يفتقر محتوى هذه المقالة إلى مصادر موثوقة

توزيع هندسي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
تعرَّف على طريقة التعامل مع هذه المسألة من أجل إزالة هذا القالب.يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوقة. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016)

التوزيع الهندسي Geometric distribution وهو جزء من التوزيع الاحتمالي المتعلق بتجارب بيرنولي Bernoulli-Experiment، ويستخدم التوزيع الهندسي النموذج التالي: "كم عدد المحاولات التي نحتاجها للحصول على النتيجة المطلوبة؟"

إن التوزيع الهندسي يستخدم من أجل التوزيع التكراري للبيانات الكمية المنفصلة الثنائية من أجل معرفة احتمال ظهور المشاهدة W بعد k محاولة في التجربة المنفذة في فضاء عينة S ذو المشاهدات المعلومة Ai ذات قيم الاحتمال الثابتة والمعلومة Pi

تعريف[عدل]

التوزيع الهندسي هو عدد التكرارات للتجربة للحصول على نجاح واحد فقط من تلك التجربة. فإذا كان المتغير X يشير إلى عدد مرات تكرار التجربة و P يشير إلى احتمال نجاح التجربة و q هو احتمال فشل التجربة وبالتالي فإن الدالة الاحتمالية لهذا التوزيع ستكون:

حيث أن ...,1,2,3=x

حيث أن , , لجميع قيم x

وهذا يؤكد أن (f(x دالة احتمالية وقد سميت بالتوزيع الهندسي لان احتمالات قيم X المختلفة تناظر حدود متوالية هندسية.

يستخدم هذا التوزيع إذا كان هناك محاولات أو تجارب وتمثل X عدد هذه المحاولات حتى الحصول على أول نجاح. علما بأن احتمال النجاح P واحتمال الفشل في أي محاولة q=1-p فمثلا في فحص الإنتاج ربما تكون X عدد السلع المفحوصة حتى الحصول على أول تالفة . وكذلك في تجربة القاء قطعة النقود فربما تكون X عدد مرات القاء قطعة النقود حتى الحصول على صورة وكذلك عدد الولادات التي تضعها سيدة قبل أن ترزق بذكر .

مثال[عدل]

ليكن لدينا نرد متجانس (1,2,3,4,5,6,) ما هو احتمال ظهور الرقم 6 بعد 7 محاولات لالقاء النرد؟

الحل:

الاحتمالات الصحيحة (ظهور رقم 6): P = 1/6

الاحتمالات الخاطئة (عدم ظهور رقم 6): q=1-P = 5/6

يكون ظهور الحدث المطلوب بعد 7 محاولات، أي في المحاولة الثامنة وبالتالي: n=8

بتعويض المعطيات

أي أنه من كل 100 محاولة لرمي النرد توجد 8 مرات فقط، سيظهر الرقم 1 في المرة الثامنة (وليس قبل الثامنة) في 4.651 مرة من أصل المحاولات المائة.

دالة التوزيع التراكمية[عدل]

حيث أن ...,x=1,2,3

المنوال[عدل]

نلاحظ أن

أي أن الحدود المتتالية متناقصة . وهذا يعني أن أعلى احتمال هو عند X=1 وعلى ذلك فإن المنوال هو X=1

متوسط التوزيع[عدل]

تباين التوزيع[عدل]

نعلم أن



تفاضل الطرفين بالنسبة إلى q نحصل على


وبذلك يكون التباين

دالة توليد العزوم[عدل]

و حيث أن

مثال:

احتمال إصابة هدف هو(0.4) ما احتمال إصابة هذا الهدف في المحاولة الرابعة.

الحل:

احتمال إصابة الهدف في المحاولة الرابعة معنى ذلك الفشل في الحاولات الثلاثة السابقة وعليه يكون الاحتمال :

مثال:

إذا كان احتمال ولادة ذكر في أي ولادة تمر بها سيده هو 1/3 أوجد

1- التوزيع الاحتمالي لعدد مرات الوضع قبل أن ترزق هذه السيده بذكر .

2- أوجد متوسط عدد مرات الوضع قبل أن ترزق بأول ذكر.

3- ما احتمال أن تضع ذكرا لأول مرة بعد ولادتين .

4- ما احنمال أن تضع ذكرا لأول مرة بعد ثلاث ولادات على الأكثر.

الحل :

احتمال ولادة ذكر p= 1/3

X عدد مرات الوضع قبل أن ترزق بأول ذكر

1- X تتبع توزيعا هندسيا بمعلمه P=1/3 وبذلك تكون دالته الاحتمالية هي

...,1,2,3=x

,.

2-متوسط عدد مرات الوضع قبل أن ترزق بأول ذكر هو μ حيث

3-احتمال أن تضع ذكرا لأول مرة بعد ولادتين هو (p(x=2 حيث

4-احتمال أن تضع ذكرا لأول مرة بعد ثلاث ولادات على الأكثر هو

المراجع[عدل]


  • الأستاذ الدكتور جلال مصطفى الصياد، نظرية الاحتمالات
  • المحاضرة ياسمينه أبو زيد الفقيه، مقدمة في نظرية الاحتمال

المصادر[عدل]