النحاس في الصحة: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
لا ملخص تعديل
لا ملخص تعديل
سطر 174: سطر 174:


تشمل مجموعات الأفراد المعرضة لنقص النحاس الأشخاص الذين يعانون من عيوب [[مرض مينكيس]] الوراثية، والرضع منخفضي وزن الولادة، والرضع الذين يرضعون حليب البقر بدلا من حليب الثدي أو الحليب الصناعي المُدعم، والأمهات الحوامل والمرضعات، والمرضى الذين يتلقون [[تغذية بالحقن|التغذية بالحقن]]، والأفراد الذين يعانون من "متلازمة سوء الامتصاص"(ضعف امتصاص الغذاء)، ومرضى [[السكري]]، والأفراد الذين يعانون من الأمراض المزمنة التي تؤدي إلى انخفاض استهلاك الغذاء، مثل الكحوليين، والأشخاص الذين يعانون من اضطرابات الأكل. قد يكون كبار السن والرياضيون أكثر عرضة لنقص النحاس بسبب احتياجاتهم الخاصة التي تزيد من المتطلبات اليومية.<ref name="Wapnir1998" /> قد يقل مدخول النحاس عند [[نباتية|النباتيين]] بسبب استهلاك الأطعمة النباتية التي ينخفض فيها النحاس.<ref name="Lee1984" /><ref>{{cite journal |last1=Lönnerdal |first1=Bo |title=Bioavailability of copper |journal=The American Journal of Clinical Nutrition |volume=63 |issue=5 |pages=821S–9S |year=1996 |pmid=8615369 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=8615369 }}</ref><ref>{{cite journal |last1=Kelsay |first1=JL |title=Effects of fiber, phytic acid, and oxalic acid in the diet on mineral bioavailability |journal=The American Journal of Gastroenterology |volume=82 |issue=10 |pages=983–6 |year=1987 |pmid=2821800 }}</ref> يزيد خطر حدوث وزن الولادة المنخفض وضعف العضلات ، والمشاكل العصبية في الأجنة والرضع الذين تعاني أمهاتهم من نقص النحاس، . قد يؤدي نقص النحاس في هذه المجموعات إلى حدوث [[فقر دم]]، أو [[تشوهات العظام|تشوهات في العظام]]، أو ضعف النمو، أو زيادة الوزن، أو عدوى متكررة ([[نزلات البرد]]، أو [[الأنفلونزا]]، أو [[الالتهاب الرئوي]])، أو ضعف التنسيق الحركي، أو انخفاض الطاقة.<ref name="" />
تشمل مجموعات الأفراد المعرضة لنقص النحاس الأشخاص الذين يعانون من عيوب [[مرض مينكيس]] الوراثية، والرضع منخفضي وزن الولادة، والرضع الذين يرضعون حليب البقر بدلا من حليب الثدي أو الحليب الصناعي المُدعم، والأمهات الحوامل والمرضعات، والمرضى الذين يتلقون [[تغذية بالحقن|التغذية بالحقن]]، والأفراد الذين يعانون من "متلازمة سوء الامتصاص"(ضعف امتصاص الغذاء)، ومرضى [[السكري]]، والأفراد الذين يعانون من الأمراض المزمنة التي تؤدي إلى انخفاض استهلاك الغذاء، مثل الكحوليين، والأشخاص الذين يعانون من اضطرابات الأكل. قد يكون كبار السن والرياضيون أكثر عرضة لنقص النحاس بسبب احتياجاتهم الخاصة التي تزيد من المتطلبات اليومية.<ref name="Wapnir1998" /> قد يقل مدخول النحاس عند [[نباتية|النباتيين]] بسبب استهلاك الأطعمة النباتية التي ينخفض فيها النحاس.<ref name="Lee1984" /><ref>{{cite journal |last1=Lönnerdal |first1=Bo |title=Bioavailability of copper |journal=The American Journal of Clinical Nutrition |volume=63 |issue=5 |pages=821S–9S |year=1996 |pmid=8615369 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=8615369 }}</ref><ref>{{cite journal |last1=Kelsay |first1=JL |title=Effects of fiber, phytic acid, and oxalic acid in the diet on mineral bioavailability |journal=The American Journal of Gastroenterology |volume=82 |issue=10 |pages=983–6 |year=1987 |pmid=2821800 }}</ref> يزيد خطر حدوث وزن الولادة المنخفض وضعف العضلات ، والمشاكل العصبية في الأجنة والرضع الذين تعاني أمهاتهم من نقص النحاس، . قد يؤدي نقص النحاس في هذه المجموعات إلى حدوث [[فقر دم]]، أو [[تشوهات العظام|تشوهات في العظام]]، أو ضعف النمو، أو زيادة الوزن، أو عدوى متكررة ([[نزلات البرد]]، أو [[الأنفلونزا]]، أو [[الالتهاب الرئوي]])، أو ضعف التنسيق الحركي، أو انخفاض الطاقة.<ref name="" />

=== فرط النحاس ===

فرط النحاس هو موضوع لكثير من البحوث الحالية. لقد برزت من تلك الدراسات العديد من الفروقات التي تفيد بأن عوامل حدوث فرط النحاس تختلف بين الأفراد الطبيعيين وأولئك الذين لديهم قابلية متزايدة للآثار الضائرة والذين يعانون من أمراض وراثية [[مرض نادر|نادرة]].<ref name="InternationalProgramme" /><ref name="Stern" /> وقد أدى ذلك إلى تصريحات من منظمات صحية يمكن أن تكون مربكة للغير مطلعين. على سبيل المثال، وفقًا لتقرير [[الأكاديمية الوطنية للطب (الولايات المتحدة الأمريكية)|معهد الطب الأمريكي]]،<ref name="NAP 2001 Copper"/> فإن نسبة كبيرة من السكان يتناولون النحاس بكمية أقل من الموصى بها. من ناحية أخرى، خلص المجلس القومي للبحوث في الولايات المتحدة<ref name="USNRC 2000 Copper in drinking water">U.S. National Research Council. 2000. Copper in drinking water. Committee on Copper in Drinking Water, Board on Environmental Studies and Toxicology, Commission of Life Sciences. Washington, DC: National Academy Press{{page needed|date=August 2015}}</ref> في تقريره "النحاس في مياه الشرب" إلى أن هناك مخاوف من سُمية النحاس في المجموعات السكانية الحساسة، وأوصى بإجراء بحث إضافي لتحديد وتمييز المجموعات الحساسة للنحاس.

زيادة تناول النحاس يسبب اضطراب في المعدة، و[[غثيان]]، وإسهال ويمكن أن يؤدي إلى [[صدمة (طب)|إصابة الأنسجة]] والمرض.

قد تكون قدرة النحاس على الأكسدة مسؤولة عن بعض سُميتها في حالات الافراط في تناوله. عند وجود تركيز عالي من النحاس، من المعروف أنه ينتج تلفًا تأكسديًا للأنظمة البيولوجية، بما في ذلك فوق أكسدة [[الليبيدات]] أو [[جزيء ضخم|الجزيئات الضخمة]] الأخرى.<ref>{{cite journal |last1=Bremner |first1=Ian |title=Manifestations of copper excess |journal=The American Journal of Clinical Nutrition |volume=67 |issue=5 Suppl |pages=1069S–1073S |year=1998 |pmid=9587154 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=9587154}}</ref>

في حين أن سبب وآلية تطور [[مرض الزهايمر]] غير مفهومة جيدًا، تشير الأبحاث إلى أنه، ومن بين العديد من الملاحظات الرئيسية الأخرى، يتراكم الحديد،<ref>{{cite journal |last1=Bartzokis |first1=George |last2=Sultzer |first2=David |last3=Cummings |first3=Jeffrey |last4=Holt |first4=Lori E. |last5=Hance |first5=Darwood B. |last6=Henderson |first6=Victor W. |last7=Mintz |first7=Jim |title=In Vivo Evaluation of Brain Iron in Alzheimer Disease Using Magnetic Resonance Imaging |journal=Archives of General Psychiatry |volume=57 |issue=1 |pages=47–53 |year=2000 |pmid=10632232 |doi=10.1001/archpsyc.57.1.47 |laysummary=http://www.webmd.com/alzheimers/news/20000228/high-iron-levels-identified-in-brains-of-alzheimers-patients |laysource=WebMD Health News |laydate=February 28, 1000}}</ref><ref>{{cite journal |last1=Duce |first1=James A. |last2=Tsatsanis |first2=Andrew |last3=Cater |first3=Michael A. |last4=James |first4=Simon A. |last5=Robb |first5=Elysia |last6=Wikhe |first6=Krutika |last7=Leong |first7=Su Ling |last8=Perez |first8=Keyla |last9=Johanssen |first9=Timothy |last10=Greenough |first10=Mark A. |last11=Cho |first11=Hyun-Hee |last12=Galatis |first12=Denise |last13=Moir |first13=Robert D. |last14=Masters |first14=Colin L. |last15=McLean |first15=Catriona |last16=Tanzi |first16=Rudolph E. |last17=Cappai |first17=Roberto |last18=Barnham |first18=Kevin J. |last19=Ciccotosto |first19=Giuseppe D. |last20=Rogers |first20=Jack T. |last21=Bush |first21=Ashley I. |title=Iron-Export Ferroxidase Activity of β-Amyloid Precursor Protein Is Inhibited by Zinc in Alzheimer's Disease |journal=Cell |volume=142 |issue=6 |pages=857–67 |year=2010 |pmid=20817278 |pmc=2943017 |doi=10.1016/j.cell.2010.08.014 |laysummary=https://www.newscientist.com/article/mg20727775.000-iron-overload-may-accelerate-alzheimers/ |laysource=New Scientist |laydate=September 8, 2010 }}</ref> والألمنيوم،<ref>{{cite web |url=http://alzheimers.org.uk/site/scripts/documents_info.php?documentID=99 |title=Am I at risk of developing dementia? |publisher=Alzheimer's Society}}</ref> والنحاس<ref>{{cite journal |last1=Brewer |first1=George J. |title=Copper toxicity in the general population |journal=Clinical Neurophysiology |volume=121 |issue=4 |pages=459–60 |year=2010 |pmid=20071223 |doi=10.1016/j.clinph.2009.12.015 }}</ref><ref name=pmid12042066>{{cite journal |last1=Llanos |first1=Roxana M. |last2=Mercer |first2=Julian F.B. |title=The Molecular Basis of Copper Homeostasis Copper-Related Disorders |journal=DNA and Cell Biology |volume=21 |issue=4 |pages=259–70 |year=2002 |pmid=12042066 |doi=10.1089/104454902753759681 }}</ref> في أدمغة مرضى الزهايمر. ومع ذلك، لم يعرف بعد ما إذا كان هذا التراكم هو سبب أو نتيجة للمرض.

