هذه المقالة بحاجة لتهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا.

أعداد متحابة

من ويكيبيديا، الموسوعة الحرة
(بالتحويل من أعداد صديقة)
اذهب إلى التنقل اذهب إلى البحث
Edit-clear.svg
هذه المقالة ربما تحتاج إلى تهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا. لم يُحدد أي سبب للتهذيب. فضلًا هذّب المقالة إن كان بإمكانك ذلك، أو غيّر القالب ليُحدد المشكلة التي تحتاج إلى تهذيب.

عددان متحابان (ملاحظة 1) هما عددان صحيحان طبيعيان مختلفان حيث يساوي مجموع القواسم النظيفة لأحد العددين، العدد الثاني. (القواسم النظيفة لعدد ما هي القواسم الموجبة المختلفة عن العدد نفسه. على سبيل المثال، القواسم النظيفة ل 6 هي 1 و2 و3). قد تسمى هاته الأعداد أعدادا ودية.

أصغر عددين صديقين هما 220 و284 لأن قواسم 220 هي 1 و2 و4 و5 و10 و11 و20 و22 و44 و 55 و110. مجموع هؤلاء القواسم هو 284. أما قواسم 284 فهي 1 و2 و4 و71 و142 ومجموعها هو 220.

التاريخ[عدل]

من أوائل العلماء الذين تحدثوا عن الأعداد الصديقة هو العالم محمد باقر اليزدي وقد أعطى فكرة الأعداد الصديقة للعددين 9363584 و9437056 قبل إسهام أويلر بهذه الفكرة بسنوات عديدة. [1]

قواعد توليد الأعداد الصديقة[عدل]

قاعدة ثابت بن قرة[عدل]

ترجع هاته القاعدة إلى ثابت بن قرة.

p = 3 × 2n − 1 − 1,
q = 3 × 2n − 1,
r = 9 × 22n − 1 − 1,

قاعدة أويلر[عدل]

قاعدة أويلر هي تعميم لمبرهنة ثابت بن قرة. وتنص على أنه إذا كان:

p = (2(n - m)+1) × 2m − 1,
q = (2(n - m)+1) × 2n − 1,
r = (2(n - m)+1)2 × 2m + n − 1,

أعدادا أولية حيث m و n أعداد صحيحة وحيث n>m> 0، فإن الأعداد 2n×p×q و 2n×r أعداد صديقة.

هوامش[عدل]

ملاحظة 1 الأعداد المتحابة أزواجٌ من الأعداد مجموعُ قواسِم أحدِهما عدا نَفْسِه يُساوي الآخَر.[2]

مراجع[عدل]

  1. ^ Costello، PAtrick (2002-05-01). "NEW AMICABLE PAIRS OF TYPE (2; 2) AND TYPE (3; 2)" (PDF). Mathematics of Computation. American Mathematical Society. 72 (241): 489–497. doi:10.1090/S0025-5718-02-01414-X. اطلع عليه بتاريخ 19 أبريل 2007. 
  2. ^ معجم العلوم المصور الجديد

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.