مجموعة قابلة للعد

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الرياضيات، مجموعة قابلة للعد (بالإنكليزية: Countable Set) هي مجموعة يمكن نسب كل عنصر من عناصرها لأحد أعداد مجموعة الأعداد الطبيعية. يمثل هذا العدد الطبيعي ترتيب ذلك العنصر في المجموعة. أول من استعمل هذا المصطلح هو جورج كانتور.

تعتبر المجموعة معدودة إذا كان عدد عناصرها منتهيا أو إذا كانت تحوي نفس عدد العناصر التي تحويها مجموعة الأعداد الطبيعية. قام كانتور بتقديم تعريف آخر للمصطلح وهو أن المجموعة تكون معدودة إذا أمكن مقابلة عناصرها واحدا لواحد مع مجموعة جزئية من الأعداد الطبيعية. فبما أن الأعداد الطبيعية هي المستعملة دوما بغرض العد فإن أي مجموعة تفوق هذه المجموعة بالحجم تعتبر مجموعة غير قابلة للعد.

الأحجام المختلفة للمجموعات غير المنتهية من اختصاص نظرية الأعداد الترتيبية.

تعريف[عدل]

تكون المجموعة S قابلة للعد إذا وجدت دالة متباينة مجموعة انطلاقها هي S ومجموعة وصولها هي {... ,N = {0, 1, 2, 3.

f\colon S \to \mathbb{N}

إذا كانت بالإضافة إلى ذلك f دالة شمولية (أي أنها دالة تقابلية بما أن كل دالة تباينية وشمولية هي دالة تقابلية), فإن المجموعة تدعى لامنتهية عديا.

مع هذا فإن بعض المؤلفين يستخدم مصطلح معدود countable ليدل على ما هو غير منته عديا.

إذا كانت S مجموعة غير فارغة عندئذ تكون العبارات التالية متكافئة :

  1. S مجموعة معدودة
  2. هناك دالة متباينة تحقق ما يلي :

f\colon S \to \mathbb{N}

  1. توجد دالة شمولية g حيث

g\colon \mathbb{N} \to S

انظر أيضا[عدل]

مراجع[عدل]