مليون سنة. انتهى تكون جبال سفكونورويجيان [الإنجليزية]. تناقص تدريجي لتكون جبال جرينفيل [الإنجليزية] في أمريكا الشمالية. تكون بحيرة روكر/نيمرود في القارة القطبية الجنوبية قبل (1,000 ± 150 مليون سنة). تكون جبال إدمونديان (920 - 850 مليون سنة مضت) في مجمع غازكوين غرب استراليا. بداية ترسب حوض أديلايد العظيم وحوض سنتراليان العظيم في القارة الأسترالية. أول الحيوانات الافتراضية (من البعديات الصحيحة) وطبقات الطحالب الأرضية. ظهور العديد من الأحداث التكافلية الداخلية المتعلقة بالطحالب الحمراء والخضراء، التي تنقل البلاستيدات إلى الطحالب الداكنة (مثل الدياتومات والطحالب البنية) والسوطيات الدوارة ومخفيات النبت ولمسيات النبت والطحالب الحنديرية (ربما بدأت الأحداث في حقبة الطلائع الوسطى)[31] في حين ظهرت أيضًا أولى الريتاريات (مثل المثقبات): تنوع حقيقيات النوى بسرعة، بما في ذلك الطحالب والحيوانات حقيقية النوى وأشكال التمعدن الحيوي. وجود أثار حفريات بسيطة لحقيقيات النوى متعددة الخلايا. 1000
الطلائع الوسطى الستني أحزمة ضيقة جدا لصخور متحولة بسبب تكون الجبال عندما تشكلت القارة العظمى رودينيا، المحاطة بالمحيط الأفريقي. بداية تكون جبال سفكونورويجيان [الإنجليزية]. احتمال بداية التكون المـتأخر لجبال روكر/نيمرود في القارة القطبية الجنوبية. تكون جبال وكتلة مسجريف وسط استراليا (تقريبا 1080 مليون سنة مضت). تناقص الستروماتوليت مع تكاثر الطحالب. 1200
الإكتاسي استمرار توسع أغطية الرواسب البركانية. نشأت مستعمرات الطحالب الخضراء في البحار. تكون جبال جرينفيل [الإنجليزية] في أمريكا الشمالية. تفكك قارة كولومبيا العملاقة. 1400
الكالمي توسع غطاء الرواسب البركانية. تكون جبال باراموندي عند حوض مكارثر في أستراليا الشمالية، وتكون جبال أيسان (تقريبا 1,600 مليون سنة مضت). وتكون كتلة جبل إيزا، كوينزلاند. ظهور البلاستيديات العتيقة (أول كائنات حقيقية النواة تحتوي على بلاستيدات من البكتيريا الزرقاء؛ مثل الطحالب الحمراء والخضراء) وخلفيات السوط (التي أدت إلى ظهور أول الفطريات والبعديات الصحيحة). بدأت الاكريتارك (ربما بقايا الطحالب البحرية) في الظهور في السجل الأحفوري. 1600
الطلائع القديمة الستاثري أول ظهور لحقيقيات النوى الغير المثيرة للجدل: الطلائعيات ذات النوى ونظام الغشاء الداخلي. نشوء قارة كولومبيا العملاقة باعتبارها ثاني أقدم قارة عظمى بلا منازع. نهاية تكون جبال كيمبان في القارة الاسترالية. تكون جبال يابنكو على راسخة يلجارن غرب أستراليا. تكون جبال مانجارون قبل (1,680 - 1,620 مليون سنة) في غازكوين غرب أستراليا. تكون جبال كاراران (1,650 مليون سنة مضت) في راسخة جولر جنوب أستراليا. انخفاض مستويات الأكسجين مرة أخرى. 1800
