زنك
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
المظهر | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
رمادي فضي![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الخواص العامة | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الاسم، العدد، الرمز | زنك، 30، Zn | |||||||||||||||||||||||||||||||||||||||||||||||||||
تصنيف العنصر | فلز انتقالي | |||||||||||||||||||||||||||||||||||||||||||||||||||
المجموعة، الدورة، المستوى الفرعي | 12، 4، d | |||||||||||||||||||||||||||||||||||||||||||||||||||
الكتلة الذرية | 65.38(2) غ·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
توزيع إلكتروني | Ar]; 3d10 4s2] | |||||||||||||||||||||||||||||||||||||||||||||||||||
توزيع الإلكترونات لكل غلاف تكافؤ | 2, 8, 18, 2 (صورة) | |||||||||||||||||||||||||||||||||||||||||||||||||||
الخواص الفيزيائية | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الطور | صلب | |||||||||||||||||||||||||||||||||||||||||||||||||||
الكثافة (عند درجة حرارة الغرفة) | 7.14 غ·سم−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
كثافة السائل عند نقطة الانصهار | 6.57 غ·سم−3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
نقطة الانصهار | 692.68 ك، 419.53 °س، 787.15 °ف | |||||||||||||||||||||||||||||||||||||||||||||||||||
نقطة الغليان | 1180 ك، 907 °س، 1665 °ف | |||||||||||||||||||||||||||||||||||||||||||||||||||
حرارة الانصهار | 7.32 كيلوجول·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
حرارة التبخر | 123.6 كيلوجول·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
السعة الحرارية (عند 25 °س) | 25.470 جول·مول−1·كلفن−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
ضغط البخار | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
الخواص الذرية | ||||||||||||||||||||||||||||||||||||||||||||||||||||
أرقام الأكسدة | +2, +1, 0 (أكاسيده مذبذبة) | |||||||||||||||||||||||||||||||||||||||||||||||||||
الكهرسلبية | 1.65 (مقياس باولنغ) | |||||||||||||||||||||||||||||||||||||||||||||||||||
طاقات التأين | الأول: 906.4 كيلوجول·مول−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
الثاني: 1733.3 كيلوجول·مول−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
الثالث: 3833 كيلوجول·مول−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
نصف قطر ذري | 134 بيكومتر | |||||||||||||||||||||||||||||||||||||||||||||||||||
نصف قطر تساهمي | 4±122 بيكومتر | |||||||||||||||||||||||||||||||||||||||||||||||||||
نصف قطر فان دير فالس | 139 بيكومتر | |||||||||||||||||||||||||||||||||||||||||||||||||||
خواص أخرى | ||||||||||||||||||||||||||||||||||||||||||||||||||||
البنية البلورية | نظام بلوري سداسي | |||||||||||||||||||||||||||||||||||||||||||||||||||
المغناطيسية | مغناطيسية معاكسة | |||||||||||||||||||||||||||||||||||||||||||||||||||
مقاومة كهربائية | 59.0 نانوأوم·متر (20 °س) | |||||||||||||||||||||||||||||||||||||||||||||||||||
الناقلية الحرارية | 116 واط·متر−1·كلفن−1 (300 كلفن) | |||||||||||||||||||||||||||||||||||||||||||||||||||
التمدد الحراري | 30.2 ميكرومتر·متر−1·كلفن−1 (25 °س) | |||||||||||||||||||||||||||||||||||||||||||||||||||
سرعة الصوت (سلك رفيع) | (درجة حرارة الغرفة) (ملفوف) 3850 متر·ثانية−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
معامل يونغ | 108 غيغاباسكال | |||||||||||||||||||||||||||||||||||||||||||||||||||
معامل القص | 43 غيغاباسكال | |||||||||||||||||||||||||||||||||||||||||||||||||||
معامل الحجم | 70 غيغاباسكال | |||||||||||||||||||||||||||||||||||||||||||||||||||
نسبة بواسون | 0.25 | |||||||||||||||||||||||||||||||||||||||||||||||||||
صلادة موس | 2.5 | |||||||||||||||||||||||||||||||||||||||||||||||||||
صلادة برينل | 412 ميغاباسكال | |||||||||||||||||||||||||||||||||||||||||||||||||||
رقم CAS | 7440-66-6 | |||||||||||||||||||||||||||||||||||||||||||||||||||
النظائر الأكثر ثباتاً | ||||||||||||||||||||||||||||||||||||||||||||||||||||
المقالة الرئيسية: نظائر الزنك | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
الزِّنْك [ملاحظة 1] عنصرٌ كيميائي رمزه Zn وعدده الذرّي 30، وهو ينتمي إلى عناصر المستوى الفرعي d ويقع على رأس عناصر المجموعة الثانية عشرة في الجدول الدوري. يوجد الزنك في الظروف القياسية من الضغط ودرجة الحرارة على هيئة فلز هش نسبياً سهل التأكسد، وعند إزالة طبقة الأكسيد السطحية فإنه يبدو بلون رمادي ذي لمعان. يصنف الزنك كيميائياً ضمن الفلزات الانتقالية، إلا أنه يتميز بحالة خاصة، إذ أن مدار المستوى الفرعي d ممتلئ، لذلك فإن خواصه الكيميائية تشبه إلى حد ما عناصر الفلزات القلوية الترابية، وخاصة المغنيسيوم، لتشابه امتلاك حالة الأكسدة الوحيدة +2، ولتقارب الحجم الذري. يستخرج الزنك بأسلوب التعويم الزبدي للخامة، ثم بالتحميص، ثم بالاستخلاص النهائي والتنقية بالأسلوب الكهربائي.
يأتي الزنك في المرتبة الرابعة والعشرين من حيث الوفرة الطبيعية في القشرة الأرضية؛ ولديه خمسة نظائر مستقرة. أشهر خامات الزنك هو معدن السفاليريت، وينتشر بشكل واسع في قارات أستراليا وآسيا وأمريكا الشمالية. يعد الزنك من الناحية الحيوية ذي أهمية كبيرة، فهو من العناصر الشحيحة الأساسية للإنسان وللكثير من الكائنات الحية؛ فهو يقوم بدور وظيفي مهم في عمل الإنزيمات؛ لذا ينبغي توفره في الغذاء، من أجل تجنب حالات نقص الزنك المرتبطة باضطرابات جسدية.
عرفت سبيكة النحاس الأصفر (أو الصُّفْرُ) المؤلفة من النحاس والزنك منذ الألفية الثالثة قبل الميلاد، وتوجد شواهد أثرية في عدد من مناطق العالم، وخاصة في المنطقة العربية، على الاستخدام المكثف للنحاس الأصفر في الحياة اليومية منذ القدم. استخدام العلماء العرب والمسلمون الزنك في تجاربهم؛ كما عزل في الهند في القرن الرابع عشر، إلا أن عزل الشكل الفلزي النقي في أوروبا ينسب إلى أندرياس سيغيسموند مارغراف سنة 1746. ساهمت تجارب لويجي غلفاني وألساندرو فولتا في توسيع المعارف المتعلقة بالخواص الكيميائية الكهربائية للزنك. تعد عملية غلفنة الحديد لحمايته من التآكل كبرى تطبيقات الزنك، بالإضافة إلى استخدامه في مجال صناعة البطاريات والسبائك.
التاريخ وأصل التسمية[عدل]
العصور القديمة[عدل]

توجد العديد من الشواهد التاريخية الأثرية الدالة على استخدام الزنك بشكله غير النقي في العصور القديمة؛ إذ استخدمت خامات الزنك في صناعة سبيكة الزنك مع النحاس المعروفة باسم النحاس الأصفر [ملاحظة 3] (أو الصُّفْر) لعدة آلاف من السنين قبل التمكن من عزل الزنك. تحوي بعض عينات النحاس الأصفر التاريخية على نسبة من الزنك تصل إلى 23%.[1]
وصلت المعارف عن كيفية إنتاج النحاس الأصفر إلى اليونان القديمة حوالي القرن السابع قبل الميلاد؛ ولكن كان هناك بعض التحويرات اللاحقة في أسلوب الإنتاج؛[2] إذ عثر هناك على حلي وأدوات زينة تعود إلى حوالي 2500 سنة قبل الميلاد مصنوعة من سبائك تحوي على الزنك بنسبة تصل إلى 80-90% مع عدد من العناصر من ضمنها النحاس والرصاص والحديد والإثمد وعناصر أخرى.[3] كما عثر على تمثال صغير حاو على نسبة 87.5% من الزنك في تركيبه في موقع أثري بالقرب من منطقة داكيا الرومانية.[4] أما في الهند فتشير النصوص المكتوبة في كاراكا سمهيتا [ملاحظة 4] وهو كتاب في الطب الهندي التقليدي يعود إلى الألفية الأولى قبل الميلاد إلى استخدام فلز في يؤدي حرقه إلى الحصول على ما دعي باسم بشبنجان [ملاحظة 5]، والذي يعتقد أنه أكسيد الزنك.[5] من جهة أخرى، عثر في حطام سفينة رومانية [ملاحظة 6]، والتي غرقت حوالي سنة 140 قبل الميلاد، على مستحضرات دوائية يدخل الزنك في تركيبها، لتكون واحدة من أقدم المستحضرات الدوائية المكتشفة.[6]
عرف الرومان صناعة الصفر حوالي 30 سنة قبل الميلاد؛[7] وقد صنعوا تلك السبيكة من معالجة معدن الكالامين [ملاحظة 7]، الحاوي على الزنك، مع الفحم والنحاس ضمن بوتقة؛[7] ثم بصب الصفر أو تطريقه على هيئة أشكال مستخدمة في صناعة الأسلحة أو لاستخدامه في سك النقود المعدنية.[8] عثر في كتابات المؤرخ الرماني سترابو [ملاحظة 8] في القرن الأول قبل الميلاد إلى اقتباسات من المؤرخ ثيوبمبوس [ملاحظة 9] المفقودة والعائدة إلى القرن الرابع قبل الميلاد، والتي تشير إلى استخدام قطرات من الفضة الكاذبة والتي عندما تمزج مع النحاس فإنها تنتج الصُّفر؛ وقد تكون بذلك إشارة إلى استخدام كميات ضئيلة من الزنك، والناتجة ثانوياً عن صهر خامات الكبريتيدات.[9] كان الزنك يطرح في البقايا الموجودة بالقرب من أفران الصهر، لأنه كان يكن ذا قيمة حينها؛[10] ولكن مع مرور الوقت استخدم الزنك بشكل مكثف في صنع السبائك، ومن الأمثلة على ذلك لوح برن المصنوع من الزنك [ملاحظة 10]، وهو نص نذري [ملاحظة 11] يعود إلى عهد الغاليون الرومان، ومنقوش على سبيكة مكون أغلبها من الزنك.[11]
العصور الوسطى[عدل]