ظلت الأبحاث مستمرة على مدى العقدين الماضيين لتحديد ما إذا كان النحاس مسبباً أو عاملاً وقائياً لمرض الزهايمر. على سبيل المثال، كعامل مسبب محتمل أو أحد أشكال اضطراب استتباب المعادن، تشير الدراسات إلى أن النحاس قد يلعب دورًا في زيادة نمو تجمعات البروتين في أدمغة مرضى الزهايمر،<ref>Copper link to Alzheimer's disease, New Scientist, August 12, 2003, https://www.newscientist.com/article/dn4045-copper-link-to-alzheimers-disease.html</ref> ربما عن طريق إتلاف الجزيء الذي يزيل التراكم السام [[نشواني بيتا|للأميلويد بيتا]] في الدماغ.<ref>{{cite journal |last1=Singh |first1=Itender |last2=Sagare |first2=Abhay P. |last3=Coma |first3=Mireia |last4=Perlmutter |first4=David |last5=Gelein |first5=Robert |last6=Bell |first6=Robert D. |last7=Deane |first7=Richard J. |last8=Zhong |first8=Elaine |last9=Parisi |first9=Margaret |last10=Ciszewski |first10=Joseph |last11=Kasper |first11=R. Tristan |last12=Deane |first12=Rashid |title=Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance |journal=Proceedings of the National Academy of Sciences |volume=110 |issue=36 |pages=14771–6 |year=2013 |pmid=23959870 |pmc=3767519 |doi=10.1073/pnas.1302212110 |bibcode=2013PNAS..11014771S |laysummary=https://www.sciencedaily.com/releases/2007/11/071107074329.htm |laysource=ScienceDaily |laydate=November 8, 2007 }}</ref> هناك علاقة بين النظام الغذائي الغني بالنحاس والحديد والدهون المشبعة من ناحية ومرض الزهايمر من ناحية أخرى.<ref>{{Cite journal|last=Loef|first=Martin|last2=Walach|first2=Harald|date=2012-01-01|title=Copper and iron in Alzheimer's disease: a systematic review and its dietary implications|journal=The British Journal of Nutrition|volume=107|issue=1|pages=7–19|doi=10.1017/S000711451100376X|issn=1475-2662|pmid=21767446}}</ref> من ناحية أخرى، تظهر الدراسات أيضًا الأدوار المفيدة المحتملة للنحاس في كونه علاجًا بدلاً من التسبب بمرض الزهايمر.<ref>Protective role for copper in Alzheimer's disease, Science News, October 13, 2009, https://www.sciencedaily.com/releases/2009/10/091008133457.htm</ref> على سبيل المثال، ظهر أن النحاس يعمل على 1) تعزيز المعالجة الغير نشوانية للبروتين السلف للبيتا أميلويد (APP)، وبالتالي خفض إنتاج بيتا أميلويد (Aβ) في [[ زرع الخلايا|أنظمة زرع الخلايا]]<ref>T. Borchardt, J. Camakaris, R. Cappai, C. L. Masters, K. Beyreuther, and G. Multhaup, “Copper inhibits β-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion,” Biochemical Journal, vol. 344, no. 2, pp. 461–467, 1999. View at Publisher · View at Google Scholar · View at Scopus
<ref>A. L. Phinney, B. Drisaldi, S. D. Schmidt et al., “In vivo reduction of amyloid-β by a mutant copper transporter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 24, pp. 14193–14198, 2003. View at Publisher · View at Google Scholar · View at Scopus
</ref></ref> 2) زيادة عمر وتقليل إنتاج الأميلويد القابل للذوبان في الفئران المعدلة وراثيًا، و 3) انخفاض مستوى البيتا أميلويد في [[السائل الدماغي الشوكي]] في مرضى الزهايمر.<ref>{{cite journal |last1=Kaden |first1=Daniela |last2=Bush |first2=Ashley I. |last3=Danzeisen |first3=Ruth |last4=Bayer |first4=Thomas A. |last5=Multhaup |first5=Gerd |title=Disturbed Copper Bioavailability in Alzheimer's Disease |journal=International Journal of Alzheimer's Disease |volume=2011 |issue= |pages=345614 |year=2011 |pmid=22145082 |pmc=3227474 |doi=10.4061/2011/345614 }}</ref>

وعلاوةً على ذلك، تم استبعاد استخدام النحاس كعلاج طويل الأمد (تناول 8 ملغ من النحاس (Cu-(II)-orotate-dihydrate) عن طريق الفم) كعامل خطر لمرض الزهايمر في تجربة سريرية مشهورة على البشر<ref>{{cite journal |last1=Kessler |first1=Holger |last2=Bayer |first2=Thomas A. |last3=Bach |first3=Daniela |last4=Schneider-Axmann |first4=Thomas |last5=Supprian |first5=Tillmann |last6=Herrmann |first6=Wolfgang |last7=Haber |first7=Manfred |last8=Multhaup |first8=Gerd |last9=Falkai |first9=Peter |last10=Pajonk |first10=Frank-Gerald |title=Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial |journal=Journal of Neural Transmission |volume=115 |issue=8 |pages=1181–7 |year=2008 |pmid=18587525 |pmc=2516533 |doi=10.1007/s00702-008-0080-1 }}</ref> وقد ثبت وجود دور مفيد للنحاس في مرض الزهايمر من خلال مستويات السائل الدماغي الشوكي من Aβ42، وهو الببتيد السام والعلامة الحيوية للمرض.<ref>{{cite journal |last1=Kessler |first1=Holger |last2=Pajonk |first2=Frank-Gerald |last3=Bach |first3=Daniela |last4=Schneider-Axmann |first4=Thomas |last5=Falkai |first5=Peter |last6=Herrmann |first6=Wolfgang |last7=Multhaup |first7=Gerd |last8=Wiltfang |first8=Jens |last9=Schäfer |first9=Stephanie |last10=Wirths |first10=Oliver |last11=Bayer |first11=Thomas A. |title=Effect of copper intake on CSF parameters in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial |journal=Journal of Neural Transmission |volume=115 |issue=12 |pages=1651–9 |year=2008 |pmid=18972062 |doi=10.1007/s00702-008-0136-2 }}</ref> هناك حاجة إلى مزيد من البحوث لفهم اضطرابات استتباب المعادن في مرضى الزهايمر وكيفية معالجة هذه الاضطرابات. وبما أن هذه التجربة استخدمت Cu- (II) -orotate-dihydrate، فإنه لا تشير إلى تأثير أكسيد النحاس الموجود في المكملات.<ref>{{cite journal |last1=Brewer |first1=George J. |title=Copper toxicity in Alzheimer's disease: Cognitive loss from ingestion of inorganic copper |journal=Journal of Trace Elements in Medicine and Biology |volume=26 |issue=2-3 |pages=89–92 |year=2012 |pmid=22673823 |doi=10.1016/j.jtemb.2012.04.019 }}</ref>








نسخة 16:19، 15 مايو 2018

الامتصاص والتوزع الطبيعي للنحاس. Cu = النحاس، CP = سيرولوبلازمين، اللون الأخضر= بروتين ATP7B يحمل النحاس.

يعتبر النحاس (بالإنجليزية: Copper) عنصرًا شحيحًا لا غنى عنه لصحة جميع الكائنات الحية (البشر والنباتات والحيوانات والكائنات الدقيقة). في البشر، يعتبر النحاس ضروريًا لوظائف الأعضاء وعمليات الأيض. يحتوي جسم الإنسان على آليات معقدة لللحفاظ على الاستتباب والتي تحاول ضمان إمداد ثابت من النحاس حسب المتاح، بينما يتم التخلص من النحاس الزائد كلما حدث ذلك. ومع ذلك، مثل جميع العناصر الأساسية والمغذيات، يمكن أن يؤدي الابتلاع الغذائي للكثير أو القليل من النحاس إلى نتائج معاكسة من زيادة أو نقص النحاس في الجسم، كل منها له مجموعة خاصة من الآثار الصحية الضارة.

تم تعيين المعايير الغذائية للاستهلاك اليومي للنحاس من قبل مختلف الوكالات الصحية في جميع أنحاء العالم. المعايير التي اعتمدتها بعض الدول توصي بمستويات مختلفة من النحاس للبالغين، والحوامل، والرضع، والأطفال، مما يتناسب مع الحاجة المتنوعة للنحاس خلال مراحل الحياة المختلفة.

يمكن أن يكون نقص النحاس وسُميته إما من أصل جيني أو غير جيني. إن دراسة الأمراض الوراثية المتعلقة بالنحاس، والتي هي محط أنظار الباحثين، قد ألقت الضوء على كيفية استخدام الجسم البشري للنحاس، ولماذا هو مهم كمغذي دقيق أساسي. كما أسفرت الدراسات عن علاجات ناجحة لحالات زيادة النحاس الوراثية، مما أتاح للمرضى الذين تتعرض حياتهم للخطر نتيجة ذلك ليعيشوا حياة طويلة ومنتجة.

يعمل الباحثون المتخصصون في مجالات علم الأحياء الدقيقة وعلم السموم والتغذية وتقييم المخاطر الصحية معًا لتحديد المستويات الدقيقة الضرورية للنحاس، مع تجنب تناول الكثير أو القليل من النحاس. ومن المتوقع استخدام نتائج هذه الدراسات في صقل برامج التوصيات الغذائية الحكومية المصممة للمساعدة في حماية الصحة العامة.

الأساسيات

النحاس هو عنصر أساسي شحيح (أي، مغذي دقيق) مطلوب لصحة النباتات والحيوانات والإنسان.[1] كما أنه مطلوب من أجل الوظائف الطبيعية للكائنات الحية الدقيقة الهوائية (التي تحتاج الأوكسجين).

تم دمج النحاس في مجموعة متنوعة من البروتينات والبروتينات المعدنية التي تؤدي وظائف التمثيل الغذائي الأساسية؛ المغذيات الدقيقة ضرورية للنمو السليم، والتطور، وسلامة العظام، والنسيج الضام، والدماغ، والقلب، والعديد من أعضاء الجسم الأخرى. ويشارك النحاس في تكوين خلايا الدم الحمراء، وامتصاص واستخدام الحديد، وأيض الكولسترول والجلوكوز، وتصنيع وإفراز البروتينات والإنزيمات التي تحافظ على الحياة. هذه الانزيمات بدورها تنتج الطاقة الخلوية وتنظم الانتقال العصبي، وتخثر الدم، ونقل الأوكسجين.

