عددان أوليان توأم

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

العددان الأوليان p و q هما توأم إذا كان الفرق بينهما هو اثنان. يدعى هذا الزوج من الأعداد الأولية بالعددين الأوليين التوأم. أما حدسية العددين الأوليين التوأم فتنص على ما يلي :

هناك عدد غير منته من الأعداد الأولية التوأم.

هي واحدة من المسائل المشهورة غير المحلولة في نظرية الأعداد ويعتقد علماء الرياضيات أن هذه الحدسية صحيحة، ولكن ما زالت الأبحاث قائمة في العمل على برهانها.

والجدير بالملاحظة أن العدد الزوجي بينهما يقبل القسمة على العدد 6 دائما ما عدا العددان 3 و 5.

التاريخ[عدل]

كانت حدسية الأعداد الأولية التوأم (هل عددها منته أم غير منته) واحدة من أهم المعضلات المفتوحة في نظرية الأعداد لعدة سنوات. في عام 1849، وضع دي بوليناك حدسيته المعروفة بحدسية دي بوليناك والتي تنص على ما يلي:

من أجل أي عدد طبيعي k هناك عدد غير منته من أزواج الأعداد الأولية p وp′ حيث p - p′ = 2k. وفي حال k = 1 تتحول إلى حدسية العددين الأوليين التوأم.

مبرهنة برون[عدل]

في عام 1915، برهن فيغو برون أن مجموع مقلوبات الأعداد الأولية التوأم منته(أي أنه يؤول إلى عدد حقيقي ما ولا يؤول إلى ما لا نهاية له). كانت هاته النتيجة المشهورة و المسماة مبرهنة برون أول استعمال لغربال برون وكانت سبب بداية وتطور نظرية الغرابيل العصرية.

أكبر عددين أوليين توأم معروفين[عدل]

خصائص[عدل]

حدسية هاردي-ليتلوود الأولى[عدل]

حدسية بولينياك[عدل]

الأعداد الأولية المعزولة[عدل]

انظر أيضا[عدل]

مراجع[عدل]

وصلات خارجية[عدل]