كانت مناجم الزنك منتشرة في الهند، وخاصةً في راجستان [ملاحظة 12]،[12] وكانت نشطة في استخراج الزنك منذ عهد الإمبراطورية الماورية؛ إلا أن الحصول على الزنك بشكله النقي هناك بدأ منذ حوالي القرن الثاني عشر للميلاد.[13][14] تشير بعض التقديرات إلى إنتاج حوالي مليون طن من الزنك الفلزي ومن أكسيد الزنك في الهند بين القرنين الثاني عشر والسادس عشر للميلاد.[15] كانت خامات الزنك غير النقية تستخرج في الهند وتصهر وتعالج مع مواد عضوية منذ القرن الثالث عشر للميلاد؛[16][17] ويشير نص سنسكريتي [ملاحظة 13] في الخيمياء يعود إلى القرن الثالث عشر إلى وجود نوعين من الخامات الحاوية على الزنك، الأول يستخدم من أجل استخراج الفلز النقي، والآخر يستخدم من أجل أغراض استطبابية.[14]
عزل الزنك النقي لأول مرة في الهند حوالي سنة 1300 ميلادية؛[18][19][20] وكان يشار إلى الزنك النقي في نصوص الطب الهندي التقليدي تحت اسم ياسادا [ملاحظة 14].[21] من جهة أخرى، انتقلت المعارف المتعلقة بالزنك والصفر إلى العلماء العرب والمسلمون؛ وكلمة الخارصين أو الخارصيني هي التسمية العربية للزنك.[22][23] أجريت تجارب عدة على الزنك في العصور الوسطى، إذ كان يحرق في الهواء وتجمع أبخرته في مكثفات؛ وأطلق على الناتج (أكسيد الزنك) في بعض الأحيان اسم صوف الفلاسفة [ملاحظة 15]، لأنه كان يجمع في خصل من الصوف؛ في حين أطلق آخرون عليه اسم الثلج الأبيض [ملاحظة 16].[24]
العصور الحديثة[عدل]
من المحتمل أن يكون أول توثيق لتسمية الزنك قد جرى على يد باراسيلسوس [ملاحظة 17]، والذي أشار إلى اسم هذا الفلز على شاكلة زنكوم [ملاحظة 18] أو زنكن [ملاحظة 19] في كتاب له [ملاحظة 20] يعود إلى القرن السادس عشر.[17][25] يظن أن يكون أصل تسمية الزنك من الكلمة الألمانية zinke، والتي تعني مدبب أو مسنن، وذلك إشارة إلى بلورات الزنك الفلزي الإبرية التي تتشكل عند تصلبه من مصهوره.[26] قد تكون هناك أيضاً صلة وصل مع تسمية عنصر القصدير في اللغة الألمانية والتي هي على الشكل Zinn.[27] في رأي آخر، يعتقد أن يكون اشتقاق الكلمة قادماً من الكلمة الفارسية سنگ، والتي تعني الحجر.[28] من الأسماء الأخرى التي أطلق عليها هذا العنصر كل من القصدير الهندي [ملاحظة 21] وتوتانيغو [ملاحظة 22].[3]
كان الزنك يصل إلى أوروبا بشكل أساسي من الهند، وشهدت تجارته بالسفن ازدهاراً خاصةً في القرنين الخامس عشر والسادس عشر.[29] في سنة 1596 قام عالم المعادن أندرياس ليبافيوس [ملاحظة 23] باستلام عينات من سفينة محملة بالبضائع، ومن ضمنها عينات من الزنك، والتي قام بوصفها بشكل مفصل.[30] تمكن عدد من العلماء الأوروبيون من عزل الزنك من أكسيد الزنك، من ضمنهم البلجيكي دي رسبور [ملاحظة 24] في سنة 1668؛[15] والفرنسي إتيان فرانسوا جوفروا [ملاحظة 25] في أوائل القرن الثامن عشر،[15] وفي سنة 1738 قام البريطاني وليام تشامبيون [ملاحظة 26] بإصدار براءة اختراع لعملية كيميائية صناعية تستخرج الزنك من الكالامين في وعاء صهر عمودي شبيه بالمعوجة [ملاحظة 27]؛[31] كما قام السويدي أنتون فون سواب أيضاً [ملاحظة 28] بتقطير الزنك من الكالامين.[17]
على الرغم من ذلك، فينسب الفضل في أوروبا بعزل الزنك النقي لأول مرة إلى العالم الألماني أندرياس سيغيسموند مارغراف [ملاحظة 29]، ففي تجربته سنة 1746 قام مارغراف بتسخين خليط من الكالامين والفحم في آنية مغلقة من غير وجود للنحاس في الوسط، مما مكنه من الحصول على الزنك النقي.[10][32] ثم أصبح ذلك الأسلوب في الاستخراج تجارياً لأول مرة سنة 1752.[33] وفي سنة 1758 أصدرت براءة اختراع في بريطانيا لعملية تكليس [ملاحظة 30] لكبريتيد الزنك (السفاليريت) من أجل الحصول على أكسيد الزنك في عملية المعوجة [ملاحظة 31]؛[3] وقبل ذلك كان الكالامين المصدر الوحيد لإنتاج الزنك. بشكل منفصل تمكن كل من الصناعي الألماني يوهان كريستيان روبرغ [ملاحظة 32] والبلجيكي جان جاك دانييل دوني [ملاحظة 33] من تطوير عملية الصهر لاستخراج فلز الزنك، وذلك عبر بناء أواني صهر على شكل معوجات أفقية.[17][34]
مهدت التجارب الفيزيائية الحيوية التي أجراها العالم الإيطالي لويجي غلفاني [ملاحظة 34]؛[35][36] في تطوير الخلية الغلفانية [ملاحظة 35] وعملية الغلفنة [ملاحظة 36] والحماية المهبطية [ملاحظة 37].[36] كما تابع العالم ألساندرو فولتا [ملاحظة 38] تلك الأبحاث، والتي أدت إلى اختراع العمود الفولتائي [ملاحظة 39] سنة 1800.[35] يتألف هذا العمود من طبقات مكدسة من الخلايا الغلفانية المؤلفة من صفيحتين، واحدة من النحاس وأخرى من الزنك متصلتين ببعضهما ومغموستين في كهرل [ملاحظة 40]؛ ومثلت تلك الاختراعات الأشكال الأولى في صناعة البطاريات ودراسة علم الكهرباء.[35] يعود السبب في تأخر دراسة الأهمية الحيوية للزنك إلى خواصه غير المغناطيسية وإلى عدم تلون محاليل مركباته الكيميائية؛[37] تغير هذا الأمر سنة 1940 عندما اكتشف أن إنزيم الأنهيدراز الكربوني [ملاحظة 41] يحوي على الزنك في الموقع النشط [ملاحظة 42]؛[37] ثم تلا ذلك اكتشاف وجود الزنك أيضاً في الموقع النشط لإنزيم كربوكسي ببتيداز [ملاحظة 43] في سنة 1955.[37]
الوفرة الطبيعية[عدل]
يشكل الزنك ما يقارب 75 جزء في المليون [ملاحظة 44] من القشرة الأرضية، وهو بذلك يأتي في المرتبة الرابعة والعشرين بين العناصر الكيميائية من حيث الوفرة. لا تتجاوز التراكيز النمطية من الزنك في المحيط الحيوي مقدار 1 ميكروغرام لكل متر مكعب في الغلاف الجوي؛ و300 ميليغرام لكل كيلوغرام في التربة؛ و100 ميليغرام لكل كيلوغرام في الغطاء النباتي؛ و20 ميكروغرام لكل ليتر في المياه العذبة؛ و5 ميكروغرام لكل ليتر في مياه البحر.[38]
من النادر العثور على الزنك في القشرة الأرضية على شكله الطبيعي الحر [ملاحظة 45]؛ لكنه عادةً يوجد في على هيئة معدن، مترافقاً مع عدد من الفلزات الوضيعة [ملاحظة 46] مثل النحاس والرصاص في الخامات الأرضية.[3] وفقاً لتصنيف غولدشميت [ملاحظة 47] الجيوكيميائي فإن الزنك يصنف ضمن العناصر المحبّة للكالكوجين [ملاحظة 48]، أي أن لديه ألفة كيميائية [ملاحظة 49] تجاه عناصر المجموعة السادسة عشرة الأثقل في الجدول الدوري، من ضمنها الكبريت، أكثر من الارتباط مع الأكسجين وتشكيل أكاسيد. عموماً فإن معادن الكبريتيدات تشكلت في مرحلة تصلب القشرة الأرضية تحت ظروف اختزالية.[39] يعد معدن السفاليريت [ملاحظة 50] أكثر معادن الزنك انتشاراً، وهو يتألف كيميائياً من كبريتيد الزنك، ويتراوح تركيز الزنك فيه بين 60-62%.[3]
يقدر عدد المعادن الحاوية على الزنك بأكثر من 300 معدن؛[40] ومن الأمثلة عليها كل من السميثسونيت [ملاحظة 51] (كربونات الزنك)، والهيميمورفيت [ملاحظة 52] (سيليكات الزنك)، والفورتزيت [ملاحظة 53] (كبريتيد آخر للزنك)، والهيدروزنكيت [ملاحظة 54]،(كربونات الزنك القاعدية)، والمعروف أيضاً باسم زهر الزنك [ملاحظة 55].[15] من معادن الزنك أيضاً كل من الزنكيت [ملاحظة 56] (أكسيد الزنك)، والمعروف أيضاً باسم خام الزنك الأحمر، والأداميت [ملاحظة 57] (زرنيخات الزنك القاعدية)، وكذلك المنريكورديت [ملاحظة 58] والفرانكلينيت [ملاحظة 59]. باستثناء الفورتزيت، فإن باقي المعادن الأخرى للزنك كانت قد تشكلت نتيجةً لتجوية كبريتيدات الزنك البدائية الأولية في المراحل الأولى من عمر الأرض.[39]
الاستخراج والإنتاج[عدل]
# | البلد | الكمية بالأطنان |
---|---|---|
1 | الصين | 4,210,000 |
2 | البيرو | 1,400,000 |
3 | أستراليا | 1,330,000 |
5 | الولايات المتحدة | 753,000 |
4 | الهند | 720,000 |
6 | المكسيك | 677,000 |
يعد الزنك رابع أكثر الفلزات استخراجاً، بعد الحديد والألومنيوم والنحاس، ويبلغ الإنتاج العالمي منه قرابة 13 مليون طن.[41] يستخرج حوالي 70% من الزنك العالمي بواسطة التعدين من المناجم؛ في حين أن نسبة 30% المتبقية تأتي من إعادة التدوير.[42]
توجد توضعات رسوبية كبيرة من خامات الزنك في أستراليا وكندا والولايات المتحدة والصين وكازاخستان، والهند والبيرو، بالإضافة إلى إيران؛[39][43][44] وتصدر الصين تلك الدول بحوالي 38% من الإنتاج العالمي.[41] وفق تقديرات منشورة، فإن كمية الزنك المستخرج عبر التاريخ إلى سنة 2002 قاربت 346 مليون طن، إذ كان يستخرج تحت اسم الكالامين؛ أما الكمية المستخدمة منها بين 109–305 مليون طن.[45][46][47]

يقدر الاحتياطي العالمي من موارد الزنك الطبيعية الإجمالية بكمية تتراوح بين 1.9-2.8 بليون طن؛[41][49] في حين أن تقديرات أخرى تشير إلى أن احتياطي الزنك القابل للاستخراج تبلغ كميته مقدار 480 مليون طن.[50] أما على صعيد الشركات، فتصنف شركة نيستار [ملاحظة 61] ضمن أكبر شركات إنتاج الزنك في العالم، وهي ناتج اندماج شركة أوزد للمعادن [ملاحظة 62] مع شركة أونيكور [ملاحظة 63].[51]
التعدين[عدل]
تعد الخامات الكبريتيدية، وخاصة معدن السفاليريت (كبريتيد الزنك ZnS)، المصدر الرئيسي لإنتاج الزنك، لكنها غالباً ما تكون مختلطة مع كبريتيدات فلزات أخرى، مثل النحاس أو الرصاص أو الكادميوم أو الحديد.[52] يستخرج الزنك من خاماته وفق مبادئ علم استخلاص الفلزات [ملاحظة 64]؛[53] إذ تسحق الخامة أولاً ثم تعوّم [ملاحظة 65] من أجل فصل المعادن عن الشوائب، ومن أجل الحصول بالنهاية على مركز خامة كبريتيد الزنك،[53] والمتكون من حوالي 50% زنك، و32% كبريت، و13% حديد، و5% ثنائي أكسيد السيليكون.[53] يؤدي التحميص [ملاحظة 66] اللاحق إلى تحويل الكبريتيد إلى الأكسيد:[52]
يمكن أن يستخدم ثنائي أكسيد الكبريت الناتج في إنتاج حمض الكبريتيك، واللازم من أجل عملية التصويل [ملاحظة 67] فيما بعد. يوجد هناك أسلوبان من أجل المعالجة اللاحقة لخامة الزنك، الأول هو الأسلوب الحراري [ملاحظة 68]، والآخر هو الاستخلاص الكهربائي [ملاحظة 69].