يحفز النحاس جهاز المناعة لمكافحة العدوى، وإصلاح الأنسجة المصابة، وتعزيز الالتئام. كما يساعد النحاس في معادلة "الجذور الحرة"، التي يمكن أن تسبب أضرارًا شديدة في الخلايا.

اكتشفت الاستخدامات الأساسية للنحاس لأول مرة في عام 1928، عندما تبين أن الفئران التي تغذت على حمية غذائية خالية من النحاس غير قادرة على إنتاج خلايا دم حمراء كافية.[2] تم تصحيح فقر الدم عن طريق إضافة المواد المحتوية على النحاس من مصادر نباتية أو حيوانية.

وكعنصر أساسي شحيح، فقد تم التوصية بالمعايير الغذائية للاستهلاك اليومي للنحاس من قبل عدد من الوكالات الصحية الحكومية في جميع أنحاء العالم.

الأجنة، والرضع، والأطفال

النحاس ضروري للنمو والتطور الطبيعي للأجنة البشرية والرضع والأطفال.[3] يُراكم الجنين النحاس بسرعة في كبده خلال الثلث الأخير من الحمل. عند الولادة، يكون للرضيع السليم أربعة أضعاف تركيز النحاس لدى البالغين كاملي النمو. النحاس منخفض نسبياً في الحليب البشري، ومخازن الكبد من النحاس في حديثي الولادة تنخفض بسرعة بعد الولادة، لإمداد الجسم سريع النمو بالنحاس خلال فترة الرضاعة الطبيعية. هذه الإمدادات ضرورية للقيام بوظائف الأيض مثل التنفس الخلوي، وتصنيع صبغة الميلانين والنسيج الضام، وأيض الحديد، ودفاع الجذور الحرة، والتعبير الجيني، ووظائف القلب وجهاز المناعة لدى الأطفال.

الرضع لديهم آليات بيوكيميائية خاصة لإدارة النحاس بشكل كافٍ في أجسامهم بينما تتطور الآليات الدائمة مدى الحياة وتنضج.[4]

يزيد نقص النحاس حاد في الأمهات الحوامل من خطر المشاكل الصحية في الأجنة والرضع. تشمل التأثيرات الصحية انخفاض أوزان المواليد وضعف العضلات ومشاكل الجهاز العصبي. ومع ذلك، يمكن تجنب نقص النحاس في النساء الحوامل باتباع نظام غذائي متوازن.

وبما أن توافر النحاس في الجسم يعرقله وجود فائض من الحديد والزنك، حيث يُوصف للنساء الحوامل مكملات الحديد لعلاج فقر الدم أو مكملات الزنك لعلاج نزلات البرد، لذلك يجب استشارة الأطباء للتأكد من أن المكملات الغذائية قبل الولادة تحتوي على كمية غذائية ضرورية من النحاس.

عندما يتلقى الأطفال حديثي الولادة الرضاعة الطبعية، توفر أكبادهم وحليب الثدي لأمهاتهم كميات كافية من النحاس خلال الأشهر 4-6 الأولى من الحياة.[5] عندما يفطم الأطفال، يجب أن يوفر النظام الغذائي المتوازن مصادر كافية من النحاس.

ينقص محتوى حليب البقر وحليب الأطفال الصناعي الأكبر سنًا من النحاس. ويتم تدعيم معظم حليب الصناعي الآن بالنحاس لمنع النقص.

معظم الأطفال الذين لديهم تغذية جيدة يحصلون على كميات كافية من النحاس. الأطفال المعرضون للخطر من الناحية الصحية، بما في ذلك الخدج، والذين يعانون من سوء التغذية، والذين لديهم وزن ولادة منخفض، ويعانون من العدوى، والذين يعانون من النمو التداركي واكتساب الوزن التعويضي السريع، هم أكثر عرضة لخطر نقص النحاس. ولحسن الحظ، فإن تشخيص نقص النحاس لدى الأطفال واضح وموثوق به بمجرد الاشتباه في الحالة. المكملات الغذائية تحت إشراف الطبيب عادة ما تسهل الشفاء التام.

الاستتباب

يتم امتصاص النحاس ونقله وتوزيعه وتخزينه وإخراجه من الجسم وفقًا لعمليات الاستتباب المعقدة التي تضمن إمدادًا ثابتًا وكافيًا بالمغذيات الدقيقة وفي نفس الوقت تجنب زيادة مستواها.[1] إذا تم تناول كمية غير كافية من النحاس لفترة قصيرة من الزمن، فستنضب مخازن النحاس في الكبد. إذا استمر هذا النضوب، فقد تتطور مشكلة صحية من نقص النحاس. إذا تم تناول كميات كبيرة من النحاس، فقد ينتج عن ذلك حالة فرط النحاس. كلا هاتين الحالتين، النقص والزيادة، يمكن أن تؤديان إلى إصابة الأنسجة والمرض. ومع ذلك، وبسبب تنظيم الاستتباب، فإن جسم الإنسان قادر على موازنة مجموعة كبيرة من مدخول النحاس لتناسب احتياجات الأفراد الأصحاء.[6]

أصبحت العديد من جوانب استتباب النحاس معروفة على المستوى الجزيئي.[7][8] ترجع أهمية النحاس إلى قدرته على التصرف كمانح أو مستقبل للإلكترونات حيث تتقلب أكسدة النحاس بين Cu1+(نحاسوز) و Cu2+(نحاسيك)..[3] كعنصر مكون لحوالي عشرات الأنزيمات النحاسية، يشترك النحاس في تفاعلات الأكسدة-الاختزال في عمليات التمثيل الغذائي الأساسية مثل التنفس الميتوكوندري، وتصنيع الميلانين، وربط الكولاجين.[9] النحاس جزء لا يتجزأ من الإنزيم المضاد للتأكسد، سوبر أكسيد ديسميوتاز(Cu,Zn-SOD)، وله دور في استتباب الحديد كعامل مساعد في السيرولوبلازمين.[3] قائمة ببعض الإنزيمات الرئيسية المحتوية على النحاس ووظائفها ملخصة أدناه:

الانزيمات الرئيسية المحتوية على النحاس ووظائفها[7]
Enzymes Function
أكسيداز الأمين مجموعة من الإنزيمات المؤكسدة للأمينات الأولية (على سبيل المثال: التيرامين، والهيستدين، وعديد الأمين)
سيرولوبلازمين (أكسيداز الحديدي) أوكسيديز النحاس المتعددة في البلازما، وهو ضروري لنقل الحديد
سيتوكروم سي أكسيداز إنزيم الأوكسيداز النهائي في سلسلة التنفس الخلوي في الميتوكوندريا، يشارك في نقل الإلكترونات
دوبامين بيتا هيدروكسيلاز يشارك في أيض الكاتيكولامين، ويحفز تحويل الدوبامين إلى نورايبنفرين
هيفاستين أكسيداز الحديدي متعدد النحاس، بشارك في نقل الحديد عبر الغشاء المخاطي المعوي للجهاز البوابي الكبدي
أُكسيدازُ اللِّيزيل تصالب الكولاجين والإيلاستين
(Peptidylglycine alpha-amidating mono-oxygenase (PAM إنزيم متعدد الوظائف يشارك في نضوج وتعديل الببتيدات العصبية الرئيسية (على سبيل المثال : الناقلات العصبية والببتيدات العصبية الصماء)
سوبر أكسيد ديسميوتاز (الزنك، النحاس) إنزيم داخل خلوي وخارج خلوي يشارك في الدفاع ضد مركبات الأكسجين النشطة (على سبيل المثال : تدمير جذور فوق الأكسيد)
تايروسيناز يحفز إنتاج الميلانين والصبغات الأخرى

إن نقل واستقلاب النحاس في الكائنات الحية هو حاليًا موضوع بحث مهم. يتضمن نقل النحاس خلويًا تحريك النحاس من خارج الخلية إلى داخلها عبر غشاء الخلية بواسطة ناقلات متخصصة.[8] في مجرى الدم، يتم نقل النحاس في جميع أنحاء الجسم عن طريق الألبومين، والسيرولوبلازمين، وبروتينات أخرى. ينتقل غالبية النحاس في الدم (أو النحاس في المصل) عن طريق السيرولوبلازمين. يمكن أن تتراوح نسبة السيرولوبلازمين المرتبط بالنحاس من 70-95٪ ويختلف بين الأفراد حسب ، على سبيل المثال، الدورة الهرمونية والوقت وحالة النحاس. يتم توجيه النحاس داخل الخلايا إلى مواقع تصنيع الأنزيمات المحتوية على النحاس في تركيبها وإلى العضيات بواسطة بروتينات متخصصة تدعى التشابيرونات المعدنية.[10][11][12] مجموعة أخرى من هذه الناقلات تحمل النحاس إلى داخل الأجزاء التحت خلوية.[12][13] توجد آليات معينة لاطلاق النحاس من الخلية. تقوم الناقلات البروتينية المتخصصة بإعادة النحاس الزائد غير المستقر للكبد للتخزين الاحتياطي و / أو للإفراز مع العصارة الصفراوية.[10][11] تضمن هذه الآليات عدم وجود أيونات نحاس سامة حرة غير مرتبطة في غالبية الأفراد (أي أولئك الذين لا يعانون من عيوب استقلاب النحاس الخلقية).

