نظام معادلات خطية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
نظام خطي ذو ثلاث متغيرات، تحدد كل معادلة فيه مستوى. نقطة التقاطع هي حل هذا النظام.

في الرياضيات، نظام المعادلات الخطية (بالإنكليزية: System of linear equations) هي مجموعة من المعادلات الخطية, تضم نفس المجموعة من المتغيرات. على سبيل المثال:

\begin{alignat}{7}
3x &&\; + \;&& 2y             &&\; - \;&& z  &&\; = \;&& 1 & \\
2x &&\; - \;&& 2y             &&\; + \;&& 4z &&\; = \;&& -2 & \\
-x &&\; + \;&& \tfrac{1}{2} y &&\; - \;&& z  &&\; = \;&& 0 &
\end{alignat}

هو نظام معادلات خطية يضم ثلاث معادلات خطية تحوي ثلاث متغيرات هي x و y و z. حل نظام خطي ما تتمثل في إعطاء قيمة عددية لكل متغيراته حيث تتحقق جميع معادلاته في آن واحد. حل المثال السابق يعطي كما يلي:

\begin{alignat}{2}
x & = & 1 \\
y & = & -2 \\
z & = & -2
\end{alignat}

بما أن المعادلات الثلاثة تبقى صحيحة عند هاته القيم.

انظر إلى جبر خطي عددي وإلى نظام غير خطي وإلى تقريب (رياضيات) وإلى استخطاط وإلى نموذج رياضي.

%40+8700=%100

الشكل العام[عدل]

\begin{alignat}{7}
a_{11} x_1 &&\; + \;&& a_{12} x_2   &&\; + \cdots + \;&& a_{1n} x_n &&\; = \;&&& b_1 \\
a_{21} x_1 &&\; + \;&& a_{22} x_2   &&\; + \cdots + \;&& a_{2n} x_n &&\; = \;&&& b_2 \\
\vdots\;\;\; &&     && \vdots\;\;\; &&                && \vdots\;\;\; &&     &&& \;\vdots \\
a_{m1} x_1 &&\; + \;&& a_{m2} x_2   &&\; + \cdots + \;&& a_{mn} x_n &&\; = \;&&& b_m. \\
\end{alignat}

يمكن كتابة نظام المعادلات الخطية كمعادلات متجهة أو كمعادلات مصفوفة.

1. معادلات متجهة:


 x_1 \begin{bmatrix}a_{11}\\a_{21}\\ \vdots \\a_{m1}\end{bmatrix} +
 x_2 \begin{bmatrix}a_{12}\\a_{22}\\ \vdots \\a_{m2}\end{bmatrix} +
 \cdots +
 x_n \begin{bmatrix}a_{1n}\\a_{2n}\\ \vdots \\a_{mn}\end{bmatrix}
 =
 \begin{bmatrix}b_1\\b_2\\ \vdots \\b_m\end{bmatrix}

2. معادلات مصفوفة:

A\bold{x}=\bold{b}

A=
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix},\quad
\bold{x}=
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix},\quad
\bold{b}=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}

هناك عدة طرق احل جمل المعادلات الخطية وهي

[1]

مجموعة الحلول[عدل]

مجموعة حلول المعادلتين xy = −1 و 3x + y = 9 هي النقطة (2, 3).

قراءة هندسية[عدل]

الشكل العام[عدل]

مجموعة حلول معادلتين تحتويان على ثلاث متغيرات عادة ما تكون مستقيما.

خصائص[عدل]

الاستقلالية[عدل]

انظر إلى استقلال خطي.

المعادلات x − 2y = −1, 3x + 5y = 8, و 4x + 3y = 7 are linearly dependent.

التناسق[عدل]

المعادلتان 3x + 2y = 6 و 3x + 2y = 12 غير متناسقتين.

انظر إلى تناقض (منطق)

على سبيل المثال، المعادلتان

3x+2y=6 و \;\;\;\;3x+2y=12 غير متناسقتين.

