لقد اقترح دمج هذه المقالة مع مقالةأخرى، شارك في النقاش إذا كان عندك أي ملاحظة.

طاقة كامنة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Commons-emblem-merge.svg
لقد اقترح دمج محتويات هذه المقالة أو الفقرة في المعلومات تحت عنوان حرارة كامنة. (نقاش) (أكتوبر 2015)
Melting icecubes.gif

الطاقة الكامنة (بالإنجليزية: Latent Energy) في الفيزياء و الكيمياء جزء الطاقة الداخلية لمادة تتغير بحسب وجود المادة في طور الحالة الصلبة أو الحالة السائلة , والحالة الغازية.

فنعرف خلال عملية انصهار مادة أننا نمد المادة الصلبة بحرارة من أجل صهرها ، تلك الحرارة التي يختزنها المادة التي أصبحت سائلة هي طاقة كامنة .

و حرارة التبخر هي الحرارة التي نعطيها لسائل لكي نحوله إلى بخار . وحرارة التبخر هي الحرارة اللازمة لتبخير مول واحد من المادة عند نقطة غليانها تحت الضغط القياسي (101.325 kPa) ، تلك الحرارة أيضا هي أحد أنواع الحرارة الكامنة تحتفظ بها المادة .

ولكي نحول الماء مثلا إلى ثلج (حالة صلبة ) لا بد من ان نسحب منه حرارة الانصهار ثانيا ، أي نسحب منه الحرارة الكامنة الخاصة بالتجمد ، وهي مساوية لحرارة الانصهار .

  • تبين لنا الترموديناميكا (ديناميكا الحركة الحرارية) أن الحرارة الكامنة في المواد سواء كانت صلبة أو سائلة أو غازية تتعلق بحركة الذرات فيها .

انصهار مادة صلبة[عدل]

انصهار مادة صلبة نقية ثم تبخرها بعد تحولها إلى سائل : تغير درجة الحرارة مع زيادة زمن التسخين .

عندما نقوم بتسخين مادة صلبة نقية تبدأ درجة حرارته في الارتفاع حتى تصل إلى نقطة الانصهار وتحول الحرارة التي يمتصها الجسم الصلب إلى سائل . خلال تلك الفترة تظل درجة حرارة النظام ثابته حتى تتحول كل المادة الصلبة إلى حالة سائلة (تحول الطور ). وبعدما تتحول كل قطعة المادة الصلبة إلى سائل تبدأ درجة حرارة السائل في الزيادة مع استمرار التسخين . ويستمر ارتفاع درجة حرارة السائل بمواصلة التسخين حتى تصل درجة حرارته إلى نقطة الغليان ، وعندها يبدأ السائل يتحول إلى بخار . وهذا أيضا هو تحول طوري آخر .

خلال عملية التبخير تبقى درجة حرارة النظام ثابتة . فمثلا بالنسبة للماء تظل درجة حرارة الماء الذي يغلى ثابته عند درجة 100 درجة مئوية حتى يتحول كل الماء إلى بخار . في هذه الأثناء يختزن البخار الحرارة التي اكتسبها خلال تحوله من حالة سائلة إلى طور حالة غازية في هيئة حرارة كامنة .

كمية الحرارة اللازمة لانصهار مادة تسمى حرارة انصهار أو انثالبي الانصهار أو الحرارة الكامنة للانصهار ، وهي تقاس جول/مول ، أو تقاس جول/كيلوجرام .

ويبين الشكل البياني تغير درجة الحرارة (المحور الرأسي) للمادة الصلبة مع زمن التسخين (المحور الأفقي) . ونرى ثبات درجة الحرارة عند تحول المادة الصلبة إلى سائل ، وكذلك ثبات درجة الحرارة عند نقطة الغليان أثناء تحول السائل إلى بخار .

حرارة انصهار بعض المواد النقية[عدل]

المادة حرارة الانصهار (ألف جول/كيلوجرام) حرارة الانصهار (ألف جول/مول)
الألمونيوم 398 10,7[1]
الرصاص 23,4 4,85[2]
الكروم 325 16,93[3]
الحديد 268 15,0
الذهب 63 12,4
الجرافيت 16750 201
الكادميوم 55 6,2[4]
البوتاسيوم 63 2,5
الكوبلت 291,8 17,2[5]
ثاني أكسيد الكربون 180 7,9
النحاس 210 13,3[6]
المغنسيوم 373 9,1
المنجنيز 264 14,5
الصوديوم 113 2,6[7]
النيكل 301 17,7
البرافين 200 ... 240
الفسفور 21 0,7
البلاتين 100 19,5
الزئبق 11,81 2,37[8]
الأكسجين 13 0,2
الكبريت l (monoklin) 38 1,2
الفضة 105 11,3
السيليكون 1803,7 50,66[9]
شمع 176
ماء 333,5 6,01
الهيدروجين 59 0,06
التنجستن 191,3 35,2[10]
الزنك 113 7,4[11]
القصدير 59 7,03[12]