يتم ادخال النحاس إلى الخلايا عبر جدار الخلية بواسطة البروتين الناقل للغشاء البلازمي المعروف باسم ناقل النحاس 1 أو (Ctr1 (Copper Transporter 1. يرتبط Ctr1 بسرعة ببروتينات تشابيرون النحاسية داخل الخلايا. يوصل Atox1 (بروتين تشابيرون معدني نحاسي) النحاس إلى المسار الإفرازي ويرسو إما عند ATPase ناقل للنحاس (ATP7B) في الكبد أو ATP7A في خلايا أخرى. يوجه ATP7B النحاس إلى السيرولوبلازمين البلازمي أو إلى العصارة الصفراوية بالتنسيق مع تشابيرون مكتشف حديثًا، وهو Murr1، وهو البروتين المفقود في التسمم بالنحاس عند الكلاب. يوجه ATP7A النحاس داخل جهاز غولجي إلى بروتينات عدة منها دوبامين بيتا أحادي الأوكسجيناز و peptidylglycine alpha-amidating monooxygenase و أُكسيدازُ اللِّيزيل و تايروسيناز، اعتمادًا على نوع الخلية. جين CCS هو تشابيرون نحاسي لسوبر أكسيد الديسميوتاز الذي يحمي الخلايا ضد مركبات الأكسجين النشطة؛ ويقوم الجين بإصال النحاس إلى السيتوبلازم وتجويف الميتوكوندريا . يسلم Cox17 النحاس إلى الميتوكوندريا وإلى سيتوكروم سي أكسيداز عبر تشابيرونات كوكس-11 و Sco1 و Sco2. قد توجد تشابيرونات نحاس أخرى ويمكن أن تشمل الميتالوثيونين وamyloid precursor protein .[7][8] أوضحت الدراسات الجينية والتغذوية الطبيعة الأساسية لهذه البروتينات المرتبطة بالنحاس.[14]

الامتصاص

في الثدييات يتم امتصاص النحاس في المعدة والأمعاء الدقيقة، على الرغم من ذلك، يبدو أن هناك اختلاف بين الأنواع فيما يتعلق بالمكان الذي يحدث فيه أكبر قدر من الامتصاص.[15] حيث يتم امتصاص النحاس في المعدة والاثني عشر في الفئران [16] وفي الأمعاء الدقيقة السفلية في الهامستر.[17] لا يُعرف موقع حدوث الحد الأقصى من امتصاص النحاس في البشر، ولكن يفترض أن يكون في المعدة والأمعاء العليا بسبب الظهور السريع لنظير النحاس Cu64 في البلازما بعد تناول النحاس عن طريق الفم.[18]

يترواح معدل امتصاص النحاس من 15-97 ٪، وذلك اعتمادًا على محتوى النحاس، ونوع النحاس، وتكوين النظام الغذائي.[19][20][21][22][23]

تؤثر عوامل مختلفة على امتصاص النحاس. على سبيل المثال، يتم تعزيز امتصاص النحاس عن طريق تناول البروتين الحيواني، والسيترات، والفوسفات. يتم امتصاص أملاح النحاس، بما في ذلك غلوكونات النحاس، أوأسيتات النحاس، أو كبريتات النحاس، بسهولة أكبر من أكاسيد النحاس.[24][25] إنّ وجود مستويات مرتفعة من الزنك الغذائي، وكذلك الكادميوم، وتناول كميات كبيرة من السميات والسكريات البسيطة (الفركتوز، السكروز) تمنع امتصاص الغذاء من النحاس.[26][27][28][29][30][31] علاوةً على ذلك، تمنع المستويات المنخفضة من النحاس امتصاص الحديد.[32] [33]

بعض أشكال النحاس ليست قابلة للذوبان في أحماض المعدة ولا يمكن امتصاصها من المعدة أو الأمعاء الدقيقة. أيضًا، قد تحتوي بعض الأطعمة على ألياف ترتبط بالنحاس وغير قابلة للهضم . يمكن لمدخول عالي من الزنك أن يقلل بشكل كبير من امتصاص النحاس. كما يمكن أن يؤثر مدخول الكبير من فيتامين ج أو الحديد على امتصاص النحاس، مما يذكرنا بحقيقة أنه يجب استهلاك المغذيات الدقيقة كمزيج متوازن. هذا هو أحد الأسباب التي تجعل تناول كميات كبيرة من المغذيات الدقيقة لا ينصح به.[34] قد يكون الأفراد الذين يعانون من مشاكل مزمنة في الجهاز الهضمي غير قادرين على امتصاص كميات كافية من النحاس، على الرغم من أن الأطعمة التي يتناولونها غنية بالنحاس.

تم تحديد العديد من ناقلات النحاس التي يمكنها نقل النحاس عبر أغشية الخلايا.[35][36] قد توجد ناقلات نحاس أخرى خاصة بالأمعاء. يمكن تحفيز امتصاص النحاس في الأمعاء بواسطة Ctr1. ظهر Ctr1 في جميع أنواع الخلايا التي تم فحصها حتى الآن، بما في ذلك الخلايا المعوية، ويحفز نقل Cu+1 عبر غشاء الخلية.[37]

يمكن ربط الفائض من النحاس (وكذلك أيونات المعادن الثقيلة الأخرى مثل الزنك أو الكادميوم) بالميتالوثيونين واحجازه داخل الحويصلات الخلوية للخلايا المعوية (أي الخلايا السائدة في بطانة الأمعاء).

التوزع

ينتقل النحاس المُفرز من خلايا الأمعاء إلى الشعيرات الدموية المصلية (أي في الغشاء الرقيق المغلف للأمعاء) حيث يرتبط بالألبومين والجلوتاثيون والأحماض الأمينية في الدم البابي.[38][39] هناك أيضًا دليل على وجود بروتين صغير يسمى transcuprein له دور محدد في نقل النحاس في البلازما.[40] قد تشارك العديد من أو جميع هذه الجزيئات المرتبطة بالنحاس في نقل النحاس في الدم. يؤخذ النحاس الموجود في الدوران البابي بشكل أساسي عن طريق الكبد. عندما يصبح في الكبد، يتم دمج النحاس في البروتينات التي تحتاج النحاس، والتي تُفرز لاحقًا في الدم. معظم النحاس (70 – 95%) الذي يفرغه الكبد يكون مدمجاً مع السيرولوبلازمين، وهو الناقل الرئيسي للنحاس في الدم. يتم نقل النحاس إلى الأنسجة خارج الكبد عن طريق السيرولوبلازمين،[41] أو الألبومين أوالأحماض الأمينية، أو يُفرغ في الصفراء.[3] يسيطر الكبد على النحاس الموجود خارجه عن طريق تنظيم إفرازه.[11]

الإفراغ

تعتبر الصفراء المسار الرئيسي لإفراغ النحاس، وهي ذات أهمية حيوية في التحكم في مستوى النحاس في الكبد.[42][43][44] ينتج معظم النحاس الموجود في البراز من الإفراز الصفراوي. أما الباقي فمصدره النحاس غير الممتص والخلايا المتقشرة من البطانة المخاطية.

الطيف المفترض لاستقلاب النحاس[45]
نطاق الجرعة المدخول اليومي التقريبي النتائج الصحية
الموت
عجز وظيفي كلي واضطراب التمثيل الغذائي للمغذيات الأخرى.

ارتفاع شديد في عملية "إزالة السموم" وتنظيم الاستتباب في الكبد

سام >5.0 ملغم / كغم من وزن الجسم تنشيط الميتالوثيونين في الجهاز الهضمي ( مع اختلاف الآثار الناتجة حسب كون التعرض مزمن أم

حاد)

100 ميكروغرام / كغم من وزن الجسم الحفاظ على الحد الأقصى من الامتصاص؛ تقوم آليات الاستتباب بتنظيم امتصاص النحاس
مناسب 34 ميكروغرام / كغم من وزن الجسم امتصاص كبدي، احتجاز و إفراغ تحت تأثير الاستتباب. امتصاص الجلوتاثيون المعتمد على النحاس ؛ الارتباط بالميتالوثونين؛ وإفراغ النحاس عن طريق الجسيم الحال
11 ميكروغرام / كغم من وزن الجسم الإفراغ الصفراوي والامتصاص الهضمي في حالة طبيعية
9 ميكروغرام / كغم من وزن الجسم خفض التخزين في الكبد؛ حفظ النحاس الداخلي؛ زيادة الامتصاص عبر الجهاز الهضمي
منخفض 8.5 ميكروغرام / كغم من وزن الجسم توزان سلبي للنحاس
5.2 ميكروغرام / كغم من وزن الجسم اضطرابات وظيفية مثل انخفاض نشاط أُكسيدازُ اللِّيزيل و سوبر أكسيد ديسميوتاز؛ ضعف التمثيل الغذائي للركيزة
2 ميكروغرام / كغم من وزن الجسم تعطل الاوعية الطرفية؛ عجز وظيفي كلي واضطراب التمثيل الغذائي للمغذيات الأخرى؛ موت

التوصيات الغذائية

لدى العديد من المنظمات الوطنية والدولية المعنية بالتغذية والصحة معايير لمستوى مدخول النحاس بحيث يُعتبر كافي للمحافظة على صحة جيدة. يتم تغيير هذه المعايير وتحديثها دوريًا مع توفر بيانات علمية جديدة. والمعايير في بعض الأحيان تختلف بين البلدان والمنظمات.

البالغين

توصي منظمة الصحة العالمية بالحد الأدنى من المدخول المقبول به بحوالي 1.3 ملغ / يوم.[46] تعتبر هذه القيم كافية وآمنة لمعظم الأفراد. في أمريكا الشمالية، قام معهد الطب في الولايات المتحدة بإقرار المُخصص اليومي المُحبذ للنحاس للرجال والنساء الأصحاء عند 0.9 ملغ / يوم.[47][48] يقوم معهد الطب في الولايات المتحدة أيضاً بتحديد المستوى الأقصى المقبول للفيتامينات والمعادن عندما تكون هناك أدلة كافية من أجل الحفاظ على السلامة. في حالة النحاس، تم تحديد المستوى الأقصى المقبولعند 10 ملغ / يوم.[48] راجعت الهيئة الأوروبية لسلامة الأغذية موضوع السلامة نفسه وحددت المستوى الأقصى عند 5 ملغ / يوم.[49]

المراهقين، والأطفال، والرضع

لم تضع منظمة الصحة العالمية الحد الأدنى من المدخول اليومي للنحاس لهذه الفئات العمرية. في أمريكا الشمالية، يُلاحظ أن المُخصص اليومي المُحبذ كما يلي: 0.34 ملغ/ يوم للأطفال من 1 إلى 3 سنوات؛ 0.44 ملغ / يوم للأعمار 4 إلى 8 سنوات؛ 0.7 مغ / يوم للأعمار 9-13 سنة؛ و 0.89 ملغ / يوم للأعمار 14-18 سنة. والمستوى الأقصى المقبول: 1 مغ / يوم للأطفال من 1 إلى 3 سنوات ؛ 3 مغ / يوم للأعمار 4 - 8 سنوات؛ 5 ملغ / يوم للأعمار 9-13 سنة؛ و 8 ملغ / يوم للأعمار 14-18 سنة.[47][48]

