تحليل حقيقي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

التحليل الحقيقي أحد فروع الرياضيات التي تتعامل مع مجموعة الأعداد الحقيقية والدوال المعرفة عليها. يمكن النظر إلى التحليل الحقيقي على أنه نسخة مدققة من علم الحسبان (التفاضل والتكامل) يدرس مصطلحات مثل المتتاليات ونهاياتها، الاستمرار في الدوال، الاشتقاق الرياضي، التكاملات الرياضية وأخيرا متتاليات الدوال. بالتالي يقدم التحليل الحقيقي نظرية متقنة حول فكرة الدوال العددية 'numerical function'، كما يتضمن نظريات حديثة حول الدوال المعممة.

الدالة الحقيقية هي دالة فيها كل مجال والمجال المقابل مجموعة جزئية من مجموعة الأعداد الحقيقية.

عادة ما يبدأ تقديم التحليل الحقيقي في النصوص الرياضية المتقدمة ببراهين بسيطة في نظرية المجموعات المبسطة، ثم تعريف واضح لمصطلح الدالة الرياضية، ثم مقدمة للأعداد الطبيعية وتقنيات البرهان الهامة للاستقراء الرياضي.

من ثم تعمد النصوص المرجعية إلى تقديم الأعداد الحقيقية بشكل بدهي (أكسيوماتي) أو يتم تشكيلها من متتاليات كوشي وحد ديدكايند للأعداد الجذرية. النتائج البدئية تشتق أولا، أهمها خواص القيمة المطلقة، مثل متراجحة المثلث ومتراجحة برنولي.

مصطلح التقارب يعتبر مفهوما مركزيا في التحليل الحقيقي، فهو يقدم من خلال نهايات المتتاليات. يمكن اشتقاق عدة قوانين رياضية تحكم عملية الانتهاء، وبالتالي يمكن حساب عدة نهايات. كما يدرس هنا أيضا المتسلسلات اللامنتهية Infinite series وهي عبارة عن نوع خاص م المتتاليات. من ثم تقدم متسلسلات القوى القدرة على تعريف دوال مركزية متعددة مثل الدالة الأسية exponential function والدوال المثلثية. من ثم يتم تقديم أنماط مهمة من المجموعات الجزئية مثل المجموعات المفتوحة والمجموعات المغلقة، المجموعات المضغوطة مع خواصها المختلفة مثل مبرهنة بولزانو-ويرستراس ومبرهنة هاين-بوريل.

من أهم أقسام التحليل الحقيقي :

انظر أيضا[عدل]