حرارة تبخر بعض المواد النقية[عدل]

حرارة التبخر أو إنثالبي التبخر لبعض المواد المعهودة مقاسة عند درجة غليان كل منها تحت الضغط الجوي القياسي:

المادة حرارة التبخر
(كيلوجول / مول)
حرارة التبخر
(كيلوجول/كيلوجرام)
الأمونيا 23.35 1371
البوتان 21.0 320
إيثانول 38.6 841
الهيدروجين 0.46 451.9
ميثان 8.19 760
الميثانول 35.3 1104
بروبان 15.7 356
فوسفين 14.6 429.4
الماء 40.65 2257

الحركة الاهتزازية[عدل]

هناك نوع آخر من الطاقة الكامنة ةنجدها مثلا في البلورات كنظام ترموديناميكي . في البلورات تترتب الذرات في شكل شبكي ثلاثي الأبعاد حيث تتخد كل ذرة موضعا في البلورة وتكون محاطة بستة ذرات أخرى (في العادة) : ذرتين فوق وتحت ، وذرتين أمام و خلف ، وذرتين على اليمين واليسار . و تقوم الذرة في موضعها هذا بحركة اهتزازية حول وضع الاتزان بفعل الحرارة .و تتحكم الطاقة الكامنة في الحركة الاهتزازية للذرات حيث تعيد الذرة إلى وضع الاتزان عندما تتعداه إلى أقصى بعد عنه. وتقاس تلك الحركة الاهتزازية في المتوسط ب kT/2 حيث k ثابت بولتزمان و T درجة الحرارة بالكلفن.

طاقة كامنة في الجزيئات[عدل]

تتكون الجزيئات من ذرات مرتبطة بعضها البعض. فجزيئ الأكسجين أو النيتروجين يتكون من ذرتين. وجزيئ ثاني أكسيد الكربون يتكون من ثلاثة ذرات مرتبطة في شكل مستقيم وتتوسطهم ذرة (أو أيون) الكربون. ويتكون جزيئ الماء من ثلاثة ذرات تشكل مثلثا متساوي الضلعان وتتوسطتهم ذرة الأكسجين(تقدر زاوية المثلث عند ذرة الأكسجين بنحو 113 درجة). كل ذرات تلك الجزيئات تمارس اهتزازات حول موقع اتزانها وتعمل الروابط بين الذرات مثل رباط المطاط وتتيح لهاالاهتزاز. وتقدر طاقة الوضع لكل نوع من تلك الاهتزازات في المتوسط بالمقدار kT/2 حيث k ثابت بولتزمان و T درجة الحرارة بالكلفن.

المراجع[عدل]

  1. ^ W.B. Frank, W.E. Haupin, H. Vogt, M. Bruno, J Thonstad, R.K. Dawless, H. Kvande, O.A. Taiwo: Aluminium in Ullmann's Encyclopedia of Industrial Chemistry, 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a01_459.pub2
  2. ^ C.A. Sutherland, E.F. Milner, R.C. Kerby, H. Teindl, A. Melin, H.M. Bolt: Lead in Ullmann's Encyclopedia of Industrial Chemistry, 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a15_193.pub2
  3. ^ J.H. Downing, P.D. Deeley, R. Fichte: Chromium and Chromium Alloys in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a07 043.
  4. ^ K.-H. Schulte-Schrepping, M. Piscator: Cadmium and Cadmium Compounds in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a04_499.
  5. ^ J.D. Donaldson, D. Beyersmann: Cobalt and Cobalt Compounds in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a07_281.pub2.
  6. ^ A. Lossin: Copper in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a07_471.
  7. ^ A. Klemm, G. Hartmann, L. Lange: Sodium and Sodium Alloys in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a24 277
  8. ^ M. Simon, P. Jönk, G. Wühl-Couturier, S. Halbach: Mercury, Mercury Alloys, and Mercury Compounds in Ullmann's Encyclopedia of Industrial Chemistry, 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a16 269.pub2
  9. ^ W. Zulehner, B. Neuer, G. Rau: Silicon in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a23_721
  10. ^ E. Lassner, W.-D. Schubert, E. Lüderitz, H.U. Wolf: Tungsten, Tungsten Alloys, and Tungsten Compounds in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a27_229
  11. ^ G.G. Graf: Zinc in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a28_509
  12. ^ G.G. Graf: Tin, Tin Alloys, and Tin Compounds in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a27_049

اقرأ أيضا[عدل]