إن الرضع المولودين مكملي شهور الحمل والخُدج أكثر حساسية لنقص النحاس من البالغين. بما أن الجنين يُراكم النحاس خلال الأشهر الثلاثة الأخيرة من الحمل، فإن الرضع الذين يولدون قبل الأوان لم يكن لديهم الوقت الكافي لتخزين ما يكفي من النحاس في أكبادهم، وبالتالي يحتاجون إلى المزيد من النحاس عند الولادة من الرضع كاملي النمو.[50]

وبالنسبة للرضع كاملي النمو، فإن المدخول الآمن والكافي من النحاس حوالي 0.2 مغ / يوم في أمريكا الشمالية. أما بالنسبة للأطفال الخُدج،فإنه أعلى بشكل ملحوظ: 1 مغ / يوم. أوصت منظمة الصحة العالمية بالحد الأدنى من المدخول المناسب، وتنصح بأن يعطى الخدج حليب مدهم بنحاس إضافي لمنع تطور نقص النحاس.[34]

النساء الحوامل والمرضعات

في أمريكا الشمالية، وضع معهد الطب في الولايات المتحدة المُخصص اليومي المُحبذ لفترة الحمل ما مقداره 1.0 ملغ / يوم وللإرضاع 1.3 ملغ / يوم.[48] تُعرف الهيئة الأوروبية لسلامة الأغذية مجموعات البيانات مثل القيم الغذائية المرجعية،بأنها المتناول المرجعي للأفراد بدلاً من المُخصص اليومي المُحبذ. حيث المتناول المرجعي للأفراد في فترة اللحمل هو 1.6 ملغ / يوم، وللإرضاع 1.6 ملغم / يوم - وهذا أعلى من قيم المُخصص اليومي المُحبذ الأمريكية.[51]

مصادر الطعام

أطعمة غنية بالنحاس

النحاس هو معدن أساسي شحيح لا يمكن تشكيله في جسم الإنسان. يجب ابتلاعه من مصادره الغذائية.

تساهم الأطعمة تقريبًا بكل النحاس المستهلك من البشر.[52][53][54] تتضمن أفضل المصادر الغذائية المأكولات البحرية (خاصة المحارولحوم الأعضاء (مثل الكبد)، والحبوب الكاملة، والبقوليات (مثل الفاصولياء والعدس)، والشوكولاتة. المكسرات، بما في ذلك الفول السوداني والجوز، غنية بشكل خاص بالنحاس، وكذلك الحبوب مثل القمح والجاودار، والعديد من الفواكه بما في ذلك الليمون والزبيب. المصادر الغذائية الأخرى التي تحتوي على النحاس تشمل الحبوب، والبطاطا، والبازلاء واللحوم الحمراء والفطر وبعض الخضار الورقية الخضراء الداكنة (مثل اللفت)، والفواكه (جوز الهند، والبابايا، والتفاح). يحتوي الشاي، والأرز، والدجاج، على نسب منخفضة من النحاس، ولكن يمكن أن توفر كمية معقولة من النحاس عندما يتم استهلاكها بكميات كبيرة.[55]

إن تناول نظام غذائي متوازن يحوي مجموعة من الأطعمة من مجموعات غذائية مختلفة هو أفضل طريقة لتجنب نقص النحاس. في كل من البلدان المتقدمة والنامية، البالغون والأطفال الصغار والمراهقون الذين يستهلكون تظام غذائي مكون من الحبوب أو الدخن أو الدرنات أو الأرز مع البقوليات (الفول) أو كميات صغيرة من الأسماك أو اللحوم وبعض الفواكه والخضروات وبعض الزيوت النباتية من المحتمل أن يحصلوا على كميات كافية من النحاس إذا كان استهلاكهم الغذائي مناسبًامن حيث السعرات الحرارية. في البلدان المتقدمة حيث استهلاك اللحوم الحمراء مرتفع، من المرجح أيضًا أن يكون مدخول النحاس كافيًا.[56]

يوجد النحاس في معظم المياه السطحية والمياه الجوفية في العالم كعنصر طبيعي في القشرة الأرضية، على الرغم من أن التركيز الفعلي للنحاس في المياه الطبيعية يختلف جغرافيًا. يمكن أن تحتوي مياه الشرب على 20-25٪ من النحاس الغذائي.[57]

يمكن أن تكون أنابيب النحاس التي تنقل مياه الشرب مصدرًا للنحاس الغذائي في العديد من مناطق العالم. أنبوب النحاس يمكن أن يرشح منه كمية صغيرة من النحاس، خاصة في السنتين الأولى والثانية من الخدمة. بعد ذلك، يتشكل سطح واقي عادة في داخل أنابيب النحاس مما تؤخر الارتشاح.

المكملات

يمكن أن تمنع مكملات النحاس نقصه، ولكن يجب أن تؤخذ المكملات الغذائية فقط تحت إشراف الطبيب. يوجد أشكال مختلفة من مكملات النحاس بمعدلات امتصاص مختلفة. على سبيل المثال، امتصاص النحاس من مكملات أكسيد الحديد هو أقل من امتصاصه من غلوكونات النحاس أو الكبريتات أو الكربونات.

لا ينصح عمومًا بتناول المكملات الغذائية للبالغين الأصحاء الذين يستهلكون نظامًا غذائيًا متوازنًا يتضمن مجموعة مختلفة من الأطعمة. ومع ذلك، قد تكون المكملات تحت رعاية الطبيب ضرورية للخدج أو الذين لديهم أوزان منخفضة للولادة، أو الرضع الذين يتلقون حليب صناعي غير مدعم أو حليب البقر خلال السنة الأولى، والأطفال الصغار الذين يعانون من سوء التغذية. يمكن للأطباء النظر في إضافة النحاس للدوافع التالية 1) الأمراض التي تقلل الهضم (على سبيل المثال، الأطفال الذين يعانون من الإسهال المتكرر أو العدوى؛ والكحولية)، 2) استهلاك كميات غير كافية من الطعام (على سبيل المثال، في حالات كبار السن، والمرضى، وأولئك الذين يعانون من اضطرابات الأكل أو الذين يتبعون حميات غذائية)، 3) المرضى الذين يتناولون أدوية تمنع استخدام الجسم للنحاس، 4) مرضى فقر الدم الذين يعالجون بمكملات الحديد، 5) أي شخص يتناول مكملات الزنك، و 6) أولئك الذين يعانون من مرض هشاشة العظام.

وتحتوي العديد من مكملات الفيتامينات الشائعة على النحاس كجزيئات غير عضوية صغيرة مثل أكسيد الحديد. هذه المكملات يمكن أن تؤدي إلى زيادة النحاس الحر في الدماغ حيث يمكن أن يعبر النحاس الحاجز الدموي الدماغي مباشرة. عادة، يتم معالجة النحاس العضوي في الغذاء أولاً في الكبد الذي يحافظ على مستويات النحاس الحر تحت السيطرة.[58]

نقص النحاس وحالات زيادته (غير الوراثية)

إذا تم تناول كميات غير كافية من النحاس، فستنفد مخازن النحاس في الكبد وسيؤدي نقص النحاس إلى المرض أو إصابة الأنسجة (وفي الحالات الشديدة، الوفاة). يمكن معالجة السمية الناتجة عن نقص النحاس بنظام غذائي متوازن أو بالمكملات تحت إشراف الطبيب. على العكس، مثل جميع المواد، يمكن أن يصبح تناول النحاس بكميات كبيرة وأعلى بكثير مما حددته منظمة الصحة العالمية سامًا.[59] ترتبط سمية النحاس الحادة عمومًا بابتلاعه غير المقصود. وهذه الأعراض تهدأ عند التوقف عن ابتلاع مصادره الغذائية التي تحتوي نسبة عالية منه.

في عام 1996، ذكر البرنامج الدولي للسلامة الكيميائية، وهي وكالة مرتبطة بمنظمة الصحة العالمية، أن "المخاطر الصحيةالناجمة عن نقص استهلاك النحاس أكثر خطورة من تناول كمية كبيرة من النحاس". تم تأكيد هذا الاستنتاج في استطلاعات عدة وباستخدام طرق مختلفة للتعرض للنحاس.[53][60]

الشرح أدناه هو لحالات نقص النحاس غير الوراثي وزيادته.

نقص النحاس

هناك تقارير متضاربة حول مدى حدوث النقص في الولايات المتحدة. وتشير مراجعة واحدة إلى أن 25٪ تقريبًا من المراهقين والبالغين والأشخاص فوق 65 عامًا لا يحصلون على المخصص اليومي المحبذ للنحاس.[7] ويقول مصدر آخر أقل شيوعًا: قرر المسح الفيدرالي لاستهلاك الغذاء أنه بالنسبة للنساء والرجال فوق سن التاسعة عشر، بلغ متوسط ​​الاستهلاك للنحاس من الأطعمة والمشروبات 1.11 و 1.54 ملغم / يوم، على التوالي. بالنسبة للنساء، استهلك 10٪ منهن أقل من متوسط ​​الاحتياجات المقدرة، وللرجال أقل من 3٪.[61]

ظهر نقص النحاس المكتسب مؤخرًا في اعتلال النخاع الشوكي التنكسي عند البالغين[62] وفي اضطرابات الدم الشديدة بما في ذلك متلازمة خلل التنسج النقوي.[8][63][64] لحسن الحظ، يمكن التأكد من نقص النحاس من خلال وجود تراكيز منخفضة من النحاس في مصل الدم ومن السيرولوبلازمين في الدم.

