المحتوى هنا ينقصه الاستشهاد بمصادر، أي معلومات غير موثقة يمكن التشكيك بها وإزالتها.
يرجى مراجعة هذه المقالة وإزالة وسم المقالات غير المراجعة، ووسمها بوسوم الصيانة المناسبة.

اقتران ثنائي خطي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2016)
N write.svg
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر ما عدا الذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. (فبراير 2016)

في الرياضيات، الاقتران الثنائي-خطي هو دالة تضم عنصرين من فضائين متجهين لتنتج عنصرًا من فضاء متجه ثالث، وهي خطية في كل من متغيراتها. ضرب المصفوفات يعتبر اقترانًا ثنائي-خطيًا علي سبيل المثال.

التعريف[عدل]

لتكن V, W و X ثلاث فضاءات متجهة على نفس الحقل F. الاقتران الثنائي الخطي هو اقتران

B : V × W → X

بحيث، لكل w في W، الاقتران

(v ↦ B(v, w

هو اقتران خطي من V إلى X، ولكل v في V الاقتران

(w ↦ B(v, w

هو اقتران خطي من W إلى X.

في حالة V=W و (B(v,w)=B(w,v لكل v,w في V، فإن الاقتران يسمى تماثليًا.

أمثلة[عدل]

  • ضرب المصفوفات هو اقتران ثنائي خطي (M(m, n) × M(n, p) → M(m, p.
  • إذا كان V فضاء متجهات على الأعداد الحقيقية R يحمل جداءً داخليًا، فإن الجداء الداخلي اقتران ثنائي-خطي تماثلي V × V → R.

انظر أيضًا[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.