الأوروسيري أصبح الأكسجين متوفر في غلاف الأرض الجوي خلال ظهور المزيد من ستروماتوليت البكتيريا الزرقاء. تكون حوضي فريدفورت و سودبوري بسبب اصطدام كويكب. الكثير من تكون الجبال. تكون جبال بينوكان وترانس هودسون في أمريكا الشمالية. تكون حديث لجبال روكر في القارة القطبية الجنوبية (تقريبا 2,000 - 1,700 مليون سنة مضت). تكون جبال وتضاريس جلنبر في قارة أستراليا (تقريبا 2,005 - 1,920 مليون سنة مضت). تكون جبال كيمبان، بداية راسخة جولر في القارة الاسترالية. 2050
الرياسي تشكل تجمع براكين بوشفيلد [الإنجليزية]. غمر جليدي الهيوروني. أول كائنات حقيقية النواة افتراضية. كائنات فرانسفيلية الحية [الإنجليزية] متعددة الخلايا. تفكك قارة كينورلاند العظمى. 2300
السيدري زيادة الأكسجين وحدث الأكسدة الكبير (بسبب البكتيريا الزرقاء). تكون جبال سليفورد في راسخة جولر في القارة الاسترالية خلال (2,440 - 2,420 مليون سنة مضت). 2500
السحيق السحيقة الحديثة استقرار معظم الركائز القارية الحديثة؛ أحتمال حدوث أنقلاب الوشاح (غلاف نواة الأرض). تكون جبال إنسل (2,650 ± 150 مليون سنة مضت). بدأ تشكل الحزام الأخضر أبيتيبي المعروفة بالوقت الحاضر بأونتاريو وكيبك، وأسقرت قبل (2,600 مليون سنة). أول قارة عظمى غير مثيرة للجدل، كينورلاند، وأول بدائيات النوى الأرضية. 2800
السحيقة الوسطى أولى صخور الستروماتوليت (قد تكون الطحالب الخضراء المزرقة الاستعمارية). أقدم أحافير كبيرة. نشوء جبال همبولت في القارة القطبية الجنوبية. بداية تشكل مجمع نهر بليك ميغاكالديرا [الإنجليزية] المعروفة في الوقت الحاضر بأونتاريو وكيبيك، وأنتهت نحو (2,696 مليون سنة مضت). 3200
السحيقة المبكرة تنوع العتائق البدائية النواة (مثل الميثانوجينات) والبكتيريا (مثل البكتيريا الزرقاء) بسرعة، جنبًا إلى جنب مع الفيروسات المبكرة. أول بكتيريا معروفة منتجة للأكسجين بالتغذية الضوئية. أقدم أحافير دقيقة. أول حصيرة ميكروبية. ربما تكون أقدم ركيزة قارية على الأرض (مثل الدرع الكندي وركيزة بيلبارا [الإنجليزية]) قد تشكلت خلال هذه الفترة.[ا] نشوء جبال راينر في القارة القطبية الجنوبية. 3600
السحيقة الأولى أول الكائنات الحية الغير مثيرة للجدل: في البداية كانت الخلايا الأولية تحتوي على جينات تعتمد على الحمض النووي الريبوزي (RNA) (حوالي 4,000 مليون سنة مضت)، وبعد ذلك تطورت الخلايا الحقيقية (بدائيات النوى) جنبًا إلى جنب مع البروتينات والجينات المعتمدة على الحمض النووي منذ حوالي 3,800 مليون سنة. نهاية القصف الشديد المتأخر. نشوء جبال نابير في القارة القطبية الجنوبية، منذ 4,000 ± 200 مليون سنة. 4031
الجهنمي تشكل صخور بروتوليت كأقدم صخور معروفة (نايس الأكاستا) منذ تقريبا 4,031 إلى 3,580 مليون سنة.[32][33]أول ظهور محتمل للصفائح التكتونية. أول أشكال الحياة الافتراضية. نهاية مرحلة القصف المبكر. أقدم معدن معروف هو "الزركون" ويقدر عمره من قبل (4406 ± 8 مليون سنة).[34] تشكل المحيطات الأولى بسبب الكويكبات والمذنبات التي تجلب الماء إلى الأرض. تكون القمر (4,510 مليون سنة مضت) من مواد ممزقة من الأرض بسبب الاصطدام الكبير. تكون الأرض (4,543 إلى 4,540 مليون سنة مضت). ≈4567