ومن الحالات الأخرى المرتبطة بنقص النحاس: هشاشة العظام ، والفصال العظمي، والتهاب المفاصل الروماتويدي، وأمراض القلب والأوعية الدموية، وسرطان القولون، والحالات المزمنة التي تشمل العظم والنسيج الضام والقلب والأوعية الدموية. والجهاز العصبي وجهاز المناعة.[7][65][66][67][68] يغير نقص النحاس دور المكونات الخلوية الأخرى المشاركة في نشاط مضادات الأكسدة، مثل الحديد والسيلينيوم والغلوتاثيون، وبالتالي يلعب دورًا مهمًا في الأمراض التي يرتفع فيها الإجهاد التأكسدي. يعتقد أن نقص النحاس الخفيف أكثر انتشارًا مما كان يعتقد سابقًا، ويمكن أن يضعف صحة الإنسان بطرق خفية.[57][69][70][3][9][66]

تشمل مجموعات الأفراد المعرضة لنقص النحاس الأشخاص الذين يعانون من عيوب مرض مينكيس الوراثية، والرضع منخفضي وزن الولادة، والرضع الذين يرضعون حليب البقر بدلا من حليب الثدي أو الحليب الصناعي المُدعم، والأمهات الحوامل والمرضعات، والمرضى الذين يتلقون التغذية بالحقن، والأفراد الذين يعانون من "متلازمة سوء الامتصاص"(ضعف امتصاص الغذاء)، ومرضى السكري، والأفراد الذين يعانون من الأمراض المزمنة التي تؤدي إلى انخفاض استهلاك الغذاء، مثل الكحوليين، والأشخاص الذين يعانون من اضطرابات الأكل. قد يكون كبار السن والرياضيون أكثر عرضة لنقص النحاس بسبب احتياجاتهم الخاصة التي تزيد من المتطلبات اليومية.[31] قد يقل مدخول النحاس عند النباتيين بسبب استهلاك الأطعمة النباتية التي ينخفض فيها النحاس.[28][71][72] يزيد خطر حدوث وزن الولادة المنخفض وضعف العضلات ، والمشاكل العصبية في الأجنة والرضع الذين تعاني أمهاتهم من نقص النحاس، . قد يؤدي نقص النحاس في هذه المجموعات إلى حدوث فقر دم، أو تشوهات في العظام، أو ضعف النمو، أو زيادة الوزن، أو عدوى متكررة (نزلات البرد، أو الأنفلونزا، أو الالتهاب الرئوي)، أو ضعف التنسيق الحركي، أو انخفاض الطاقة.وسم الفتح <ref> غير صحيح أو له اسم سييء.

فرط النحاس

فرط النحاس هو موضوع لكثير من البحوث الحالية. لقد برزت من تلك الدراسات العديد من الفروقات التي تفيد بأن عوامل حدوث فرط النحاس تختلف بين الأفراد الطبيعيين وأولئك الذين لديهم قابلية متزايدة للآثار الضائرة والذين يعانون من أمراض وراثية نادرة.[9][57] وقد أدى ذلك إلى تصريحات من منظمات صحية يمكن أن تكون مربكة للغير مطلعين. على سبيل المثال، وفقًا لتقرير معهد الطب الأمريكي،[48] فإن نسبة كبيرة من السكان يتناولون النحاس بكمية أقل من الموصى بها. من ناحية أخرى، خلص المجلس القومي للبحوث في الولايات المتحدة[73] في تقريره "النحاس في مياه الشرب" إلى أن هناك مخاوف من سُمية النحاس في المجموعات السكانية الحساسة، وأوصى بإجراء بحث إضافي لتحديد وتمييز المجموعات الحساسة للنحاس.

زيادة تناول النحاس يسبب اضطراب في المعدة، وغثيان، وإسهال ويمكن أن يؤدي إلى إصابة الأنسجة والمرض.

قد تكون قدرة النحاس على الأكسدة مسؤولة عن بعض سُميتها في حالات الافراط في تناوله. عند وجود تركيز عالي من النحاس، من المعروف أنه ينتج تلفًا تأكسديًا للأنظمة البيولوجية، بما في ذلك فوق أكسدة الليبيدات أو الجزيئات الضخمة الأخرى.[74]

في حين أن سبب وآلية تطور مرض الزهايمر غير مفهومة جيدًا، تشير الأبحاث إلى أنه، ومن بين العديد من الملاحظات الرئيسية الأخرى، يتراكم الحديد،[75][76] والألمنيوم،[77] والنحاس[78][79] في أدمغة مرضى الزهايمر. ومع ذلك، لم يعرف بعد ما إذا كان هذا التراكم هو سبب أو نتيجة للمرض.

ظلت الأبحاث مستمرة على مدى العقدين الماضيين لتحديد ما إذا كان النحاس مسبباً أو عاملاً وقائياً لمرض الزهايمر. على سبيل المثال، كعامل مسبب محتمل أو أحد أشكال اضطراب استتباب المعادن، تشير الدراسات إلى أن النحاس قد يلعب دورًا في زيادة نمو تجمعات البروتين في أدمغة مرضى الزهايمر،[80] ربما عن طريق إتلاف الجزيء الذي يزيل التراكم السام للأميلويد بيتا في الدماغ.[81] هناك علاقة بين النظام الغذائي الغني بالنحاس والحديد والدهون المشبعة من ناحية ومرض الزهايمر من ناحية أخرى.[82] من ناحية أخرى، تظهر الدراسات أيضًا الأدوار المفيدة المحتملة للنحاس في كونه علاجًا بدلاً من التسبب بمرض الزهايمر.[83] على سبيل المثال، ظهر أن النحاس يعمل على 1) تعزيز المعالجة الغير نشوانية للبروتين السلف للبيتا أميلويد (APP)، وبالتالي خفض إنتاج بيتا أميلويد (Aβ) في أنظمة زرع الخلاياإغلاق </ref> مفقود لوسم <ref></ref> 2) زيادة عمر وتقليل إنتاج الأميلويد القابل للذوبان في الفئران المعدلة وراثيًا، و 3) انخفاض مستوى البيتا أميلويد في السائل الدماغي الشوكي في مرضى الزهايمر.[84]

وعلاوةً على ذلك، تم استبعاد استخدام النحاس كعلاج طويل الأمد (تناول 8 ملغ من النحاس (Cu-(II)-orotate-dihydrate) عن طريق الفم) كعامل خطر لمرض الزهايمر في تجربة سريرية مشهورة على البشر[85] وقد ثبت وجود دور مفيد للنحاس في مرض الزهايمر من خلال مستويات السائل الدماغي الشوكي من Aβ42، وهو الببتيد السام والعلامة الحيوية للمرض.[86] هناك حاجة إلى مزيد من البحوث لفهم اضطرابات استتباب المعادن في مرضى الزهايمر وكيفية معالجة هذه الاضطرابات. وبما أن هذه التجربة استخدمت Cu- (II) -orotate-dihydrate، فإنه لا تشير إلى تأثير أكسيد النحاس الموجود في المكملات.[87]



