المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

عدد أولي ستي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)
N write.svg
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. (نوفمبر 2018)

في الرياضيات، الأعداد الأولية الستية هي الأعداد الأولية التي تفرق عن بعضها البعض بستة. على سبيل المثال، الأرقام 5 و11 كلاهما أعداد أولية ستية، لأن 11 ناقص 5 تساوي 6. إذا س + 2 أو س  + 4 (حيث س هو العدد الأولي الأصغر) أيضاً عدد أولي، إذن العدد الأولي الستي هو جزء من أعداد أولية ثلاثية.

أنواع التجمعات[عدل]

أزواج الأعداد الأولية الستية[عدل]

(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173), (173,179), (191,197), (193,199), (223,229), (227,233), (233,239), (251,257), (257,263), (263,269), (271,277), (277,283), (307,313), (311,317), (331,337), (347,353), (353,359), (367,373), (373,379), (383,389), (433,439), (443,449), (457,463), (461,467).

الأعداد الأولية الستية الثلاثية[عدل]

(5,11,17), (7,13,19), (17,23,29), (31,37,43), (47,53,59), (67,73,79), (97,103,109), (101,107,113), (151,157,163), (167,173,179), (227,233,239), (257,263,269), (271,277,283), (347,353,359), (367,373,379), (557,563,569), (587,593,599), (607,613,619), (647,653,659), (727,733,739), (941,947,953), (971,977,983).

الأعداد الأولية الستية الرباعية[عدل]

(5,11,17,23), (11,17,23,29), (41,47,53,59), (61,67,73,79), (251,257,263,269), (601,607,613,619), (641,647,653,659).

الأعداد الأولية الستية الخماسية[عدل]

في المتتالية الحسابية التي لها خمسة حدود وأساس يساوي 6، واحد من الحدود يجب أن يقبل القسمة على 5، لأن 5 و6 هما أوليان نسبياً. لذلك، الأعداد الأولية الستية الخماسية الوحيدة هي (5،11،17،23،29)؛ لا توجد أي متتالية أخرى ممكنة للأعداد الأولية الستية.

انظر أيضا[عدل]

المراجع[عدل]

  • Weisstein, Eric W. "Sexy Primes". MathWorld. Retrieved on 2007-02-28 (requires composite p+18 in a sexy prime triplet, but no other similar restrictions)

روابط خارجية[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.