في الأسلوب الحراري لاستخلاص الزنك تجرى عملية اختزال لأكسيد الزنك باستخدام مسحوق الكربون (الفحم) في فرن حراري؛[de 1] أو باستخدام أحادي أكسيد الكربون عند درجات حرارة تقارب 950 °س، حيث يستحصل على الفلز حيننها على هيئة بخار ثم ينقى بالتقطير التجزيئي من الشوائب، وخاصة من الكادميوم.:[52][54]
أما في الأسلوب الكهربائي فتستخلص أملاح الزنك الناتجة عن عملية التصويل من المحلول وترسّب.[55]
ثم تجرى عملية تحليل كهربائي [ملاحظة 70] باستخدام مصعد من الرصاص ومهبط من الألومنيوم من أجل الحصول على فلز الزنك.[52]
يعاد استخدام حمض الكبريتيك من هذه الخطوة في عملية التصويل مرة أخرى. يكون الزنك الناتج عادة بنقاوة تصل إلى 99.9%. من جهة أخرى، عند تلقيم مادة خام مغلفنة [ملاحظة 71] إلى فرن القوس الكهربائي [ملاحظة 72] فإن الزنك يستحصل من الغبار عبر عدة طرائق، أشهرها عملية فيلز [ملاحظة 73] القادرة على استرجاع حوالي 90% من الفلز.[56]
النظائر[عدل]
للزنك ثلاثون نظيراً معروفاً تتراوح أعداد الكتلة لها بين 54 و 83، من بينها خمسة نظائر مستقرة وهي: زنك-64 64Zn و زنك-66 66Zn و زنك-67 67Zn و زنك-68 68Zn و زنك-70 70Zn.[57] يعد النظير زنك-64 64Zn أكثر نظائر الزنك المستقرة من حيث الوفرة الطبيعية حيث يشكل 49.17% من عنصر الزنك في الطبيعة، يليه النظير زنك-66 66Zn بنسبة 27.73% ومن ثم زنك-68 68Zn بنسبة 18.45%.[57][58]
هنالك خمسة وعشرون نظيراً مشعاً للزنك؛ أكثرها ثباتاً هو النظير زنك-65 65Zn، والذي عمر النصف له يبلغ 243.66 يوم، يليه زنك-72 72Zn بعمر نصف 46.5 ساعة.[58] لباقي نظائر الزنك المشعة عمر نصف أقل من 14 ساعة، وأغلبها دون الثانية الواحدة. تجدر الإشارة إلى أن عنصر الزنك لديه عشرة مصاوغات نووية.[58]
الخواص الفيزيائية[عدل]
يوجد الزنك في الظروف القياسية من الضغط ودرجة الحرارة على هيئة فلز رمادي مزرق لامع، وهو ينتمي إلى الفلزات الوضيعة [ملاحظة 74]، بالتالي فإن سطحه قابل للأكسدة، لذلك فإن أغلب العينات التجارية منه ذات سطوح كامدة اللون.[59] للزنك مكسر [ملاحظة 75] ذو لون أبيض فضي؛ وله كثافة أقل من الحديد، وهو يتبلور وفق نظام بلوري سداسي متراص [ملاحظة 76]؛[60] ويتفاوت البعد بين ذرات الزنك في تلك البنية حسب البعد الأفقي أو الشاقولي؛ فيبلغ مقدار 265.9 بيكومتر بين الذرات في نفس مستوي الطبقة؛ ومقدار 290.6 بيكومتر بين الطبقات.[61]
الزنك فلز صلد وهو قابل للسحب والطرق عند درجات حرارة بين 100-200 °س، كما يكون عندها قابلاً للتشكيل [ملاحظة 77]؛ أما عند درجة حرارة الغرفة وعند درجات حرارة تتجاوز 200 °س فإنه يكون نسبياً قابلاً للتقصف؛[16][59] بحيث يمكن أن يستحصل على شكل مسحوق عند التعرض لجهد ميكانيكي.[62] بالمقارنة مع بقية الفلزات، فإن للزنك نقطة انصهار (419.5 °س) ونقطة غليان (907 °س) منخفضتين نسبياً.[63] إن نقطة انصهار الزنك هي الأخفض بين عناصر المستوى الفرعي d، ما عدا الزئبق والكادميوم؛ ولهذا السبب فإن تلك العناصر الثلاثة المذكورة لا تصنف أحياناً ضمن الفلزات الانتقالية، كما هو الحال مع بقية الفلزات في ذلك المستوي الفرعي من الجدول الدوري.[63]
يشكل الزنك العديد من السبائك مع عدد كبير نسبياً من العناصر.[64] للزنك موصلية كهربائية متوسطة؛ ولديه خواص مغناطيسية معاكسة [ملاحظة 78].[16] على الرغم من أن كلاً من الزنك والزركونيوم لا يمتلكان خواصاً مغناطيسية حديدية [ملاحظة 79]، إلا أن للسبيكة ZrZn2 مغناطيسية حديدية عند درجات حرارة منخفضة دون 35 كلفن.[16]
الخواص الكيميائية[عدل]
يصنف الزنك كيميائياً ضمن الفلزات الوضيعة (الفلزات غير النفيسة)، إذ يتفاعل سطحه عند التماس مع الهواء الرطب وثنائي أكسيد الكربون، ويفقد لمعانه، إذ تتشكل طبقة حامية مُخَمّلّةٌ [ملاحظة 80] تتكون من مزيج من أكسيد وكربونات الزنك (Zn5(OH)6(CO3)2)؛ ولذلك يستخدم الزنك بكثرة في مجال غلفنة السطوح المعدنية.[65] يبلغ جهد اختزال الزنك مقدار −0.763 فولت، وهو من المختزلات القوية.[66] للزنك نشاط كيميائي جيد نسبياً، فهو يتفاعل مع الأحماض والقواعد واللافلزات.[67] يشتعل الزنك في الهواء مع إصدار لهب ذي لون أخضر مزرق، ويعطي دخاناً من أكسيد الزنك.[68] ينحل الزنك التجاري بشكل جيد في الأحماض القوية مثل حمض الهيدروكلوريك أو حمض الكبريتيك، إذ تكون تلك الأحماض قادرة على إزالة الطبقة المخملة لتتيح تفاعل باقي بنية الفلز مع الحمض، مع تشكّل الأملاح الموافقة وانطلاق غاز الهيدروجين.[68] بالمقابل، فإن الزنك النقي جداً (99.999 %) يتفاعل ببطء عند درجة حرارة الغرفة.[68] كما ينحل الزنك أيضاً في المحاليل القلوية؛ ففي المحاليل القلوية الضعيفة الحاوية على أيونات الزنك الثنائي 2+Zn يتشكل هيدروكسيد الزنك Zn(OH)2 على هيئة راسب أبيض [ملاحظة 81]؛ أما في المحاليل القلوية القوية فإن ذلك الراسب ينحل ليتشكل ملح الزنكات [ملاحظة 82] 2−[Zn(OH)4].[68]
هناك شبه تطابق في قيمة نصف القطر الأيوني [ملاحظة 83] للزنك ووللمغنيسيوم؛ ولذلك فإن أملاحهما الموافقة تكون ذات بنية بلورية [ملاحظة 84] مشابهة؛[69] كما هناك تشابه عام في الخواص الكيميائية بينهما.[68] من جهة أخرى، يختلف الزنك عن جيرانه من باقي عناصر الفلزات الانتقالية في الصف الأول، إذ لديه مدار d ممتلئ، ومركباته عديمة اللون (ذات لون أبيض)، وذات مغناطيسية معاكسة.[70] كما أن الزنك يميل إلى تشكيل روابط كيميائية ذات سمة تساهمية [ملاحظة 85]؛ كما يشكل معقدات أكثر استقراراً مع الكواشف المانحة للربيطات [ملاحظة 86] النتروجينية والكبريتية.[70] يكون الزنك في معقداته التناسقية رباعي أو سداسي التناسق غالباً؛ على الرغم من وجود بعض المعقدات خماسية التناسق.[68]
المركبات الكيميائية[عدل]
يعرف للزنك العديد من المركبات الثنائية [ملاحظة 87] مع أغلب أشباه الفلزات [ملاحظة 88] واللافلزات [ملاحظة 89] باستثناء الغازات النبيلة. تسيطر حالة الأكسدة +2 على أغلب كيمياء الزنك، ففي أغلب مركباته الكيميائية يكون الزنك ثنائي التكافؤ.[71] ولمركبات الزنك انحلالية جيدة في الماء، وفي محاليله المائية [ملاحظة 90] يكون المعقد ثماني السطوح [ملاحظة 91] 2+[Zn(H2O)6] هو النوع الكيميائي المسطير.[72]
من النادر أن يوجد الزنك في حالة الأكسدة +1، والتي قد تستحصل عند معالجة الزنك ومركباته عند درجات حرارة مرتفعة تتجاوز 285 °س.[68] يستدل على الأيون 2+[Zn2] من تشكل مركب لابلوري زجاجي أصفر اللون ذي مغناطيسية معاكسة، والناتج من حل الزنك الفلزي في مصهور كلوريد الزنك.[73] تشابه نواة 2+[Zn2] في المركب الناتج تلك التي في كاتيون 2+[Hg2] الموجودة في مركبات الزئبق الأحادي. أما السمة المغناطيسية المعاكسة في الأيون فتؤكد البنية ثنائية الوحدات [ملاحظة 92]. من جهة أخرى، لا تعرف مركبات كيميائية للزنك في حالة أكسدة موجبة غير +1 أو +2؛[74] فقد برهنت الحسابات النظرية أن حالة الأكسدة +4 غير ممكنة؛[75] في حين أن البرهان على وجود مركبات في حالة الأكسدة +3 أمر خلافي.[76][77][78]