بما أن الآثار الجيولوجية المتبقية على الأرض لهذا الدهر قليلة، فلا يوجد له تقسيم فرعي رسمي. ومع ذلك، فإن المقياس الزمني الجيولوجي القمري يشمل العديد من الأقسام الرئيسية المتعلقة بالدهر الجهنمي، وتستخدم في بعض الأحيان بطريقة غير رسمية للإشارة إلى نفس الفترات الزمنية على الأرض.

أقسام جيولوجيا القمر الزمنية هي:

في 2010، تم اقترح مقياس آخر يتضمن إضافة دهرين يسبقان الدهر الجهنمي وهما: الشاوشي والبرينفيلي، وتقسيم الجهنمي إلى ثلاثة حقب مع عصرين لكل منهما.

  • الحقبة الجهنمية القديمة: وتتكون من عصري:
    • الهيفايست (4.5-4.4 مليار سنة مضت).
    • اليعقوبية (4.4-4.3 مليار سنة مضت).
  • الحقبة الجهنمية الوسطى: وتتكون من عصري:
    • الكندي (4.3-4.2 مليار سنة مضت).
    • البروكرستي (4.2-4.1 مليار سنة مضت).
  • الحقبة الجهنمية الحديثة: وتتكون من عصري:
    • الاكاستي (4.1-4.0 مليار سنة مضت).
    • البروميثي (4.0-3.9 مليار سنة مضت).[35]

ولكن اعتبارًا من فبراير 2017، لم تعتمد الاتحاد الدولي للعلوم الجيولوجية هذا التقسيم.

انظر أيضًا[عدل]

المراجع[عدل]