التكافؤ[عدل]

حلحلة النظام الخطي[عدل]

هناك عدة خوارزميات تمكن من حلحلة نظام من المعادلات الخطية.

اقصاء المتغيرات[عدل]

\begin{alignat}{7}
 x &&\; + \;&& 3y &&\; - \;&& 2z &&\; = \;&& 5 & \\
3x &&\; + \;&& 5y &&\; + \;&& 6z &&\; = \;&& 7 & \\
2x &&\; + \;&& 4y &&\; + \;&& 3z &&\; = \;&& 8 &
\end{alignat}
\begin{alignat}{5}
-4y &&\; + \;&& 12z &&\; = \;&& -8 & \\
-2y &&\; + \;&& 7z &&\; = \;&& -2 &
\end{alignat}
\begin{alignat}{7}
 x &&\; = \;&& 5 &&\; + \;&& 2z &&\; - \;&& 3y & \\
 y &&\; = \;&& 2 &&\; + \;&& 3z && && & \\
 z &&\; = \;&& 2 && && && && &
\end{alignat}

تبسيط الصفوف[عدل]

انظر إلى مصفوفة ممتدة.

قاعدة كرامر[عدل]

قاعدة كرامر هي صيغة تمكن من حلحلة نظام من المعادلات الخطية، حيث يساوي كل متغير نسبة بين محددتين اثنتين. على سبيل المثال، حلحلة النظام التالي:

\begin{alignat}{7}
 x &\; + &\; 3y &\; - &\; 2z &\; = &\; 5 \\
3x &\; + &\; 5y &\; + &\; 6z &\; = &\; 7 \\
2x &\; + &\; 4y &\; + &\; 3z &\; = &\; 8 
\end{alignat}

تعطى بما يلي:


x=\frac
{\,\left| \begin{matrix}5&3&-2\\7&5&6\\8&4&3\end{matrix} \right|\,}
{\,\left| \begin{matrix}1&3&-2\\3&5&6\\2&4&3\end{matrix} \right|\,}
,\;\;\;\;y=\frac
{\,\left| \begin{matrix}1&5&-2\\3&7&6\\2&8&3\end{matrix} \right|\,}
{\,\left| \begin{matrix}1&3&-2\\3&5&6\\2&4&3\end{matrix} \right|\,}
,\;\;\;\;z=\frac
{\,\left| \begin{matrix}1&3&5\\3&5&7\\2&4&8\end{matrix} \right|\,}
{\,\left| \begin{matrix}1&3&-2\\3&5&6\\2&4&3\end{matrix} \right|\,}.

طرق أخرى[عدل]

الأنظمة المتجانسة[عدل]

انظر أيضا إلى معادلة تفاضلية متجانسة.

يقال عن نظام من المعادلات الخطية أنه متجانس إذا كانت جميع الحدود التي لا ترتبط بمتغيرات تساوي الصفر:

\begin{alignat}{7}
a_{11} x_1 &&\; + \;&& a_{12} x_2 &&\; + \cdots + \;&& a_{1n} x_n &&\; = \;&&& 0 \\
a_{21} x_1 &&\; + \;&& a_{22} x_2 &&\; + \cdots + \;&& a_{2n} x_n &&\; = \;&&& 0 \\
\vdots\;\;\; &&     && \vdots\;\;\; &&              && \vdots\;\;\; &&     &&& \,\vdots \\
a_{m1} x_1 &&\; + \;&& a_{m2} x_2 &&\; + \cdots + \;&& a_{mn} x_n &&\; = \;&&& 0. \\
\end{alignat}

مجموعة الحلول[عدل]

علاقتها بالأنظمة غير المتجانسة[عدل]

انظر أيضا[عدل]

مراجع[عدل]

وصلات خارجية[عدل]

Nuvola apps edu mathematics-ar.svg هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.