اللاعضوية[عدل]
- الأكسيد
يوجد مركب أكسيد الزنك ZnO على هيئة صلب أبيض اللون، وتتبع بلوراته بنية وفق نظام بلوري سداسي؛ وهو غير منحل في الماء؛ كما أنه من المركبات المذبذبة [ملاحظة 93]، إذ ينحل في المحاليل الحمضية والقلوية القوية؛[68] ويستخدم هذا المركب في عدة مجالات، منها في مجال التلوين و صناعة الخضب [ملاحظة 94].[79]
- الهاليدات
كلوريد الزنك ZnCl2 هو مركب كيميائي أبيض اللون، وشديد الاسترطاب [ملاحظة 95]، وله العديد من الاستخدامات منها استخدامه صهارة [ملاحظة 96] في عمليات اللحام واللحام بالقصدير. أما فلوريد الزنك ZnF2 فهو مركب له بنية الروتيل [ملاحظة 97] وتتبع الزمرة الفراغية [ملاحظة 98] P42/mnm؛[80] وهو يستخدم في مجال فلورة [ملاحظة 99] المركبات العضوية، وفي تحضير خلايا التحليل الكهربائي للغلفنة، على سبيل المثال.[79] من بين الهاليدات [ملاحظة 100] الأربعة، فإن لفلوريد الزنك السمة الأيونية الأكبر، في حين أن الهاليدات الأخرى (الكلوريد ZnCl2 والبروميد ZnBr2 واليوديد ZnI2) ذات نقطة انصهار منخفضة نسبياً، وتكون السمة التساهمية واضحة فيها.[81]
- مركبات وأملاح أخرى
يوجد كبريتيد الزنك ZnS في الطبيعة على هيئة معدن السفاليريت، وهو أهم خامات الزنك؛ وهو يستخدم في مجال صناعة الخضب، وإبادة الفطريات [ملاحظة 101]، بالإضافة إلى استخدامه بكثرة في مجال البصريات، كما هو الحال أيضاً مع الكالكوجينات [ملاحظة 102] الأخرى مثل سيلينيد الزنك ZnSe وتيلوريد الزنك ZnTe.[82] أما كبريتات الزنك ZnSO4 فيستخدم بكثرة كاشفاً كيميائياً في مجال الكيمياء التحليلية؛ بالإضافة إلى استخدامه في مجال التبييض في صناعة اللب والورق. لمركب كربونات الزنك ZnCO3 استخدامات عدة، منها دخوله على هيئة مادة مالئة في صناعة اللدائن والمطاط، وفي مجال صناعة مستحضرات التجميل، وكذلك صناعة الخزف. يعد سيانيد الزنك Zn(CN)2 من المركبات السامة، ويستخدم في مجال الطلي [ملاحظة 103]، وكذلك إنتاج المبيدات الحشرية [ملاحظة 104]؛ وفي مجال تعدين الذهب.[79]
من المركبات اللاعضوية المعروفة للزنك أيضاً كل من نتريد الزنك Zn3N2، وفوسفيد الزنك Zn3P2، وزرنيخيد الزنك Zn3As2؛[83][84] بالإضافة إلى بيروكسيد الزنك ZnO2، وهيدريد الزنك ZnH2؛ وكذلك كربيد الزنك ZnC2.[85] تعرف أيضاً مركبات الزنك اللاعضوية التالية: نترات الزنك Zn(NO3)2، وكلورات الزنك Zn(ClO3)2، وفوسفات الزنك Zn3(PO4)2؛ بالإضافة إلى كرومات الزنك ZnCrO4، وهو مثال نادر على مركب ملون للزنك.[86]
هناك عدد من أملاح الزنك للأحماض العضوية؛ منها أسيتات الزنك Zn(CH3COO)2، وهو ملح أبيض اللون، ويستخدم في مجال حفظ الخشب [ملاحظة 105] وفي مجال صناعة اللواصق؛ بالإضافة إلى استخدامه في مجال الكشف عن الألبومين [ملاحظة 106] والعفص [ملاحظة 107] والفوسفات.[79]
العضوية[عدل]
هناك عدد قليل نسبياً من مركبات الزنك العضوية، وهي تلك الحاوية على رابطة تساهمية بين الزنك والكربون؛ ومن الأمثلة عليها مركب ثنائي إيثيل الزنك [ملاحظة 108]، والذي أعلن عن تحضيره أول مرة سنة 1848 من تفاعل فلز الزنك مع يوديد الإيثيل [ملاحظة 109]؛ وكان من أول المركبات التي برهن على وجود رابطة سيغما [ملاحظة 110] بين ذرة فلز وذرة كربون.[87]
التحليل الكيميائي[عدل]
يمكن أن يجرى التحليل الكمّي للزنك وفق معايرة تشكل المعقدات [ملاحظة 111] بمحلول معياري من ثنائي أمين الإيثيلين رباعي حمض الأسيتيك (EDTA) [ملاحظة 112]. أما الكشف عن الآثار النزرة من الزنك فتتم وفق طرائق عدة أيضاً، منها قياس الاستقطابية [ملاحظة 113]، أو القياس الفولتي [ملاحظة 114]، أو مطيافية كتلة مزوّدة ببلازما مقترنة بالحثّ [ملاحظة 115]. أما الكشف النوعي كيميائياً عن الزنك فيجرى بعدة طرائق، أبسطها بتسخين عينة مع بضع قطرات من محلول ممدد من ملح من أملاح الكوبالت على شريحة من أكسيد المغنيسيوم فوق لهب من موقد بنزن [ملاحظة 116]؛ وفي حال وجود الزنك فإن التفاعل يؤدي إلى ظهور أخضر الكوبالت [ملاحظة 117] (المعروف أيضاً باسم أخضر رينمان [ملاحظة 118]). كما يعطي اختبار اللهب التقليدي للكشف عن أيونات الزنك لوناً أزرق إلى أخضر مزرق.[88]
الدور الحيوي[عدل]
للزنك دور حيوي مهم، فهو ينتمي إلى مجموعة العناصر المعدنية الأساسية [ملاحظة 119]، وذلك بالنسبة للإنسان،[89][90][91] وكذلك بالنسبة لباقي الكائنات الحية من الحيوانات،[92] والنباتات،[93] والأحياء الدقيقة.[94] إذ يحتاج إلى الزنك من أجل دوره الوظيفي البارز في أكثر من 300 إنزيم وأكثر من 1000 عامل نسخ [ملاحظة 120]،[91] لذلك يخرن وينقل في بروتينات الميتالوثيونين [ملاحظة 121].[95][96] يعد الزنك ثاني أكثر عنصر معدني أساسي وفرةً في الجسم بعد الحديد؛ وهو العنصر المعدني الوحيد الداخل في تركيب جميع فئات الإنزيمات.[93][91] يشمل الدور الحيوي للزنك في جسم الإنسان طيفاً واسعاً من الوظائف؛[97][90] وهو يتآثر [ملاحظة 122] مع طيف واسع من الربيطات العضوية [ملاحظة 123]،[97] وله دور وظيفي في أداء الأحماض النووية DNA وRNA؛ وفي توصيل الإشارة [ملاحظة 124] والتعبير الجيني [ملاحظة 125]. كما توجد له العديد من الوظائف الأخرى التي لا زالت في طور الاستكشاف، إذ يوجد الزنك في حوالي 10% من بروتينات الجسم.[98]
يحوي جسم الإنسان تقريباً على كمية تتفاوت بين 2 إلى 4 غرام؛[99] وهي تتوزع في كامل الجسم، إذ توجد آثار منه في الدماغ والعضلات والعظام والكبد والكليتين وفي أجزاء من العين؛ وكذلك في البروستات؛[100] إذ أن المني غني بشكل خاص بالزنك، وله دور مهم في الأداء الوظيفي ونمو الأعضاء الجنسية الذكورية.[101] يتعلق استتباب [ملاحظة 126] الزنك داخل الجسم بالقناة الهضمية، والتي تحوي على بروتينات عبر غشائية ناقلة للزنك [ملاحظة 127] مثل ZIP4 وTRPM7، والتي تقوم بدور مهم في امتصاص الزنك من المصادر الغذائية.[102][103] تشكل أيونات الزنك روابط تناسقية إلى السلاسل الجانبية في الأحماض الأمينية [ملاحظة 128] في كل من حمض الأسبارتيك [ملاحظة 129] وحمض الجلوتاميك [ملاحظة 130] والسيستئين [ملاحظة 131] والهستيدين [ملاحظة 132]؛ فعلى سبيل المثال يسهل الهستيدين من امتصاص الزنك في المناطق الدماغية؛[104] وعموماً فقد بيّنت الدراسات باستخدام الوسائل الكيمياء المحوسبة [ملاحظة 133] والنظرية [ملاحظة 134] أن آلية ارتباط الزنك في البروتينات معقدة.[105] يخزن الزنك في الدماغ في حويصلات مشبكية [ملاحظة 135] نوعية بواسطة عصبونات غلوتامية [ملاحظة 136]، ويقوم هناك بدور في تعديل الإشارات العصبية؛[90][91][106] وفي اللدونة المشبكية [ملاحظة 137]؛[90][107] وعموماً فإن لاستباب الزنك دور مهم في التنظيم الوظيفي للجهاز العصبي المركزي.[90][106][90][108]
الإنزيمات[عدل]

الشريط التنظيمي لكاربونات الانهيداز 2 عند الإنسان مع ذرة الزنك واضحة في المركز أصابع الزنك تساعد في قراءة سلسلة DNA هذا المعدن له أيضًا هندسة تنسيقية مرنة تسمح بتشكيل البروتينات بسرعة والتحول إلى أجزاء التفاغلات البيولوجية .
