قياس (رياضيات)

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

يعتبر القياس في الرياضيات دالة تقوم بربط عدد ما يدعى الحجم أو السعة أو الاحتمال بمجموعة جزئية من مجموعة كبرى. وهذا المفهوم للقياس الرياضي يعتبر أساسيا في التحليل الرياضي ونظرية الاحتمالات. تتطور هذا المفهوم من الحاجة لإجراء مكاملة على مجموعات اعتبارية غير معينة بدلا من إجراء التكامل بالطريقة التقليدية.

نظرية القياس تشكل أحد أجزاء التحليل الحقيقي الذي يبحث في جبر-σ، القياسات، دوال القياس والتكاملات. وتعتبر ذات أهمية خاصة في نظرية الاحتمالات والإحصاء.

التعريف الرسمي[عدل]

رسمياً, القياس μ هو عبارة عن دالة معرفة على جبر-σ يدعى (Σ) على المجموعة X بقيم ضمن المجال [0, ∞] بحيث يتم تحقيق الخواص التالية :

 \mu(\varnothing) = 0;
\mu\left(\bigcup_{i=1}^\infty E_i\right) = \sum_{i=1}^\infty \mu(E_i).

The الثلاثية (X,Σ,μ) تدعى عندها فضاء القياس measure space، وعناصر Σ تدعى مجموعات مقيسة أو قابلة للقياس measurable sets.

Nuvola apps edu mathematics-ar.svg هذه بذرة مقالة عن الرياضيات تحتاج للنمو والتحسين. ساهم في إثرائها بالمشاركة في تحريرها.