معادلة كلاين-غوردون

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
مقدمة ميكانيكا الكم
مبدأ الريبة
المقدمة · الصياغة الرياضية
علماء
بلانك · أينشتاين · بور · سومرفيلد · بوز · ريس جوست · كرامرز · هايزنبرج· بورن · جوردان · باولي · ديراك · دي برولي ·شرودنجر · فون نيومان · فيجنر · فاينمان · كاندلين · ديفيد بوم · إيفيريت · جون بل · فيلهام فين

في ميكانيكا الكم، معادلة كلاين-غوردون ( تسمى أيضا معادلة كلاين-غوردون-فوك) عبارة عن نسخة نسبية من معادلة شرودنجر. وتشمل حلولها الحقول الكمومية القياسية وشبه القياسية، حيث تكون حقل الكميات التي هي جسيمات عديمة الغزل. ولكن لا يمكن أن تفسر بشكل مباشر بوصفها معادلة شرودنجر لحالة كمومية، لأنها معادلة من الدرجة الثانية بالنسبة للزمن وليس لها كثافة احتما منحفظة موجبة. ومع ذلك، بإستخدام تفسير مناسب، فإنه يمكنها وصف السعة الكمومية لإيجاد الجسيم نقطي في مكان ما، أي دالته الموجية النسبية. إلا أن الجسيم يمكنه الإنتشار على حد سواء إلى الأمام وإلى الخلف في الزمن. كل حل لمعادلة ديراك هو بالضرورة حل للمعادلة كلاين-غوردون، ولكن العكس ليس صحيحا.

المعادلة[عدل]

تكتب معادلة كلاين-غوردون كالآتي

وغالبا ما تختصر هكذا

حيث والرمز هو مؤثر دالمبير ، وتعريفه

غالبا ما يتم كتابة المعادلة في نظام الوحدات الطبيعية :

يتم تحديد صيغة المعادلة عن طريق اشتراط أن الموجات السوية التي تكون حلولا للمعادلة:

تحقق علاقة النسبية الخاصة بين الزخم والطاقة :

خلافا لمعادلة شرودنجر، فإن معادلة كلاين-غوردون تملك قيمتين من لكل ، أحدهما موجبة والأخرى سالبة. فقط عن طريق فصل من الأجزاء الموجبة والسالبة التردد يمكن لنا الحصول على معادلة تصف الدالة الموجية النسبية. في الحالة المستقلة عن الزمن، تصبح معادلة كلاين-غوردون

وهي متجانسة مع معادلة بواسون.

مراجع[عدل]