بروتينات اخرى[عدل]
يساعد الزنك من خلال بنية التي تسمى أصابع الزنك حيث يركب بعض عمليات النسخ التي هي عبارة عن بروتينات تعرف ب(DNA) تسلسلها ونسخها. ربما يمكن للزنك أن يحمل في الميثالونين عند الكائنات الدقيقة أو في الخلايا المعوية أو الكبد للحيوانات ’ الميثالوثين في الخلايا المعوية قادر على ضبط امتصاص الزنك من 15-40%’ لذلك يمكن الإفراط في الزنك أن يكون ضار .
مرجع اختبارات الدم يبين الزنك في اللون الإرجواني في يمين الوسط .
التغذية والصحة[عدل]
الغذاء[عدل]
يتواجد الزنك في مختلف اللحوم الحمراء (من 50 مع إلى 120مغ للغرام الواحد)، في مختلف لحوم الأسماك و الدواجن.
و يتواجد أيضًا في الغذاء النباتي[109]، و بنسب متفاوتة، فالعديد من النباتات تحتوي على الزنك، إلا أن مقداره فيها يتغير وفق الكميات التي يتواجد بها في التربة.
فعلى سبيل المثال، يتواجد الزنك في الأفوكادو، في اللفت و الكرفس، الخردل، في البرسيم الحجازي (الفصة)، في بذور اليقطين وحب الشمس[110]، في السمسم، في الشوفان[111] و اللوز و الحمص و غيرها من البقوليات.
هناك أنواع من النباتات تحتوي على حمض الفيتيك كالشعير و القمح (بالضبط الغشاء المحيط بحبة القمح)، هذا الحمض يقوم بامتصاص بعض المواد المعدنية أهمها الزنك و الحديد، المنغنيز و الكالسيوم، وعند أكل هذه النباتات فإن حمض الفيتيك يقوم بامتصاص الزنك الفائض و يزيله من الجسم.
الزنك والصحة[عدل]
الزنك هو عنصر أساسي لحياة البشر والحيوان والنبات. فهو حيوي بالنسبة للكثير من الوظائف البيولوجية ويؤدي دورا حاسما في أكثر من 300 من الإنزيمات في الجسم البشري. أجسام البالغين تحتوي ما بين 2 و 3 جرام من الزنك. وهو يوجد في جميع أجزاء الجسم: الأعضاء الحيوية، الأنسجة، والعظام، الخلايا والسوائل. تحتوي العضلات والعظام على معظم مخزون الجسم من الزنك (90٪). إلا أن أعلى تركيز للزنك ضمن الحجم يقع ضمن غدة البروستاتا والسائل المنوي، ليأتي بعد ذلك العينين.
بفضل خصائصه العلاجية، يستخدم أوكسيد الزنك كعلاج لبعض الأمراض الجلدية لأنه مضاد للإلتهاب، لذا فهو يدخل في تركيب المراهم المضادة للإلتهاب و الحروق، و يعالج أمراضا شائعة كطفح الحفاضات وحب الشباب.[112]
المكملات الغذائية[عدل]
يدخل الزنك على شكل أقراص في تكوين العديد من الفيتامينات و المكملات الغذائية التي نتناولها في حياتنا اليومية، وتحتوي أيضًا على أكسيد الزنك وخلات الزنك حيث تجعلنا نملك خصائص مضادة للأكسدة، والتي تقي من تسارع شيخوخة الجلد والعضلات.
التوصيات اليومية[عدل]
التوصيات اليومية في الولايات المتحدة هي 8 مغ يومياً للنساء و11 مغ يومياً للرجال. إن متوسط الاستهلاك في الولايات المتحدة حوالي العام 2000 كان 9 مغ يومياً للنساء و14مغ يومياً للرجال.[113][114]
النقص[عدل]
نقص الزنك عند الإنسان يرجع عادة إلى عدم التغذية الكافية أو لسوء هضمه و امتصاصه مما يسبب أمراضا كالتهاب الجلد، أمراض الأمعاء، فقر الدم و ضعف الشهية، وكذلك بعض الأمراض الخارجية مثل الاكتئاب العجز والخمول. الفئات المُعرَّضة أكثر للأمراض الناتجة عن نقص الزنك هم المسنون والأطفال.
نقص الزنك له عواقب وخيمة على نمو الأطفال، بحيث يؤدي إلى نقص في الطول و الإصابة بالتأخر النمو البنيوي، فقد أظهرت دراسات للتدخلات التي أُجريت في عدة بلدان وجود علاقة إيجابية بين توفير جرع الزنك المكملة والنمو الخطي لدى الأطفال.[115] ويسبب نقصه أيضًا مرض الإسهال و التهابات الجهاز التنفسي.[116][117]
و تشير التقديرات إلى ما يقارب 2 مليار في العالم المتقدم يعانون من نقص الزنك.
المخاطر[عدل]
السمية[عدل]
على الرغم من أن الزنك هو شرط اساسي لصحة جيدة، يمكن أن يكون ضارا وهذا ما يمنع امتصاص الحديد والنحاس. أيون الزنك الحر في المحاليل أكثر خطورة فهو يسبب تسمم النباتات واللافقاريات وحتى الأسماك الفقارية وأيون حر هو نموذج نشيط قادر على قتل بعض الأعضاء. المعدة تحتوي على حمض الهيدروكلوريك ’حيث يمكن لمعدن الزنك أن يتحلل ليعطي كلوريد الزنك مما يسبب أضرار على بطانية المعدة بسبب ارتفاع درجة الحموضة ، أما مستويات الزنك التي تزيد على 500 جزء من المليون في التربة تسبب تداخل في قدرة النباتات على امتصاص المعادن الأساسية الأخرى مثل الحديد والمغنيسيوم.
في عام 1982 الولايات المتحدة زرعت مجموعة نباتات بالاعتماد على الزنك لكن كان تركيزه كبير مما سبب تسممها، ومن بين الحالات المزمنة التي كان ناتجها الموت هي 425 حالة امتصتها البكتيريا والفطريات، وكثير من الحالات التي تم دراستها أثبتت معاناة الإنسان من التسمم بواسطة الزنك من جراء ابتلاع قطع معدنية تحتوي عليه الذي يكون قاتلا في بعض الأحيان أو يسبب فقر الدم الشديد أو أمراض الكبد أو القصور الكلوي القيء، الإسهال وهذه الأعراض هي نتيجة التسمم بواسطة الزنك .
الأثر البيئي[عدل]
لإنتاج كبريتيد الزنك الخامات تعتمد بشكل كبير لإنتاج ثاني أكسيد الكبريت وانصهاره له مخلفات كثيرة مثل بخار الكاديوم عمليات تعدين الزنك خلفت آثار كبيرة على الأنهار ومختلف المناطق الخضراء المجاورة للمناجم وانتقال الزنك من المناجم حوالي 10 آلاف طن في السنة خلال 2005 الدراسات أثبتت أن هذه الانبعاثات المعدنية تنعكس على البشرية والطبيعة معا ولكن يمكن أن يؤثر سلبا على كمية الأكسجين عند الأسماك مثلا في نهر الراين.
الاستخدامات[عدل]
- عمل جلفنة الحديد
- صناعة البطاريات المختلفة بالإضافة لصناعة العلبة الخارجية للبطاريات الجافة.
- صناعة سبائك تستخدم في عمليات اللحام والطلاء
يستعمل الزنك في غلفنة الحديد وصناعة البطاريات المختلفة بالاضافة إلى صناعة العلبة الخارجية للبطاريات الجافة وصناعة سبائك تستخدم في عمليات اللحام والطلاء التسمية والدراسات القديمة الزنك عرف قديما من بين العناصر في الطب عند الهنود كتب عنها عند الملك الهندي مادونالا في 1374 وقد دخل الزنك في تركيب الكثير من المواد العضوية عند الهنود في القرن 13 أما الصينيون فلم يدرسوا هذه التقنية إلى غاية القرن 17.
مختلف الرموز الكيميائية التي تمثل عنصر الزنك
أحرق الكيميائيون هذا باكسيد الزنك سمي هذا المعدن ربما من قبل مقالة ل paracelsus أولا وهو كيميائي ألماني سويسري الأصل والذي أطلق عليه zencuim أو zenken في كتابة المعادن 2 الحرة في القرن 16 وصل الكثير من الكيميائيين إلى عزل معدن الزنك في دول الغرب والقاموس العالمي postleway هو مصدر علمي وتكنولوجي عند الاروبيين لم يشر إلى الزنك قبل 1751 ورغم ذلك قد تم دراسته قبل ذلك في عام 1738، وليام شامبيوا من بريطانيا درس استخراج الزنك من الكلامين وتكنولوجيته كانت مشابهة إلى التقنيات المستعملة في «زاوارا» منجم الزنك في راجستان، ولكن ليس هناك دليل على أنه زار المشرق، وتقنيته استعملت خلال عام1851. الكيميائي الألماني اندرياس مغراف منح منحة من أجل اكتشاف الزنك النقي من خلال دراسات الكيميائي السويدي انطون فون سواب الذي استخلص الزنك من الكلامين 4 سنوات من قبله في تجارب عام 1746’ ماغراف أخلط الكلامين والكحول في وعاء مغلق من دون النحاس للحصول على المخدن، وهذه الطريقة أصبحت كيميائيا مستعملة عام 1752 الأعمال الأخيرة الغلفنة سميت نسبة للوجي غالفاني أخو ويليام المسمى جون اخترع في عام 1758 طريقة التكليس كبريت الزنك إلى أكسيد قابل للاستخدام. حيث يمكن استعمال الكالمين فقط لإنتاج الزنك في 1798جوهان كريستان برهن طريقة بناء الانصهار الأولي استحدم الزنك في الغلفنة الأول مرو من قبل غالفاني، وحاول صديقه اليساندرو مواصلة أبحاثه وتم اكتسلف البطارية الفولطية 1800 يرجع عدم تمغنط الزنك إلى عدم تلونه في المحاليل ومنه اكتشف أهميته الكيميائي والغذائية.
