عدد كسري

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
أرباع الدائرة

في الرياضيات، عدد كسري أو عدد نسبي أو عدد جذري (بالإنجليزية: Rational number) هو أي عدد يمكن صياغته على شكل نسبة بين عددين صحيحين إلى بعضهما وعادة ما تكتب بالشكل : أ / ب أو a/b وتدعى كسرا، حيث ب لا تساوي الصفر.[1] يُدعى أ أو a البسط أو الصورة، ويُدعى ب أو b المخرج أو المقام.

يمكن كتابة أي عدد كسري بعدد غير منته من الأشكال (كنتيجة عن خواص التناسب): .

ويعتبر الشكل أبسط ما يكون عندما لا يكون للبسط (الصورة) والمقام (المخرج) أي قواسم مشتركة (في المثال السابق : ).

يمكن أيضا التعبير عن أي عدد كسري بشكل كسر عشري . ويكون الكسر العشري الناتج إما دوريا أو غير دوريا . فمثلا الكسر 1/2 يساوي 0.5 ككسر عشري ، أو الكسر 1/4 هو أيضا كسر عشري منتهي فهو 0.25 . أما الكسر غير منتهي فيتمثل على سبيل المثال 1/3 حيث نجد أنه دوري حيث أنه لا ينتهي 0.3333333333 (أي أن الأرقام الموجودة في الكسر العشري تتكرر بشكل دوري : 0.234234234، ومثل 12.363636 ومثل 452.563256325632)(أنظر أسفله).

أمثـــلة:[عدل]

إذا كان الكسر العشري دوريا يستخدم رمز الخط العلوي للتعبير عن هذه الأعداد الكسرية الدورية، كالآتي:

الأعداد المكتوبة بين أقواس هي كسور مكتوبة بنظام العد الثنائي ؛ وهي الطريقة التي يحسب بها الحاسوب .

ملحوظة: عند كتابة الكسور المشرية بالعربية نستخدم "فاصل" أو "فاصلة " (5و2) وهي طريقة يستخدمها نظام الكسور الألماني ,وكذلك النظام الفرنسي ، أما في الإنكليزية فهم يستخدمون "النقطة" (2.5).


بالمقابل توجد مجموعة من الأعداد الحقيقية لا تمتلك صفة الدورية هذه في الكسر العشري ولا يمكن التعبير عنها بنسبة عددين صحيحين : وهذه تدعى بالأعداد غير النسبية أو غير الكسرية.

العدد الناطق هو العدد الذي يمكن كتابته على الشكل q/p حيث p عدد صحيح نسبي و q عدد صحيح غير معدوم .نرمز إلى مجموعة الأعداد الناطقة بالرمز Q. [2]

صفات الأعداد الكسرية[عدل]

العدد الكسري أو النسبي أو القياسي هو ما يمكن كتابته ككسر اعتيادي أو خارج قسمة عددين صحيحين. وعادة ما تكتب بالشكل : أ / ب أو a/b حيث ب لا تساوي الصفر، ندعو أ أو a الصورة أو البسط، وندعو ب أو b المخرج أو المقام.

يمكن كتابة أي عدد قياسي بعدد غير منتهي من الأشكال (كنتيجة عن خواص التناسب): . ويعتبر الشكل أبسط ما يكون عندما لا يكون للبسط (الصورة) والمقام (المخرج) أي قواسم مشتركة (في المثال السابق : ).

مجموعة الأعداد القياسية - ويرمز لها بالرمز - هي مجموعة جزئية من مجموعة الأعداد الحقيقية وتحوي مجموعة الأعداد الصحيحة، أي أن . وتكون مجموعة الأعداد القياسية حقلاً مرتبًا أرشميديًا.

من الحقائق المعروفة أيضًا عن الأعداد القياسية:

  • أي عدد قياسي هو عدد جبري (أي حل لمعادلة جبرية معاملاتها أعداد صحيحة).
  • أي عدد قياسي له تمثيل عشري منتهي أو دوري.
  • وبالعكس أي عدد له تمثيل عشري منتهٍ أو دوري يكون بالضرورة عددًا قياسيًا.

الأعداد الحقيقية غير القياسية لا تمتلك صفة الدورية في التمثيل العشري ولا يمكن التعبير عنها بنسبة عددين صحيحين : وهذه تدعى بالأعداد غير المنطقة أو غير الكسرية irrational number.

العمليات الحسابية[عدل]

التساوي[عدل]

يكون عددان كسريان و متساويين فقط وفقط إذا كان .

فإذا كانت a=1

b=2
c=3
d=6

يكون العددان الكسريان متساويين.

أما إذا كانت في هذا المثال d=7
فيكون الكسران غير متساويين.

الترتيب[عدل]

إذا كان كلا المقامين موجبا فإن

إذا وفقط إذا توفر

إذا كان كلا المقامين سالبا فإنه ينبغي مسبقا تحويل الكسرين إلى أشكال مكافئة بمقامات موجبة، من خلال المعادلتين:

و

الجمع[عدل]

يتم جمع عددين كسريين كما يلي:

جرب الطريقة باختيارك أعدادا لـ a , b , c, d .

الطرح[عدل]

يتم طرح الأعداد الكسرية كالآتي:

كما يمكن كتابتها الآتي:

a/b-c/d=(ad-bc)/bd

حيث لا بد من وضع البسط بين قوسين كما هو مبين في هذا المثال.

الضرب[عدل]

وتتم عملية الضرب كما يلي:

القسمة[عدل]

المقلوب[عدل]

إن مقلوب العدد الكسري يساوي:

ومقلوب العدد الكسري هو:

ناتج ضرب أي عدد كسري بمقلوبه يساوي الواحد

الأس[عدل]

كما يوجد أيضًا المقلوب الجمعي والجدائي في الأعداد الكسرية كما يلي:

الكسر المصري[عدل]

كل عدد جذري موجب يمكن أن يكتب على شكل مجموع مقلوب أعداد صحيحة طبيعية مختلفة.

مثال

مراجع[عدل]

  1. ^ Rosen، Kenneth (2007). Discrete Mathematics and its Applications (الطبعة 6th). New York, NY: McGraw-Hill. صفحات 105, 158–160. ISBN 978-0-07-288008-3. 
  2. ^ Rouse، Margaret. "Mathematical Symbols". اطلع عليه بتاريخ 1 April 2015. 

انظر أيضا[عدل]