عدد حقيقي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
رمز لمجموعة الأعداد الحقيقية

في الرياضيات، عدد حقيقي هو قيمة كمية ما تمثَّل عادة على مستقيم متصل. مجموعة الأعداد الحقيقية هي مجموعة أعداد تتكون من مجموعة الأعداد غير النسبية (R\Q) ومجموعة الأعداد الكسرية (Q). تشمل مجموعة الأعداد الكسرية مجموعة الأعداد الصحيحة (Z) و الكسور, وتشمل مجموعة الأعداد الصحيحة مجموعة الأعداد الطبيعية (N). وبذلك تكون:

مجموعة الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الصحيحة والأخيرة مجموعة جزئية من مجموعة الأعداد الكسرية والأخيرة مجموعة جزئية من مجموعة الأعداد الحقيقية.

مجموعة الأعداد الطبيعية تبدأ من الصفر إلى موجب ما لا نهاية بزيادة واحد صحيح في كل مرة، أما مجموعة الأعداد الصحيحة فتشتمل على الأعداد من سالب ما لا نهاية بالإضافة إلى الصفر بالإضافة إلى الأعداد الموجبة التي تحتويها مجموعة الأعداد الطبيعية بزيادة واحد صحيح كل مرة، أما الأعداد الكسرية فتتكون من كسور الأعداد الصحيحة في صورة بسط ومقام, أما الأعداد الحقيقية فتشمل المجموعات السابقة كلها بالإضافة إلى الأعداد التي لا يمكن كتابتها على شكل كسور مثل الπ (الباي) أي الأعداد اللا الكسرية.

يمكن تصور الأعداد الحقيقية بأنها أعداد غير متناهية على خط مستقيم. وتأخذ الأعداد الحقيقية اسمها من تضادها مع فكرة الأعداد التخيلية. كما يمكن لها أن تقوم بقياس الكميات المستمرة على اختلافها. يمكن التعبير عنها بالكسور العشرية التي تكون عادة سلسلة من الأرقام غير منتهية وغير دورية في حالة الأرقام غير الكسرية أو الدورية في حالة الأعداد الكسرية. نشأت فكرة الأعداد الحقيقية بسبب وجود أطوال لا يمكن التعبير عن قياسها باستعمال أعداد صحيحة أو أعداد كسرية.

في هذه المجموعة المعادلة الآتية: x^2 - 2 = 0 لها حل.

خصائص أساسية[عدل]

العدد الحقيقي قد يكون جذريا أو غير جذري وقد يكون جبريا أو متساميا وقد يكون موجبا أو سالبا أو مساويا للصفر. تستعمل الأعداد الحقيقية من أجل قياس الكميات المتصلة.

وبشكل رسمي، لمجموعة الأعداد الحقيقية خاصيتان أساسيتان اثنتان هما كونها حقلا مرتبا، وكونها مكتملة.

في الفيزياء[عدل]

في الحاسوب[عدل]

لا يمكن لحسابيات الحاسوب أن تعمل على كل الأعداد الحقيقية، بل تعمل على مجموعة جزئية فقط من الأعداد الحقيقية. يحدها في ذلك عدد البتات اللائي يستعملهن الحاسوب من أجل خزن ومعالجة الأعداد الحقيقية.

الرموز المستعملة[عدل]

التاريخ[عدل]

التعريف[عدل]

البناء انطلاقا من الأعداد الجذرية[عدل]

يمكن للأعداد الحقيقية أن تنشأ تكميلا للأعداد الجذرية حيث تؤول كل متتالية معرفة بسلسلة من الأعداد العشرية أو الثنائية كما هو الحال بالنسبة ل {3, 3.1, 3.14, 3.141, 3.1415,...}، إلى عدد حقيقي ما.

للمزيد من المعلومات ومن أجل التطرق إلى إنشاءات أخرى للأعداد الحقيقية، انظر إلى إنشاء الأعداد الحقيقية.

خصائص[عدل]

الاكتمال[عدل]

من أسباب استعمال الأعداد الحقيقية كونها تحتوي على جميع النهايات.

كل متتالية لكوشي من الأعداد الحقيقية، هي متتالية متقاربة.

تعميم و امتداد[عدل]

الأعداد الحقيقية في نظرية المجموعات[عدل]

انظر إلى فضاء بير (نظرية المجموعات)

الأعداد الحقيقية والمنطق[عدل]

انظر أيضا[عدل]

مراجع[عدل]

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg هذه بذرة مقالة عن الرياضيات تحتاج للنمو والتحسين، فساهم في إثرائها بالمشاركة في تحريرها.

.