التطبيقات[عدل]
تطبيقات الزنك تشمل ما يلي: الغلفنة 59%، النحاس والبرونز 10%، المواد الكيمائية 6.0%متفرقات 2.5% مكافحة التآكل والبطاريات

غالبًا ما يستعمل الزنك لمكافحة التآكل وهو طلاء على معدن الحديد يحارب التآكل على المعدن الزنك أكثر تفاعلا من الحديد أو الصلب وبالتالي هذا ما يسمح بالأكسدة المحلية حتى يتأكسد ويفسد تماما و يستعمل الزنك في المعادن التي لها علاقة بمياه البحر مثل السفن مما يمنع تآكل الحديد يستعمل الزنك كقطب معدني في البطاريات (بطاريات الليتيوم 3.04v والبطاريات الألكيلية.....الخ).
السبائك[عدل]
أكثر السبائك المستعملة التي تحتوي على الزنك هي سبائك النحاس وهذه السبائك عموما أقوى وأكثر مقاومة للتآكل وهذه الخصائص تجعلها أكثر استعمالا في أجهزة كثيرة.
استخدامات صناعية أخرى[عدل]

ما يقارب ربع الزنك يستعمل في الولايات المتحدة 2006 ويستهلك على شكل زنك مركب وفي مختلف النشاطات الصناعية أكسيد الزنك يستعمل كصباغة بيضاء في الطلاء.
أكسيد الزنك يستعمل كصباغة بيضاء في الطلاء غالبًا ما يضاف كلوريد الزنك إلى الأخشاب كمثبط للنار، كما يمكن استخدامه كمادة حافظة للخشب، كما يستعمل لتركيب مواد كيميائية أخرى كما اقترح استعمال الزنك كمادة معدنية لصناعة الأسلحة النووية والكوبالت هو مادة أخرى معروفة للتصليح المعدني.
طالع أيضاً[عدل]
![]() |
في كومنز صور وملفات عن: زنك |
الهوامش[عدل]
- ^ أو الخارَصِين [ar 1][ar 2] أو التُوتِياء [ar 3]
- ^ Hemmoor
- ^ brass
- ^ Charaka Samhita
- ^ pushpanjan
- ^ Relitto del Pozzino
- ^ Calamine
- ^ Strabo
- ^ Theopompus
- ^ Bern zinc tablet
- ^ votive plaque (Ex-voto)
- ^ Rajasthan
- ^ Rasaratna Samuccaya
- ^ Yasada (Jasada)
- ^ lana philosophica
- ^ nix album
- ^ Paracelsus
- ^ zincum
- ^ zinken
- ^ Liber Mineralium II
- ^ Indian tin
- ^ tutanego
- ^ Andreas Libavius
- ^ P. M. de Respour
- ^ Étienne François Geoffroy
- ^ William Champion
- ^ vertical retort-style smelter
- ^ Anton von Swab
- ^ Andreas Sigismund Marggraf
- ^ calcining
- ^ retort process
- ^ Johann Christian Ruberg
- ^ Jean-Jacques Daniel Dony
- ^ Luigi Galvani
- ^ galvanic cell
- ^ galvanization
- ^ Cathodic protection
- ^ Alessandro Volta
- ^ Voltaic pile
- ^ electrolyte
- ^ carbonic anhydrase
- ^ active site
- ^ carboxypeptidase
- ^ parts per million (ppm)
- ^ Native element mineral
- ^ Base metal
- ^ Goldschmidt classification
- ^ chalcophile
- ^ Chemical affinity
- ^ Sphalerite
- ^ smithsonite
- ^ hemimorphite
- ^ wurtzite
- ^ hydrozincite
- ^ zinc bloom
- ^ Zincite
- ^ Adamite
- ^ Minrecordite
- ^ Franklinite
- ^ Rosh Pinah
- ^ Nyrstar
- ^ OZ Minerals
- ^ Umicore
- ^ extractive metallurgy
- ^ froth flotation
- ^ Roasting
- ^ leaching
- ^ pyrometallurgy
- ^ electrowinning
- ^ electrolysis
- ^ galvanised feedstock
- ^ electric arc furnace
- ^ Waelz process
- ^ base metal
- ^ Fracture
- ^ hexagonal close packing (hcp)
- ^ Forming
- ^ diamagnetic
- ^ Ferromagnetism
- ^ protective passivating
- ^ white precipitate
- ^ Zincate
- ^ Ionic radius
- ^ crystal structure
- ^ covalency
- ^ ligand
- ^ Binary compounds
- ^ Metalloid
- ^ Nonmetal
- ^ aqueous solution
- ^ octahedral complex
- ^ dimeric structure
- ^ amphoteric
- ^ Pigment
- ^ hygroscopic
- ^ Flux
- ^ Rutile Structure
- ^ Space group
- ^ Fluorination
- ^ halide
- ^ Fungicide
- ^ Chalcogen
- ^ Plating
- ^ Insecticide
- ^ Wood preservation
- ^ Albumin
- ^ Tannin
- ^ Diethylzinc
- ^ Ethyl iodide
- ^ Sigma bond
- ^ Complexometric titration
- ^ Ethylenediaminetetraacetic acid (EDTA)
- ^ Polarography
- ^ Voltammetry
- ^ Inductively coupled plasma mass spectrometry (ICP-MS)
- ^ Bunsen burner
- ^ Cobalt green
- ^ Rinman's green
- ^ essential trace element
- ^ transcription factor
- ^ metallothionein
- ^ interacts
- ^ organic ligands
- ^ signal transduction
- ^ gene expression
- ^ homeostasis
- ^ Zinc transporter transmembrane protein
- ^ amino acid side chains
- ^ aspartic acid
- ^ glutamic acid
- ^ cysteine
- ^ histidine
- ^ Computational chemistry
- ^ Theoretical chemistry
- ^ synaptic vesicles
- ^ glutamatergic neurons
- ^ synaptic plasticity
المراجع[عدل]
فهرس المراجع[عدل]
- بالعربية
- ^ "LDLP - Librairie Du Liban Publishers". www.ldlp-dictionary.com. مؤرشف من الأصل في 2019-12-31. اطلع عليه بتاريخ 2019-03-18.
- ^ "LDLP - Librairie Du Liban Publishers". www.ldlp-dictionary.com. مؤرشف من %20Dictionary%20 of%20Geography%20(Eng/Ar)/Zinc الأصل في 2020-01-10. اطلع عليه بتاريخ 2019-03-18.
{{استشهاد ويب}}
: تحقق من قيمة|مسار=
(مساعدة)< - ^ "LDLP - Librairie Du Liban Publishers". www.ldlp-dictionary.com. مؤرشف من %20Dictionary%20 of%20Geography%20(Eng/Ar)/Zinc الأصل في 2020-01-10. اطلع عليه بتاريخ 2019-03-18.
{{استشهاد ويب}}
: تحقق من قيمة|مسار=
(مساعدة)
- بالألمانية
- ^ Lehrbuch der Anorganischen Chemie. 102. Auflage (بالألمانية). 2007. p. 102. ISBN:978-3-11-017770-1.
{{استشهاد بكتاب}}
: يحتوي الاستشهاد على وسيط غير معروف وفارغs:|ناشر Walter de Gruyter, Berlin=
and|الأخير A. F. Holleman, E. Wiberg, N. Wiberg=
(help)
- بالإنجليزية
- ^ Greenwood & Earnshaw 1997، صفحة 1201
- ^ Craddock، Paul T. (1978). "The composition of copper alloys used by the Greek, Etruscan and Roman civilizations. The origins and early use of brass". Journal of Archaeological Science. ج. 5 ع. 1: 1–16. DOI:10.1016/0305-4403(78)90015-8.
- ↑ أ ب ت ث ج Lehto 1968، صفحة 822
- ^ Weeks 1933، صفحة 20
- ^ Craddock, P. T.؛ وآخرون (1998). "Zinc in India". 2000 years of zinc and brass (ط. rev.). London: British Museum. ص. 27. ISBN:978-0-86159-124-4.
- ^ Giachi، Gianna؛ Pallecchi، Pasquino؛ Romualdi، Antonella؛ Ribechini، Erika؛ Lucejko، Jeannette Jacqueline؛ Colombini، Maria Perla؛ Mariotti Lippi، Marta (2013). "Ingredients of a 2,000-y-old medicine revealed by chemical, mineralogical, and botanical investigations". Proceedings of the National Academy of Sciences. ج. 110 ع. 4: 1193–1196. Bibcode:2013PNAS..110.1193G. DOI:10.1073/pnas.1216776110. PMC 3557061. PMID 23297212.
- ↑ أ ب Emsley 2001، صفحة 501
- ^ Chambers 1901، صفحة 799
- ^ Craddock, P. T. (1998). "Zinc in classical antiquity". في Craddock, P.T. (المحرر). 2000 years of zinc and brass (ط. rev.). London: British Museum. ص. 3–5. ISBN:978-0-86159-124-4.
- ↑ أ ب Weeks 1933، صفحة 21
- ^ Rehren، Th. (1996). S. Demirci؛ وآخرون (المحررون). A Roman zinc tablet from Bern, Switzerland: Reconstruction of the Manufacture. Archaeometry 94. The Proceedings of the 29th International Symposium on Archaeometry. ص. 35–45.
- ^ Willies, Lynn؛ Craddock, P. T.؛ Gurjar, L. J.؛ Hegde, K. T. M. (1984). "Ancient Lead and Zinc Mining in Rajasthan, India". World Archaeology. ج. 16 ع. 2, Mines and Quarries: 222–233. DOI:10.1080/00438243.1984.9979929. JSTOR 124574.
- ^ S. M. Gandhi (2000). chapter 2 in Crustal Evolution and Metallogeny in the Northwestern Indian Shield: A Festschrift for Asoke Mookherjee ,Ancient mining and metallurgy in Rajasthan. Alpha Science Int'l Ltd. ص. 46. ISBN:1-84265-001-7.
- ↑ أ ب Craddock، P. T.؛ Gurjar L. K.؛ Hegde K. T. M. (1983). "Zinc production in medieval India". World Archaeology. ج. 15 ع. 2: 211–217. DOI:10.1080/00438243.1983.9979899. JSTOR 124653.
- ↑ أ ب ت ث Emsley 2001، صفحة 502
- ↑ أ ب ت ث CRC 2006، صفحة 4–41
- ↑ أ ب ت ث Habashi، Fathi. "Discovering the 8th Metal" (PDF). International Zinc Association (IZA). مؤرشف من الأصل (PDF) في 2009-03-04. اطلع عليه بتاريخ 2008-12-13.
