المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

مصفوفة مشابهة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
N write.svg
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. (نوفمبر 2008)
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016)

في علم الجبر الخطي، توصف مصفوتين A و B مربعتين (أي بأبعاد n×n) بالـ تشابه في مجال K في حال وجود مصفوفة P في مجال K بحيث:

وأحد معاني تحويل التشابه هو تحويل مصفوفة A إلى مصفوفة B

الخصائص[عدل]

التشابه هي علاقة تطابق في مجال المصفوفات المربعة. تتشارك المصفوفات المتشابهة بخصائص متعددة:

وهناك سببين لهذا التشابه:

  • المصفوفتين المتشابهتين لهما نفس التساقط الخطي (linear map) إلا أن لهما أساسيات متجهات (basis of a vector space) مختلفة.
  • ان التساقط X P−1XP هي مورفيزم ذاتية من نوع الجبر الترابطي لكل مصفوفات n-في-n.

وبسبب هذه الخواص، عاذة ما تحول أي مصفوفة مربعة A إلى مصفوفة مشابهة B بسيطة مما يجعل أمرد دراستها وتحليلها أسهل.

ملاحظات[عدل]

لا يعتمد تشابه المصفوفات على أساسيات المجال: فمثلا، إذا كانت L مجال يحتوي على المجال فرعي K، وA وB هما مصفوفتين في مجال K، فتكون المصفوفتين A و B متشابهتين في المجال K الا في حالة تشابههما في المجال L.

في تعريف التشابه نفسه، إذا اختيرت المصفوفة × كمصفوفة مقايضة (permutation matrix) فتكون المصفوفتين A وB مشابهة التقايض (permutation-similar) أيضا. وكذلك، إذا اختيرت المصفوفة × كمصفوفة أحادية الوحدة (unitarily matrix) فتكون المصفوفتين A وB مكافئة في أحادية الوحدة أيضا. ونظرية الطيف () فإن كل مصفوفة متعامدة (normal matrix) هي متكافئة في أحادية الوحدة مع مصفوفة قطرية (diagonal matrix).

تطبيقات[عدل]

مجالات أخرى[عدل]

  • في نظرية الزمر، تسمى التشابه الفئة الزواجية (conjugacy).
  • في نظرية التصنيف، وبالنسبة لفصيلة Pn من مصفوفات n-في-n عكاسية، فإن أي تعريف لتشابه مستطيل التي حرسل مصفوفة A ذو أبعاد m-في-n إلى Pm−1APn فالفصيلة تعرف المدلل(functor) أوتومورفيزمي للتصنيف لكل المصفوفات المؤلفة من الأرقام الطبيعية ومورفيزم من n إلى m والمصفوفة m-في-n التي أسست من عمليى ضرب الصفوفات.
Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.