  1. ^ "International chronostratigraphic chart v2018/08" (PDF) (بالإنجليزية). {{استشهاد ويب}}: الوسيط غير المعروف |site= تم تجاهله يقترح استخدام |website= (help) and روابط خارجية في |site= (help).
  2. ^ Global Boundary Stratotype Section and Point (GSSP) of the International Commission of Stratigraphy.نسخة محفوظة 10 ديسمبر 2018 على موقع واي باك مشين.
  3. ^ Cloud، Preston (1972). "A working model of the primitive Earth". American Journal of Science. ج. 272 ع. 6: 537–548. Bibcode:1972AmJS..272..537C. DOI:10.2475/ajs.272.6.537.
  4. ^ Bleeker، W. (2004). "10. Toward a "natural" Precambrian time scale". في Gradstein، Felix M.؛ Ogg، James G.؛ Smith، Alan G. (المحررون). A Geologic Time Scale 2004. Cambridge, England, UK: Cambridge University Press. ص. 145. مؤرشف من الأصل في 2016-05-15.
  5. ^ Encrenaz، T. (2004). The solar system (ط. 3rd). Berlin: Springer. ص. 89. ISBN:978-3-540-00241-3.
  6. ^ ا ب P. Goldreich؛ W.R. Ward (1973). "The Formation of Planetesimals". Astrophysical Journal. ج. 183: 1051–1062. Bibcode:1973ApJ...183.1051G. DOI:10.1086/152291.
  7. ^ Newman، William L. (9 يوليو 2007). "Age of the Earth". Publications Services, USGS. مؤرشف من الأصل في 2019-04-07. اطلع عليه بتاريخ 2007-09-20.
  8. ^ Stassen، Chris (10 سبتمبر 2005). "The Age of the Earth". TalkOrigins Archive. مؤرشف من الأصل في 2018-09-23. اطلع عليه بتاريخ 2008-12-30.
  9. ^ "Age of the Earth". U.S. Geological Survey. 1997. مؤرشف من الأصل في 2005-12-23. اطلع عليه بتاريخ 2006-01-10.
  10. ^ Stassen، Chris (10 سبتمبر 2005). "The Age of the Earth". The TalkOrigins Archive. مؤرشف من الأصل في 2018-09-23. اطلع عليه بتاريخ 2007-09-20.
  11. ^ Yin، Qingzhu؛ Jacobsen, S.B.؛ Yamashita, K.؛ Blichert-Toft, J.؛ Télouk, P.؛ Albarède, F. (2002). "A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites". Nature. ج. 418 ع. 6901: 949–952. Bibcode:2002Natur.418..949Y. DOI:10.1038/nature00995. PMID:12198540.
  12. ^ Kokubo، Eiichiro؛ Ida، Shigeru (2002). "Formation of protoplanet systems and diversity of planetary systems". The Astrophysical Journal. ج. 581 ع. 1: 666–680. Bibcode:2002ApJ...581..666K. DOI:10.1086/344105.
  13. ^ Charles Frankel, 1996, Volcanoes of the Solar System, Cambridge University Press, pp. 7–8, (ردمك 978-0-521-47770-3)
  14. ^ J.A. Jacobs (1953). "The Earth's inner core". Nature. ج. 172 ع. 4372: 297–298. Bibcode:1953Natur.172..297J. DOI:10.1038/172297a0.
  15. ^ van Hunen، J.؛ van den Berg، A.P. (2007). "Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere". Lithos. ج. 103 ع. 1–2: 217–235. Bibcode:2008Litho.103..217V. DOI:10.1016/j.lithos.2007.09.016.
  16. ^ Borenstein، Seth (19 أكتوبر 2015). "Hints of life on what was thought to be desolate early Earth". Excite. Yonkers, NY: Mindspark Interactive Network. أسوشيتد برس. مؤرشف من الأصل في 2018-09-06. اطلع عليه بتاريخ 2015-10-20.
  17. ^ Bell، Elizabeth A.؛ Boehnike، Patrick؛ Harrison، T. Mark؛ وآخرون (19 أكتوبر 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon" (PDF). Proc. Natl. Acad. Sci. U.S.A. Washington, D.C.: الأكاديمية الوطنية للعلوم. ج. 112: 14518–21. Bibcode:2015PNAS..11214518B. DOI:10.1073/pnas.1517557112. ISSN:1091-6490. PMC:4664351. PMID:26483481. مؤرشف من الأصل (PDF) في 2015-11-06. اطلع عليه بتاريخ 2015-10-20. Early edition, published online before print. نسخة محفوظة 6 نوفمبر 2015 على موقع واي باك مشين.
  18. ^ ا ب Wilde، Simon A.؛ Valley، John W.؛ Peck، William H.؛ Graham، Colin M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago". Nature. ج. 409 ع. 6817: 175–178. DOI:10.1038/35051550.
  19. ^ Nadeau، Serge؛ Chen، Wei؛ Reece، Jimmy؛ Lachhman، Deokumar؛ Ault، Randy؛ Faraco، Maria؛ Fraga، Leda؛ Reis، Nelson؛ Betiollo، Leandro (1 ديسمبر 2013). "Guyana: the Lost Hadean crust of South America?". Brazilian Journal of Geology. ج. 43: 601–606. DOI:10.5327/Z2317-48892013000400002. مؤرشف من الأصل في 2019-04-25.