- ^ Vaughan، L Brent (1897). "Zincography". The Junior Encyclopedia Britannica A Reference Library of General Knowledge Volume III P-Z. Chicago: E. G. Melven & Company.
- ^ Castellani, Michael. "Transition Metal Elements" (PDF). مؤرشف (PDF) من الأصل في 2014-10-10. اطلع عليه بتاريخ 2014-10-14.
- ^ Habib، Irfan (2011). Chatopadhyaya، D. P. (المحرر). Economic History of Medieval India, 1200–1500. New Delhi: Pearson Longman. ص. 86. ISBN:978-81-317-2791-1. مؤرشف من الأصل في 2016-04-14.
- ^ Ray، Prafulla Chandra (1903). A History of Hindu Chemistry from the Earliest Times to the Middle of the Sixteenth Century, A.D.: With Sanskrit Texts, Variants, Translation and Illustrations (ط. 2nd). The Bengal Chemical & Pharmaceutical Works, Ltd. ج. 1. ص. 157–158. (public domain text)
- ^ البيروني. الجماهر في معرفة الجواهر.
- ^ الخوارزمي. مفاتيح العلوم. الفصل الثاني ص 279.
- ^ Arny، Henry Vinecome (1917). Principles of Pharmacy (ط. 2nd). W. B. Saunders company. ص. 483.
- ^ Hoover، Herbert Clark (2003). Georgius Agricola de Re Metallica. Kessinger Publishing. ص. 409. ISBN:978-0-7661-3197-2.
- ^ Gerhartz، Wolfgang؛ وآخرون (1996). Ullmann's Encyclopedia of Industrial Chemistry (ط. 5th). VHC. ص. 509. ISBN:978-3-527-20100-6.
- ^ Skeat, W. W (2005). Concise Etymological Dictionary of the English Language. Cosimo, Inc. ص. 622. ISBN:978-1-59605-092-1.
- ^ Fathi Habashi (1997). Handbook of Extractive Metallurgy. Wiley-VHC. ص. 642. ISBN:978-3-527-28792-5.
- ^ Jenkins، Rhys (1945). "The Zinc Industry in England: the early years up to 1850". Transactions of the Newcomen Society. ج. 25: 41–52. DOI:10.1179/tns.1945.006.
- ^ Lach، Donald F. (1994). "Technology and the Natural Sciences". Asia in the Making of Europe. University of Chicago Press. ص. 426. ISBN:978-0-226-46734-4.
- ^ Comyns، Alan E. (2007). Encyclopedic Dictionary of Named Processes in Chemical Technology (ط. 3rd). CRC Press. ص. 71. ISBN:978-0-8493-9163-7.
- ^ Marggraf (1746). "Experiences sur la maniere de tirer le Zinc de sa veritable miniere, c'est à dire, de la pierre calaminaire" [Experiments on a way of extracting zinc from its true mineral; i.e., the stone calamine]. Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin (بالفرنسية). 2: 49–57.
- ^ Heiserman 1992، صفحة 122
- ^ Gray، Leon (2005). Zinc. Marshall Cavendish. ص. 8. ISBN:978-0-7614-1922-8.
- ↑ أ ب ت Warren، Neville G. (2000). Excel Preliminary Physics. Pascal Press. ص. 47. ISBN:978-1-74020-085-1.
- ↑ أ ب "Galvanic Cell". The New International Encyclopaedia. Dodd, Mead and Company. 1903. ص. 80.
- ↑ أ ب ت Cotton et al. 1999، صفحة 626
- ^ Rieuwerts، John (2015). The Elements of Environmental Pollution. London and New York: Earthscan Routledge. ص. 286. ISBN:978-0-415-85919-6. OCLC:886492996.
- ↑ أ ب ت Greenwood & Earnshaw 1997، صفحة 1202
- ^ Webmineral (2023). "Mineral Species containing Zinc (Zn )". Mineral News. مؤرشف من الأصل في 2023-06-03.
- ↑ أ ب ت ث Sai Srujan، A.V (2021). "Mineral Commodity Summaries 2021: Zinc" (PDF). United States Geological Survey. مؤرشف (PDF) من الأصل في 2023-06-03. اطلع عليه بتاريخ 2021-06-21.
- ^ "Zinc Recycling". International Zinc Association. مؤرشف من الأصل في 2011-10-21. اطلع عليه بتاريخ 2008-11-28.
- ^ "Country Partnership Strategy—Iran: 2011–12". ECO Trade and development bank. مؤرشف من الأصل في 2011-10-26. اطلع عليه بتاريخ 2011-06-06.
- ^ "IRAN – a growing market with enormous potential". IMRG. 5 يوليو 2010. مؤرشف من الأصل في 2013-02-17. اطلع عليه بتاريخ 2010-03-03.
- ^ Gordon، R. B.؛ Bertram, M.؛ Graedel, T. E. (2006). "Metal stocks and sustainability". Proceedings of the National Academy of Sciences. ج. 103 ع. 5: 1209–14. Bibcode:2006PNAS..103.1209G. DOI:10.1073/pnas.0509498103. PMC 1360560. PMID 16432205.
- ^ Gerst، Michael (2008). "In-Use Stocks of Metals: Status and Implications". Environmental Science and Technology. ج. 42 ع. 19: 7038–45. Bibcode:2008EnST...42.7038G. DOI:10.1021/es800420p. PMID 18939524.
- ^ Meylan، Gregoire (2016). "The anthropogenic cycle of zinc: Status quo and perspectives". Resources, Conservation and Recycling. ج. 123: 1–10. DOI:10.1016/j.resconrec.2016.01.006.
- ^ Jasinski، Stephen M. "Mineral Commodity Summaries 2007: Zinc" (PDF). United States Geological Survey. مؤرشف (PDF) من الأصل في 2008-12-17. اطلع عليه بتاريخ 2008-11-25.
- ^ Erickson، R. L. (1973). "Crustal Abundance of Elements, and Mineral Reserves and Resources". U.S. Geological Survey Professional Paper ع. 820: 21–25.
- ^ Tolcin، A. C. (2009). "Mineral Commodity Summaries 2009: Zinc" (PDF). United States Geological Survey. مؤرشف (PDF) من الأصل في 2016-07-02. اطلع عليه بتاريخ 2016-08-04.
- ^ Attwood، James (13 فبراير 2006). "Zinifex, Umicore Combine to Form Top Zinc Maker". The Wall Street Journal. مؤرشف من الأصل في 2017-01-26.
- ↑ أ ب ت ث Porter، Frank C. (1991). Zinc Handbook. CRC Press. ISBN:978-0-8247-8340-2.
- ↑ أ ب ت Rosenqvist، Terkel (1922). Principles of Extractive Metallurgy (ط. 2nd). Tapir Academic Press. ص. 7, 16, 186. ISBN:978-82-519-1922-7.
- ^ Bodsworth، Colin (1994). The Extraction and Refining of Metals. CRC Press. ص. 148. ISBN:978-0-8493-4433-6.
- ^ Gupta، C. K.؛ Mukherjee, T. K. (1990). Hydrometallurgy in Extraction Processes. CRC Press. ص. 62. ISBN:978-0-8493-6804-2.
- ^ Antrekowitsch، Jürgen؛ Steinlechner، Stefan؛ Unger، Alois؛ Rösler، Gernot؛ Pichler، Christoph؛ Rumpold، Rene (2014)، "9. Zinc and Residue Recycling"، في Worrell، Ernst؛ Reuter، Markus (المحررون)، Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists
- ↑ أ ب Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A (بالإنجليزية), vol. 729, pp. 3–128, Bibcode:2003NuPhA.729....3A, DOI:10.1016/j.nuclphysa.2003.11.001, Archived from the original on 2017-08-09
- ↑ أ ب ت Alejandro A. Sonzogni (Database Manager)، المحرر (2008). "Chart of Nuclides". Upton (NY): National Nuclear Data Center, Brookhaven National Laboratory. مؤرشف من الأصل في 2008-05-22. اطلع عليه بتاريخ 2008-09-13.
- ↑ أ ب Heiserman 1992، صفحة 123
- ^ اكتب عنوان المرجع بين علامتي الفتح
<ref>
والإغلاق</ref>
للمرجعHolleman
- ^ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition p 1277 Oxford Science Publications (ردمك 0-19-855370-6)
- ^ Scoffern، John (1861). The Useful Metals and Their Alloys. Houlston and Wright. ص. 591–603. اطلع عليه بتاريخ 2009-04-06.
- ↑ أ ب "Zinc Metal Properties". American Galvanizers Association. 2008. مؤرشف من الأصل في 2015-03-28. اطلع عليه بتاريخ 2015-04-07.
- ^ Ingalls، Walter Renton (1902). "Production and Properties of Zinc: A Treatise on the Occurrence and Distribution of Zinc Ore, the Commercial and Technical Conditions Affecting the Production of the Spelter, Its Chemical and Physical Properties and Uses in the Arts, Together with a Historical and Statistical Review of the Industry". The Engineering and Mining Journal: 142–6.
- ^ Porter، Frank C. (1994). Corrosion Resistance of Zinc and Zinc Alloys. CRC Press. ص. 121. ISBN:978-0-8247-9213-8.
- ^ CRC 2006، صفحات 8–29
- ^ Hinds، John Iredelle Dillard (1908). Inorganic Chemistry: With the Elements of Physical and Theoretical Chemistry (ط. 2nd). New York: John Wiley & Sons. ص. 506–508.
- ↑ أ ب ت ث ج ح خ د Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Zink". Lehrbuch der Anorganischen Chemie (بالألمانية) (91–100 ed.). Walter de Gruyter. pp. 1034–1041. ISBN:978-3-11-007511-3.
- ^ CRC 2006، صفحات 12–11–12
- ↑ أ ب Greenwood & Earnshaw 1997، صفحة 1206
- ^ Ritchie، Rob (2004). Chemistry (ط. 2nd). Letts and Lonsdale. ص. 71. ISBN:978-1-84315-438-9.
- ^ Burgess، John (1978). Metal ions in solution. New York: Ellis Horwood. ص. 147. ISBN:978-0-470-26293-1.
- ^ Housecroft، C. E.؛ Sharpe، A. G. (2008). Inorganic Chemistry (ط. 3rd). Prentice Hall. ص. 739–741. ISBN:978-0-13-175553-6.
- ^ Brady، James E.؛ Humiston, Gerard E.؛ Heikkinen, Henry (1983). General Chemistry: Principles and Structure (ط. 3rd). John Wiley & Sons. ص. 671. ISBN:978-0-471-86739-5.
