تحتاج هذه المقالة إلى مصادر أكثر

تحليل حقيقي

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
Question book-new.svg
تعرَّف على طريقة التعامل مع هذه المسألة من أجل إزالة هذا القالب.تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوقة. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (ديسمبر 2017)

التحليل الحقيقي أحد فروع الرياضيات التي تتعامل مع مجموعة الأعداد الحقيقية والدوال المعرفة عليها.[1][2] يمكن النظر إلى التحليل الحقيقي على أنه نسخة مدققة من علم الحسبان (التفاضل والتكامل) يدرس مصطلحات مثل المتتاليات ونهاياتها، الاستمرار في الدوال، الاشتقاق الرياضي، التكاملات الرياضية وأخيرا متتاليات الدوال. بالتالي يقدم التحليل الحقيقي نظرية متقنة حول فكرة الدوال العددية، كما يتضمن نظريات حديثة حول الدوال المعممة.

الدالة الحقيقية هي دالة فيها كل مجال والمجال المقابل مجموعة جزئية من مجموعة الأعداد الحقيقية.

عادة ما يبدأ تقديم التحليل الحقيقي في النصوص الرياضية المتقدمة ببراهين بسيطة في نظرية المجموعات المبسطة، ثم تعريف واضح لمصطلح الدالة الرياضية، ثم مقدمة للأعداد الطبيعية وتقنيات البرهان الهامة للاستقراء الرياضي.

من ثم تعمد النصوص المرجعية إلى تقديم الأعداد الحقيقية بشكل بدهي (أكسيوماتي) أو يتم تشكيلها من متتاليات كوشي وحد ديدكايند للأعداد الجذرية. النتائج البدئية تشتق أولا، أهمها خواص القيمة المطلقة، مثل متراجحة المثلث ومتراجحة برنولي.

مصطلح التقارب يعتبر مفهوما مركزيا في التحليل الحقيقي، فهو يقدم من خلال نهايات المتتاليات. يمكن اشتقاق عدة قوانين رياضية تحكم عملية الانتهاء، وبالتالي يمكن حساب عدة نهايات. كما يدرس هنا أيضا المتسلسلات اللامنتهية وهي عبارة عن نوع خاص م المتتاليات. من ثم تقدم متسلسلات القوى القدرة على تعريف دوال مركزية متعددة مثل الدالة الأسية والدوال المثلثية. من ثم يتم تقديم أنماط مهمة من المجموعات الجزئية مثل المجموعات المفتوحة والمجموعات المغلقة، المجموعات المضغوطة مع خواصها المختلفة مثل مبرهنة بولزانو-ويرستراس ومبرهنة هاين-بوريل.

الأقسام[عدل]

من أهم أقسام التحليل الحقيقي :

مراجع[عدل]

  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (الطبعة 6th). Brooks/Cole. ISBN 0-495-01166-5. مؤرشف من الأصل في 25 أبريل 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ Gaughan, Edward. "1.1 Sequences and Convergence". Introduction to Analysis. AMS (2009). ISBN 0-8218-4787-2. الوسيط |CitationClass= تم تجاهله (مساعدة)


Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات او موضوع متعلق بها بحاجة للتوسيع. شارك في تحريرها.