مراجع

  1. ^ أ ب Scheiber، Ivo؛ Dringen، Ralf؛ Mercer، Julian F. B. (2013). "Copper: Effects of Deficiency and Overload". في Sigel، Astrid؛ Sigel، Helmut؛ Sigel، Roland K.O. (المحررون). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. Springer. ج. 13. ص. 359–87. DOI:10.1007/978-94-007-7500-8_11. ISBN:978-94-007-7500-8. {{استشهاد بكتاب}}: الوسيط غير المعروف |chapterurl= تم تجاهله يقترح استخدام |مسار الفصل= (مساعدة) وروابط خارجية في |chapterurl= (مساعدة)
  2. ^ Hart، E. B.؛ Steenbock، H.؛ Waddell، J. (1928). "Iron nutrition. VII: Copper is a supplement to iron for hemoglobin building in the rat". The Journal of Biological Chemistry. ج. 77: 797–833.
  3. ^ أ ب ت ث ج Ralph, A., and McArdle, H. J. 2001. Copper metabolism and requirements in the pregnant mother, her fetus, and children. New York: International Copper Association
  4. ^ George Obikoya, http://vitamins-nutrition.org/vitamins/copper.html
  5. ^ http://copperinfo.com/health/pregnancy.html.
  6. ^ Vest، Katherine E.؛ Hashemi، Hayaa F.؛ Cobine، Paul A. (2013). "The Copper Metallome in Eukaryotic Cells". في Banci، Lucia (المحرر). Metallomics and the Cell. Metal Ions in Life Sciences. Springer. ج. 12. DOI:10.1007/978-94-007-5561-10_12. ISBN:978-94-007-5560-4.
  7. ^ أ ب ت ث ج Stern، Bonnie Ransom؛ Solioz، Marc؛ Krewski، Daniel؛ Aggett، Peter؛ Aw، Tar-Ching؛ Baker، Scott؛ Crump، Kenny؛ Dourson، Michael؛ Haber، Lynne؛ Hertzberg، Rick؛ Keen، Carl؛ Meek، Bette؛ Rudenko، Larisa؛ Schoeny، Rita؛ Slob، Wout؛ Starr، Tom (2007). "Copper and Human Health: Biochemistry, Genetics, and Strategies for Modeling Dose-response Relationships". Journal of Toxicology and Environmental Health, Part B. ج. 10 ع. 3: 157–222. DOI:10.1080/10937400600755911. PMID:17454552.
  8. ^ أ ب ت ث Stern، Bonnie Ransom (2010). "Essentiality and Toxicity in Copper Health Risk Assessment: Overview, Update and Regulatory Considerations". Journal of Toxicology and Environmental Health, Part A. ج. 73 ع. 2: 114–27. DOI:10.1080/15287390903337100. PMID:20077283.
  9. ^ أ ب ت International Programme on Chemical Safety. 1998. Environmental Health Criteria No. 200: Copper. Geneva: World Health Organization
  10. ^ أ ب Camakaris، J.؛ Voskoboinik، I.؛ Mercer، J.F. (1999). "Molecular Mechanisms of Copper Homeostasis". Biochemical and Biophysical Research Communications. ج. 261 ع. 2: 225–32. DOI:10.1006/bbrc.1999.1073. PMID:10425169.
  11. ^ أ ب ت Harris، Edward D. (2000). "Cellular copper transport and metabolism". Annual Review of Nutrition. ج. 20 ع. 1: 291–310. DOI:10.1146/annurev.nutr.20.1.291. PMID:10940336.
  12. ^ أ ب Harris، Edward D. (2001). "Copper Homeostasis: The Role of Cellular Transporters". Nutrition Reviews. ج. 59 ع. 9: 281–5. DOI:10.1111/j.1753-4887.2001.tb07017.x. PMID:11570430.
  13. ^ Bertinato، Jesse؛ L'Abbé، Mary R. (2004). "Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload". The Journal of Nutritional Biochemistry. ج. 15 ع. 6: 316–22. DOI:10.1016/j.jnutbio.2004.02.004. PMID:15157936.
  14. ^ Lewis, Al, 2009, The Hygienic Benefits of Antimicrobial Copper Alloy Surfaces In Healthcare Settings, a compilation of information and data for the International Copper Association Inc., © 2009, available from International Copper Association Inc., A1335-XX/09
  15. ^ Stern, B.R. et. al, 2007, Copper And Human Health: Biochemistry, Genetics, And Strategies for Modeling Dose-Response Relationships, Journal of Toxicology and Environmental Health, Part B, 10:157–222
  16. ^ van Campen، Darrell R.؛ Mitchell، Elizabeth A. (1965). "Absorption of Cu64, Zn65, Mo99, and Fe59 from ligated segments of the rat gastrointestinal tract". The Journal of Nutrition. ج. 86 ع. 2: 120–4. PMID:14302118.
  17. ^ Crampton، R. F.؛ Matthews، D. M.؛ Poisner، Roselle (1965). "Observations on the mechanism of absorption of copper by the small intestine". The Journal of Physiology. ج. 178 ع. 1: 111–26. DOI:10.1113/jphysiol.1965.sp007618. PMC:1357280. PMID:14298103.
  18. ^ Bearn، AG؛ Kunkel، HG (1955). "Metabolic studies in Wilson's disease using Cu64". The Journal of Laboratory and Clinical Medicine. ج. 45 ع. 4: 623–31. PMID:14368026.
  19. ^ Strickland، GT؛ Beckner، WM؛ Leu، ML (1972). "Absorption of copper in homozygotes and heterozygotes for Wilson's disease and controls: isotope tracer studies with 67 Cu and 64 Cu". Clinical Science. ج. 43 ع. 5: 617–25. DOI:10.1042/cs0430617. PMID:5083937.
  20. ^ Strickland، GT؛ Beckner، WM؛ Leu، ML؛ O'Reilly، S (1972). "Turnover studies of copper in homozygotes and heterozygotes for Wilson's disease and controls: isotope tracer studies with 67 Cu". Clinical Science. ج. 43 ع. 5: 605–15. DOI:10.1042/cs0430605. PMID:5083936.
  21. ^ Turnlund، Judith R؛ Keyes، William R؛ Anderson، Helen L؛ Acord، Lorra L (1989). "Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu1–4". The American Journal of Clinical Nutrition. ج. 49 ع. 5: 870–8. PMID:2718922.
  22. ^ Turnlund، Judith R. (1998). "Human whole-body copper metabolism". The American Journal of Clinical Nutrition. ج. 67 ع. 5 Suppl: 960S–964S. PMID:9587136.
  23. ^ Ehrenkranz، Richard A.؛ Gettner، Patricia A.؛ Nelli، Catherine M. (1989). "Nutrient Balance Studies in Premature Infants Fed Premature Formula or Fortified Preterm Human Milk". Journal of Pediatric Gastroenterology and Nutrition. ج. 8 ع. 1: 58–67. DOI:10.1097/00005176-198901000-00012. PMID:2499673.
  24. ^ World Health Organization. 1998, Guidelines for drinking-water quality. Addendum to Volume 2, 2nd ed. Geneva
  25. ^ Turnlund، Judith R؛ Swanson، Christine A؛ King، Janet C (1983). "Copper Absorption and Retention in Pregnant Women Fed Diets Based on Animal and Plant Proteins". The Journal of Nutrition. ج. 113 ع. 11: 2346–52. PMID:6631551.
  26. ^ Cousins، Robert J (1985). "Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin". Physiological Reviews. ج. 65 ع. 2: 238–309. PMID:3885271.
  27. ^ Oestreicher، Paul؛ Cousins، Robert J (1985). "Copper and Zinc Absorption in the Rat: Mechanism of Mutual Antagonism". The Journal of Nutrition. ج. 115 ع. 2: 159–66. PMID:3968585.
  28. ^ أ ب Lee، D؛ Schroeder، J؛ Gordon، DT (يناير 1984). "The effect of phytic acid on copper bioavailability". Federation Proceedings. Federation of American Societies for Experimental Biology. ج. 43 ع. 3: 616–20.
  29. ^ Greger، JL؛ Mulvaney، Jude (1985). "Absorption and Tissue Distribution of Zinc, Iron and Copper by Rats Fed Diets Containing Lactalbumin, Soy and Supplemental Sulfur-Containing Amino Acids". The Journal of Nutrition. ج. 115 ع. 2: 200–10. PMID:4038512.
  30. ^ Werman، Moshe J.؛ Bhathena، Sam J. (1995). "Fructose metabolizing enzymes in the rat liver and metabolic parameters: Interactions between dietary copper, type of carbohydrates, and gender". The Journal of Nutritional Biochemistry. ج. 6 ع. 7: 373–379. DOI:10.1016/0955-2863(95)80005-W. PMID:12049998.
  31. ^ أ ب Wapnir، Raul A (1998). "Copper absorption and bioavailability". The American Journal of Clinical Nutrition. ج. 67 ع. 5 Suppl: 1054S–1060S. PMID:9587151.
  32. ^ Aa sa , R., Ma lm s t r om , B. G., Sa l tm a n , P., and Va n n g a r d , T.: The specific binding of iron (III) and copper (II) to transferrin and conalbumin. Biochim. Biophys. Acta 75:203-222,1963.
  33. ^ Wil l ia m s , D. M., Ba r b u t o , A. J., At k in , C. L., a n d L e e , G. R.: E v id e n c e for an iro n c a r r ie r s u b s ta n c e in c o p p e r -d e fic ie n t m ito c h o n d ria . T h e R e d C e lls . N ew York, Alan R. L is s, In c ., 1978, p p . 539-545.
  34. ^ أ ب "Archived copy". مؤرشف من الأصل في 2010-10-15. اطلع عليه بتاريخ 2010-10-20. {{استشهاد ويب}}: الوسيط غير المعروف |deadurl= تم تجاهله (مساعدة)صيانة الاستشهاد: الأرشيف كعنوان (link) نسخة محفوظة October 15, 2010, على موقع واي باك مشين.
  35. ^ Lutsenko، Svetlana؛ Kaplan، Jack H. (1995). "Organization of P-type ATPases: significance of structural diversity". Biochemistry. ج. 34 ع. 48: 15607–13. DOI:10.1021/bi00048a001. PMID:7495787.
  36. ^ Solioz، Marc؛ Vulpe، Christopher (1996). "CPx-type ATPases: a class of P-type ATPases that pump heavy metals". Trends in Biochemical Sciences. ج. 21 ع. 7: 237–41. DOI:10.1016/S0968-0004(96)20016-7. PMID:8755241.
  37. ^ Lee، J.؛ Petris، M. J.؛ Thiele، D. J. (2002). "Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter: Identification of a Ctr1-independent copper transport system". The Journal of Biological Chemistry. ج. 277 ع. 43: 40253–9. DOI:10.1074/jbc.M208002200. PMID:12177073.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: دوي مجاني غير معلم (link)
  38. ^ Marceau، N؛ Aspin، N؛ Sass-Kortsak، A (1970). "Absorption of copper 64 from gastrointestinal tract of the rat". The American Journal of Physiology. ج. 218 ع. 2: 377–83. PMID:5412451.
  39. ^ Bligh، S.W.Annie؛ Boyle، Helena A.؛ Mcewen، Andrew B.؛ Sadler، Peter J.؛ Woodham، Robert H. (1992). "1H NMR studies of reactions of copper complexes with human blood plasma and urine". Biochemical Pharmacology. ج. 43 ع. 2: 137–45. DOI:10.1016/0006-2952(92)90270-S. PMID:1739401.
  40. ^ Linder، Maria C؛ Hazegh-Azam، Maryam (1996). "Copper biochemistry and molecular biology". The American Journal of Clinical Nutrition. ج. 63 ع. 5: 797S–811S. PMID:8615367.
  41. ^ Linder، Maria C؛ Wooten، Lisa؛ Cerveza، Philip؛ Cotton، Steven؛ Shulze، Roman؛ Lomeli، Norma (1998). "Copper transport". The American Journal of Clinical Nutrition. ج. 67 ع. 5 Suppl: 965S–971S. PMID:9587137.
  42. ^ Cousins، RJ (1985). "Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin". Physiological Reviews. ج. 65 ع. 2: 238–309. PMID:3885271.
  43. ^ Winge، Dennis R.؛ Mehra، Rajesh K. (1990). "Host Defenses against Copper Toxicity". International Review of Experimental Pathology. ج. 31: 47–83. DOI:10.1016/b978-0-12-364931-7.50007-0. PMID:2292474.
  44. ^ Turnlund، Judith R (1998). "Human whole-body copper metabolism". The American Journal of Clinical Nutrition. ج. 67 ع. 5 Suppl: 960S–964S. PMID:9587136.