  20. ^ Drake، Michael J. (2005)، "Origin of water in the terrestrial planets" (PDF)، Meteoritics & Planetary Science، ج. 40، ص. 515–656، Bibcode:2005M&PS...40..515J، DOI:10.1111/j.1945-5100.2005.tb00958.x، مؤرشف من الأصل (PDF) في 2011-10-09.
  21. ^ Solar System Exploration: Science & Technology: Science Features: View Feature نسخة محفوظة 27 سبتمبر 2015 على موقع واي باك مشين.
  22. ^ Sleep، N. H.؛ Zahnle، K.؛ Neuhoff، P. S. (2001)، "Initiation of clement surface conditions on the earliest Earth"، PNAS، ج. 98، ص. 3666–3672، Bibcode:2001PNAS...98.3666S، DOI:10.1073/pnas.071045698، PMC:31109، PMID:11259665.
  23. ^ ANU - Research School of Earth Sciences - ANU College of Science - Harrison نسخة محفوظة 2006-06-21 at Archive.is
  24. ^ ANU - OVC - MEDIA - MEDIA RELEASES - 2005 - NOVEMBER - 181105HARRISONCONTINENTS نسخة محفوظة 20 أغسطس 2008 على موقع واي باك مشين.
  25. ^ A Cool Early Earth نسخة محفوظة 16 يونيو 2013 على موقع واي باك مشين.
  26. ^ ا ب Chang, Kenneth (2 Dec 2008). "A New Picture of the Early Earth". نيويورك تايمز (بالإنجليزية الأمريكية). Archived from the original on 2018-08-03. Retrieved 2022-07-08.
  27. ^ ا ب Abramov، Oleg؛ Mojzsis، Stephen J. (ديسمبر 2008). "Thermal State of the Lithosphere During Late Heavy Bombardment: Implications for Early Life". AGU Fall Meeting Abstracts. Fall Meeting 2008: الاتحاد الجيوفيزيائي الأمريكي. ج. 1 ع. 2008 Fall Meeting: V11E–08. Bibcode:2008AGUFM.V11E..08A.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: مكان (link)
  28. ^ Williams, Joshua J.; Mills, Benjamin J. W.; Lenton, Timothy M. (2019). "A tectonically driven Ediacaran oxygenation event". Nature Communications (بالإنجليزية). 10 (1): 2690. Bibcode:2019NatCo..10.2690W. DOI:10.1038/s41467-019-10286-x. ISSN:2041-1723. PMC:6584537. PMID:31217418.
  29. ^ Naranjo-Ortiz، Miguel A.؛ Gabaldón، Toni (25 أبريل 2019). "Fungal evolution: major ecological adaptations and evolutionary transitions". Biological Reviews of the Cambridge Philosophical Society. Cambridge Philosophical Society (Wiley). ج. 94 ع. 4: 1443–1476. DOI:10.1111/brv.12510. ISSN:1464-7931. PMC:6850671. PMID:31021528. S2CID:131775942.
  30. ^ Žárský، Jakub؛ Žárský، Vojtěch؛ Hanáček، Martin؛ Žárský، Viktor (27 يناير 2022). "Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle – The Origin of the Anydrophytes and Zygnematophyceae Split". Frontiers in Plant Science. ج. 12: 735020. DOI:10.3389/fpls.2021.735020. ISSN:1664-462X. PMC:8829067. PMID:35154170.
  31. ^ Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (2004). "A Molecular Timeline for the Origin of Photosynthetic Eukaryotes". Molecular Biology and Evolution (بالإنجليزية). 21 (5): 809–818. DOI:10.1093/molbev/msh075. ISSN:1537-1719. PMID:14963099.
  32. ^ Bowring، Samuel A.؛ Williams، Ian S. (1999). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology. ج. 134 ع. 1: 3. Bibcode:1999CoMP..134....3B. DOI:10.1007/s004100050465. S2CID:128376754.
  33. ^ Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Maruyama, Shigenori (2007), Chapter 3.1 the Early Archean Acasta Gneiss Complex: Geological, Geochronological and Isotopic Studies and Implications for Early Crustal Evolution, Developments in Precambrian Geology (بالإنجليزية), Elsevier, vol. 15, pp. 127–147, DOI:10.1016/s0166-2635(07)15031-3, ISBN:978-0-444-52810-0, Retrieved 2022-05-01
  34. ^ Geology.wisc.edu
  35. ^ "The eons of Chaos and Hades" (PDF). Solid Earth. 26 يناير 2010. مؤرشف من الأصل (PDF) في 2013-12-19.
الدهر الجهنمي
الكريبتية مجموعة الأحواض النكتارية الأمبرية المبكرة
قبل الكامبري
الدهر الجهنمي الدهر السحيق دهر الطلائع دهر البشائر


وسوم <ref> موجودة لمجموعة اسمها "arabic-abajed"، ولكن لم يتم العثور على وسم <references group="arabic-abajed"/> أو هناك وسم </ref> ناقص