- ^ Kaupp M.؛ Dolg M.؛ Stoll H.؛ Von Schnering H. G. (1994). "Oxidation state +IV in group 12 chemistry. Ab initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides". Inorganic Chemistry. ج. 33 ع. 10: 2122–2131. DOI:10.1021/ic00088a012.
- ^ Samanta، Devleena؛ Jena، Puru (2012). "Zn in the +III Oxidation State". Journal of the American Chemical Society. ج. 134 ع. 20: 8400–8403. DOI:10.1021/ja3029119. PMID 22559713.
- ^ Fang، Hong؛ Banjade، Huta؛ Deepika؛ Jena، Puru (2021). "Realization of the Zn3+ oxidation state". Nanoscale. ج. 13 ع. 33: 14041–14048. DOI:10.1039/D1NR02816B. PMID 34477685. S2CID 237400349.
- ^ Schlöder، Tobias؛ وآخرون (2012). "Can Zinc Really Exist in Its Oxidation State +III?". Journal of the American Chemical Society. ج. 134 ع. 29: 11977–11979. DOI:10.1021/ja3052409. PMID 22775535.
- ↑ أ ب ت ث Australian Government (30.06.2022). "Zinc and compounds". Department of Climate Change, Energy, the Environment and Water.
{{استشهاد ويب}}
: تحقق من التاريخ في:|التاريخ=
(مساعدة) - ^ Greenwood & Earnshaw 1997، صفحة 1208
- ^ Greenwood & Earnshaw 1997، صفحة 1211
- ^ "Zinc Sulfide". American Elements. مؤرشف من الأصل في 2012-07-17. اطلع عليه بتاريخ 2009-02-03.
- ^ Academic American Encyclopedia. Danbury, Connecticut: Grolier Inc. 1994. ص. 202. ISBN:978-0-7172-2053-3.
- ^ "Zinc Phosphide". American Elements. مؤرشف من الأصل في 2012-07-17. اطلع عليه بتاريخ 2009-02-03.
- ^ Shulzhenko AA، Ignatyeva IY، Osipov AS، Smirnova TI (2000). "Peculiarities of interaction in the Zn–C system under high pressures and temperatures". Diamond and Related Materials. ج. 9 ع. 2: 129–133. Bibcode:2000DRM.....9..129S. DOI:10.1016/S0925-9635(99)00231-9.
- ^ Perry، D. L. (1995). Handbook of Inorganic Compounds. CRC Press. ص. 448–458. ISBN:978-0-8493-8671-8.
- ^ Frankland, E. (1850). "On the isolation of the organic radicals". Quarterly Journal of the Chemical Society. ج. 2 ع. 3: 263. DOI:10.1039/QJ8500200263.
- ^ Lide، David (1998). CRC- Handbook of Chemistry and Physics. CRC press. ص. Section 8 Page 1. ISBN:978-0-8493-0479-8.
- ^ Maret، Wolfgang (2013). "Chapter 12. Zinc and Human Disease". في Astrid Sigel؛ Helmut Sigel؛ Roland K. O. Sigel (المحررون). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. Springer. ج. 13. ص. 389–414. DOI:10.1007/978-94-007-7500-8_12. ISBN:978-94-007-7499-5. PMID 24470098.
- ↑ أ ب ت ث ج ح Prakash A، Bharti K، Majeed AB (أبريل 2015). "Zinc: indications in brain disorders". Fundam Clin Pharmacol. ج. 29 ع. 2: 131–149. DOI:10.1111/fcp.12110. PMID 25659970. S2CID 21141511.
- ↑ أ ب ت ث Cherasse Y، Urade Y (نوفمبر 2017). "Dietary Zinc Acts as a Sleep Modulator". International Journal of Molecular Sciences. ج. 18 ع. 11: 2334. DOI:10.3390/ijms18112334. PMC 5713303. PMID 29113075.
- ^ Prasad A. S. (2008). "Zinc in Human Health: Effect of Zinc on Immune Cells". Mol. Med. ج. 14 ع. 5–6: 353–7. DOI:10.2119/2008-00033.Prasad. PMC 2277319. PMID 18385818.
- ↑ أ ب Broadley، M. R.؛ White, P. J.؛ Hammond, J. P.؛ Zelko I.؛ Lux A. (2007). "Zinc in plants". New Phytologist. ج. 173 ع. 4: 677–702. DOI:10.1111/j.1469-8137.2007.01996.x. PMID 17286818.
- ^ Zinc's role in microorganisms is particularly reviewed in: Sugarman B (1983). "Zinc and infection". Reviews of Infectious Diseases. ج. 5 ع. 1: 137–47. DOI:10.1093/clinids/5.1.137. PMID 6338570.
- ^ Cotton et al. 1999، صفحات 625–629
- ^ Plum، Laura؛ Rink، Lothar؛ Haase، Hajo (2010). "The Essential Toxin: Impact of Zinc on Human Health". Int J Environ Res Public Health. ج. 7 ع. 4: 1342–1365. DOI:10.3390/ijerph7041342. PMC 2872358. PMID 20617034.
- ↑ أ ب اكتب عنوان المرجع بين علامتي الفتح
<ref>
والإغلاق</ref>
للمرجعHambridge2007
- ^ Djoko KY، Ong CL، Walker MJ، McEwan AG (يوليو 2015). "The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens". The Journal of Biological Chemistry. ج. 290 ع. 31: 18954–61. DOI:10.1074/jbc.R115.647099. PMC 4521016. PMID 26055706.
Zn is present in up to 10% of proteins in the human proteome and computational analysis predicted that ~30% of these ~3000 Zn-containing proteins are crucial cellular enzymes, such as hydrolases, ligases, transferases, oxidoreductases, and isomerases (42,43).
- ^ Rink، L.؛ Gabriel P. (2000). "Zinc and the immune system". Proc Nutr Soc. ج. 59 ع. 4: 541–52. DOI:10.1017/S0029665100000781. PMID 11115789.
- ^ Wapnir، Raul A. (1990). Protein Nutrition and Mineral Absorption. Boca Raton, Florida: CRC Press. ISBN:978-0-8493-5227-0.
- ^ Berdanier، Carolyn D.؛ Dwyer, Johanna T.؛ Feldman, Elaine B. (2007). Handbook of Nutrition and Food. Boca Raton, Florida: CRC Press. ISBN:978-0-8493-9218-4.
- ^ Mittermeier، Lorenz؛ Gudermann، Thomas؛ Zakharian، Eleonora؛ Simmons، David G.؛ Braun، Vladimir؛ Chubanov، Masayuki؛ Hilgendorff، Anne؛ Recordati، Camilla؛ Breit، Andreas (15 فبراير 2019). "TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival". Proceedings of the National Academy of Sciences. ج. 116 ع. 10: 4706–4715. Bibcode:2019PNAS..116.4706M. DOI:10.1073/pnas.1810633116. ISSN:0027-8424. PMC 6410795. PMID 30770447.
- ^ Kasana، Shakhenabat؛ Din، Jamila؛ Maret، Wolfgang (يناير 2015). "Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples". Journal of Trace Elements in Medicine and Biology. ج. 29: 47–62. DOI:10.1016/j.jtemb.2014.10.003. ISSN:1878-3252. PMID 25468189.
- ^ Yokel، R. A. (2006). "Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration". Journal of Alzheimer's Disease. ج. 10 ع. 2–3: 223–53. DOI:10.3233/JAD-2006-102-309. PMID 17119290.
- ^ Brandt، Erik G.؛ Hellgren، Mikko؛ Brinck، Tore؛ Bergman، Tomas؛ Edholm، Olle (2009). "Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site". Phys. Chem. Chem. Phys. ج. 11 ع. 6: 975–83. Bibcode:2009PCCP...11..975B. DOI:10.1039/b815482a. PMID 19177216.
- ↑ أ ب Bitanihirwe BK، Cunningham MG (نوفمبر 2009). "Zinc: the brain's dark horse". Synapse. ج. 63 ع. 11: 1029–1049. DOI:10.1002/syn.20683. PMID 19623531. S2CID 206520330.
- ^ Nakashima AS؛ Dyck RH (2009). "Zinc and cortical plasticity". Brain Res Rev. ج. 59 ع. 2: 347–73. DOI:10.1016/j.brainresrev.2008.10.003. PMID 19026685. S2CID 22507338.
- ^ Tyszka-Czochara M، Grzywacz A، Gdula-Argasińska J، Librowski T، Wiliński B، Opoka W (مايو 2014). "The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function" (PDF). Acta Pol. Pharm. ج. 71 ع. 3: 369–377. PMID 25265815. مؤرشف (PDF) من الأصل في أغسطس 29, 2017.
- ^ Foods & nutrition encyclopedia (ط. 2nd ed). Boca Raton: CRC Press. 1994. ISBN:0849389801. OCLC:28963802. مؤرشف من الأصل في 2019-12-31.
{{استشهاد بكتاب}}
:|طبعة=
يحتوي على نص زائد (مساعدة) - ^ "Food Composition Databases Show Foods List 12036". ndb.nal.usda.gov (بالإنجليزية). Archived from the original on 2019-02-12. Retrieved 2017-12-24.
- ^ 1904-1992.، Souci, S. Walter (Siegfried Walter), (2008). Food composition and nutrition tables : on behalf of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (ط. 7., revidierte und erg. Aufl.). Stuttgart: MedPharm Scientific Publishers. ISBN:9783804750388. OCLC:233572857. مؤرشف من الأصل في 2019-12-31.
{{استشهاد بكتاب}}
: صيانة CS1: extra punctuation (link) صيانة CS1: أسماء عددية: قائمة المؤلفين (link) - ^ [pmid:11586012 www.ncbi.nlm.nih.gov]
- ^ Book sources - Wikipedia, the free encyclopedia
- ^ Zinc - Wikipedia, the free encyclopedia
- ^ -منظمة الصحة العالمية. [1] نسخة محفوظة 14 يوليو 2017 على موقع واي باك مشين.
- ^ (en) Bhandari N et al. « Effectiveness of Zinc Supplementation Plus Oral Rehydration Salts Compared With Oral Rehydration Salts Alone as a Treatment for Acute Diarrhea in a Primary Care Setting: A Cluster Randomized Trial » Pediatrics 2008;121;e1279-e1285
- ^ (en) Aggarwal R et al. « Role of Zinc Administration in Prevention of Childhood Diarrhea and Respiratory Illnesses: A Meta-Analysis » Pediatrics 2007;119;1120-1130 نسخة محفوظة 17 مايو 2017 على موقع واي باك مشين.
المعلومات الكاملة للمصادر[عدل]
H | He | |||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |||||||||||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||||||||||
| ||||||||||||||||||||||||||||||||||||||||||
|