  45. ^ Aggett، PJ (1999). "An overview of the metabolism of copper". European Journal of Medical Research. ج. 4 ع. 6: 214–6. PMID:10383873.
  46. ^ WHO/FAO/IAEA, (1996), Trace Elements in Human Nutrition and Health. World Health Organization, Geneva)
  47. ^ أ ب مدلاين بلس Copper in diet
  48. ^ أ ب ت ث ج "Copper". Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press. 2001. ص. 224–57. ISBN:978-0-309-07279-3. {{استشهاد بكتاب}}: الوسيط غير المعروف |chapterurl= تم تجاهله يقترح استخدام |مسار الفصل= (مساعدة) وروابط خارجية في |chapterurl= (مساعدة)
  49. ^ Tolerable Upper Intake Levels For Vitamins And Minerals (PDF)، European Food Safety Authority، 2006
  50. ^ Peana, Massimiliano & Medici, Serenella & Zoroddu, Maria. (2018)."Biomedical Applications of Metals" ed. Mahendra Rai, Avinash P. Ingle, Serenella Medici.pp98.
  51. ^ "Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies" (PDF). 2017.
  52. ^ Georgopoulos، PG؛ Roy، A؛ Yonone-Lioy، MJ؛ Opiekun، RE؛ Lioy، PJ (2001). "Environmental copper: its dynamics and human exposure issues". Journal of Toxicology and Environmental Health. Part B, Critical Reviews. ج. 4 ع. 4: 341–94. DOI:10.1080/109374001753146207. PMID:11695043.
  53. ^ أ ب Sadhra، Steven S.؛ Wheatley، Andrew D.؛ Cross، Hilary J. (2007). "Dietary exposure to copper in the European Union and its assessment for EU regulatory risk assessment". Science of The Total Environment. ج. 374 ع. 2–3: 223–34. DOI:10.1016/j.scitotenv.2006.12.041. PMID:17270248.
  54. ^ World Health Organization. 1998. Copper. Environmental Health Criteria 200. Geneva: IPCS, WHO
  55. ^ Abstract from ‘Copper Alloys for Human Infectious Disease Control’ by H T Michels, S A Wilks, J O Noyce and C W Keevil.
  56. ^ Allen V. Barker‏، David J. Pilbeam‏. (2013).Handbook of Plant Nutrition.pp321-322
  57. ^ أ ب ت Stern، Bonnie Ransom (2007). "U-Shaped Dose-Response Curve for Risk Assessment of Essential Trace Elements: Copper as a Case Study". في Robson، Mark G.؛ Toscano، William A. (المحررون). Risk Assessment for Environmental Health. San Francisco: John Wiley and Sons. ص. 555–62. ISBN:978-1-118-42406-3.
  58. ^ K. G. Daniel, P. Gupta, R. H. Harbach, W. C. Guida, and Q. P. Dou, “Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells,” Biochemical Pharmacology, vol. 67, no. 6, pp. 1139–1151, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. ^ http://copperinfo.com/health/facts.html
  60. ^ Georgopoulos، Panos G؛ Wang، Sheng Wei؛ Georgopoulos، Ioannis G؛ Yonone-Lioy، Mary Jean؛ Lioy، Paul J (2006). "Assessment of human exposure to copper: A case study using the NHEXAS database". Journal of Exposure Analysis and Environmental Epidemiology. ج. 16 ع. 5: 397–409. DOI:10.1038/sj.jea.7500462. PMID:16249795.
  61. ^ What We Eat In America, NHANES 2001–2002. Table A14: Copper.
  62. ^ Spinazzi، Marco؛ De Lazzari، Franca؛ Tavolato، Bruno؛ Angelini، Corrado؛ Manara، Renzo؛ Armani، Mario (2007). "Myelo-optico-neuropathy in copper deficiency occurring after partial gastrectomy". Journal of Neurology. ج. 254 ع. 8: 1012–7. DOI:10.1007/s00415-006-0479-2. PMID:17415508.
  63. ^ Goodman، B P؛ Bosch، E P؛ Ross، M A؛ Hoffman-Snyder، C؛ Dodick، D D؛ Smith، B E (2009). "Clinical and electrodiagnostic findings in copper deficiency myeloneuropathy". Journal of Neurology, Neurosurgery & Psychiatry. ج. 80 ع. 5: 524–7. DOI:10.1136/jnnp.2008.144683. PMID:18495738.
  64. ^ Kumar، Neeraj؛ Elliott، Michelle A.؛ Hoyer، James D.؛ Harper، Charles M.؛ Ahlskog، J. Eric؛ Phyliky، Robert L. (2005). "'Myelodysplasia,' Myeloneuropathy, and Copper Deficiency". Mayo Clinic Proceedings. ج. 80 ع. 7: 943–6. DOI:10.4065/80.7.943. PMID:16007901.
  65. ^ Cordano، A (1978). "Copper deficiency in clinical medicine". في Hambidge، K. M.؛ Nichols، B. L. (المحررون). Zinc and Copper in Clinical Medicine. New York: SP Med. Sci. Books. ص. 119–26.
  66. ^ أ ب Danks، D M (1988). "Copper Deficiency in Humans". Annual Review of Nutrition. ج. 8: 235–57. DOI:10.1146/annurev.nu.08.070188.001315. PMID:3060166.
  67. ^ Klevay، LM (1980). "The influence of copper and zinc on the occurrence of ischemic heart disease". Journal of Environmental Pathology and Toxicology. ج. 4 ع. 2–3: 281–7. PMID:7007558.
  68. ^ Strain، J. J. (1994). "Newer aspects of micronutrients in chronic disease: copper". Proceedings of the Nutrition Society. ج. 53 ع. 3: 583–98. DOI:10.1079/PNS19940067. PMID:7886057.
  69. ^ Salem، Harry؛ Green، Sidney؛ Bigelow، Sanford؛ Borzelleca، Joseph؛ Baskin، Steven (1992). "Preface". Critical Reviews in Food Science and Nutrition. ج. 32 ع. 1: 1–31. DOI:10.1080/10408399209527583. PMID:1290583.
  70. ^ Kaegi، Jeremias H. R.؛ Schaeffer، Andreas (1988). "Biochemistry of metallothionein". Biochemistry. ج. 27 ع. 23: 8509–15. DOI:10.1021/bi00423a001. PMID:3064814.
  71. ^ Lönnerdal، Bo (1996). "Bioavailability of copper". The American Journal of Clinical Nutrition. ج. 63 ع. 5: 821S–9S. PMID:8615369.
  72. ^ Kelsay، JL (1987). "Effects of fiber, phytic acid, and oxalic acid in the diet on mineral bioavailability". The American Journal of Gastroenterology. ج. 82 ع. 10: 983–6. PMID:2821800.
  73. ^ U.S. National Research Council. 2000. Copper in drinking water. Committee on Copper in Drinking Water, Board on Environmental Studies and Toxicology, Commission of Life Sciences. Washington, DC: National Academy Press[بحاجة لرقم الصفحة]
  74. ^ Bremner، Ian (1998). "Manifestations of copper excess". The American Journal of Clinical Nutrition. ج. 67 ع. 5 Suppl: 1069S–1073S. PMID:9587154.
  75. ^ Bartzokis، George؛ Sultzer، David؛ Cummings، Jeffrey؛ Holt، Lori E.؛ Hance، Darwood B.؛ Henderson، Victor W.؛ Mintz، Jim (2000). "In Vivo Evaluation of Brain Iron in Alzheimer Disease Using Magnetic Resonance Imaging". Archives of General Psychiatry. ج. 57 ع. 1: 47–53. DOI:10.1001/archpsyc.57.1.47. PMID:10632232. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |laydate= تم تجاهله (مساعدةالوسيط غير المعروف |laysource= تم تجاهله (مساعدة)، والوسيط غير المعروف |laysummary= تم تجاهله (مساعدة)
  76. ^ Duce، James A.؛ Tsatsanis، Andrew؛ Cater، Michael A.؛ James، Simon A.؛ Robb، Elysia؛ Wikhe، Krutika؛ Leong، Su Ling؛ Perez، Keyla؛ Johanssen، Timothy؛ Greenough، Mark A.؛ Cho، Hyun-Hee؛ Galatis، Denise؛ Moir، Robert D.؛ Masters، Colin L.؛ McLean، Catriona؛ Tanzi، Rudolph E.؛ Cappai، Roberto؛ Barnham، Kevin J.؛ Ciccotosto، Giuseppe D.؛ Rogers، Jack T.؛ Bush، Ashley I. (2010). "Iron-Export Ferroxidase Activity of β-Amyloid Precursor Protein Is Inhibited by Zinc in Alzheimer's Disease". Cell. ج. 142 ع. 6: 857–67. DOI:10.1016/j.cell.2010.08.014. PMC:2943017. PMID:20817278. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |laydate= تم تجاهله (مساعدةالوسيط غير المعروف |laysource= تم تجاهله (مساعدة)، والوسيط غير المعروف |laysummary= تم تجاهله (مساعدة)
  77. ^ "Am I at risk of developing dementia?". Alzheimer's Society.
  78. ^ Brewer، George J. (2010). "Copper toxicity in the general population". Clinical Neurophysiology. ج. 121 ع. 4: 459–60. DOI:10.1016/j.clinph.2009.12.015. PMID:20071223.
  79. ^ Llanos، Roxana M.؛ Mercer، Julian F.B. (2002). "The Molecular Basis of Copper Homeostasis Copper-Related Disorders". DNA and Cell Biology. ج. 21 ع. 4: 259–70. DOI:10.1089/104454902753759681. PMID:12042066.
  80. ^ Copper link to Alzheimer's disease, New Scientist, August 12, 2003, https://www.newscientist.com/article/dn4045-copper-link-to-alzheimers-disease.html
  81. ^ Singh، Itender؛ Sagare، Abhay P.؛ Coma، Mireia؛ Perlmutter، David؛ Gelein، Robert؛ Bell، Robert D.؛ Deane، Richard J.؛ Zhong، Elaine؛ Parisi، Margaret؛ Ciszewski، Joseph؛ Kasper، R. Tristan؛ Deane، Rashid (2013). "Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance". Proceedings of the National Academy of Sciences. ج. 110 ع. 36: 14771–6. Bibcode:2013PNAS..11014771S. DOI:10.1073/pnas.1302212110. PMC:3767519. PMID:23959870. {{استشهاد بدورية محكمة}}: الوسيط غير المعروف |laydate= تم تجاهله (مساعدةالوسيط غير المعروف |laysource= تم تجاهله (مساعدة)، والوسيط غير المعروف |laysummary= تم تجاهله (مساعدة)
  82. ^ Loef، Martin؛ Walach، Harald (1 يناير 2012). "Copper and iron in Alzheimer's disease: a systematic review and its dietary implications". The British Journal of Nutrition. ج. 107 ع. 1: 7–19. DOI:10.1017/S000711451100376X. ISSN:1475-2662. PMID:21767446.
  83. ^ Protective role for copper in Alzheimer's disease, Science News, October 13, 2009, https://www.sciencedaily.com/releases/2009/10/091008133457.htm
  84. ^ Kaden، Daniela؛ Bush، Ashley I.؛ Danzeisen، Ruth؛ Bayer، Thomas A.؛ Multhaup، Gerd (2011). "Disturbed Copper Bioavailability in Alzheimer's Disease". International Journal of Alzheimer's Disease. ج. 2011: 345614. DOI:10.4061/2011/345614. PMC:3227474. PMID:22145082.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: دوي مجاني غير معلم (link)
  85. ^ Kessler، Holger؛ Bayer، Thomas A.؛ Bach، Daniela؛ Schneider-Axmann، Thomas؛ Supprian، Tillmann؛ Herrmann، Wolfgang؛ Haber، Manfred؛ Multhaup، Gerd؛ Falkai، Peter؛ Pajonk، Frank-Gerald (2008). "Intake of copper has no effect on cognition in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial". Journal of Neural Transmission. ج. 115 ع. 8: 1181–7. DOI:10.1007/s00702-008-0080-1. PMC:2516533. PMID:18587525.
  86. ^ Kessler، Holger؛ Pajonk، Frank-Gerald؛ Bach، Daniela؛ Schneider-Axmann، Thomas؛ Falkai، Peter؛ Herrmann، Wolfgang؛ Multhaup، Gerd؛ Wiltfang، Jens؛ Schäfer، Stephanie؛ Wirths، Oliver؛ Bayer، Thomas A. (2008). "Effect of copper intake on CSF parameters in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial". Journal of Neural Transmission. ج. 115 ع. 12: 1651–9. DOI:10.1007/s00702-008-0136-2. PMID:18972062.
  87. ^ Brewer، George J. (2012). "Copper toxicity in Alzheimer's disease: Cognitive loss from ingestion of inorganic copper". Journal of Trace Elements in Medicine and Biology. ج. 26 ع. 2–3: 89–92. DOI:10.1016/j.jtemb.2012.04.019. PMID:22673823.