نهاية (رياضيات)

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
مواضيع في الحسبان
المبرهنة الأساسية
نهايات الدوال
استمرارية
مبرهنة القيمة المتوسطة

النهاية في الرياضيات، هي مفهوم أساسي في التفاضل والتكامل، وهي وببساطة القيمة التي تقترب منها قيمة دالة ما لدى اقتراب المتغير السيني من قيمة معينة (حتى يكاد الفرق بين هذه القيمة القريبة والقيمة الحقيقية يصل الصفر؛ قد يساويه إذا كانت الدالة ثابتة مثلا).[1][2][3] نشأ مفهوم النهاية في إطار الحاجة لحساب الأطوال والمساحات والأحجام لأشكال مثل الدائرة والكرة، ويعد مفهوم النهاية تطويرا لطريقة الاستنفاذ التي عرفها اليونانيون القدماء والتي استخدمها أرخميدس لحساب مساحة الدائرة.

ويتلخص مفهوم النهاية في أنه طريقة لإيجاد القيمة التي يجب أن يأخذها متغير تابع عندما يؤول المتغير المستقل إلى قيمة معينة، وذلك حتى عندما يتعذر حساب المتغير التابع مباشرة من قواعد الحساب والجبر.

كمثال: ما القيمة التي يصل إليها المقدار عندما تؤول إلى الصفر؟

من الواضح أن التعويض المباشر في هذه الصيغة يعطي خارج قسمة صفر على صفر، وهي كمية غير معينة، لذلك نلاحظ أن المقدار أقل من الواحد الصحيح وأكبر من لأي قيمة للمتغير قريبة من الصفر، وحيث أن فإننا نستنتج أن نهاية المقدار هي الواحد.

مثال آخر: فإذا افترضنا أن المتغير المستقل س معرف على المجال المفتوح ]+1,+2[ واقتربت س من منتصف المجال +1.5 دون أن تصل لها, ورافق ذلك أن الدالة تا(س)= س - 1.5 تقترب نتيجة ذلك من القيمة ولنقل (0) فهذا يعني أن نهاية التابع تا(س) هي 0 عندما تقترب س من القيمة +1.5.

إذا افترضنا أن الدالة معرفة على المجال المفتوح الذي يحتوي العدد وكان من مجموعة الأعداد الحقيقية:

وكان من أجل أي عدد يوجد عدد بحيث يتحقق الشرط:

مهما كانت ضمن المجال فإن:

فإن هذا يقتضي أن .

لنفترض أن الدالة (f(x هي دالة حقيقية وأن c عدد حقيقي أيضا:

عندئذ نقول:

مما يعني أن الدالة تكون قريبة جدا حسبما نريد من عندما تقترب من العدد ونعبر عن ذلك لغة (أن نهاية , عندما تقترب من , هي ).

مراجع[عدل]

  1. ^ Stewart، James (2008). Calculus: Early Transcendentals (الطبعة 6th). Brooks/Cole. ISBN 0-495-01166-5. 
  2. ^ Larson، Ron؛ Edwards، Bruce H. (2010). Calculus of a single variable (الطبعة Ninth). Brooks/Cole, Cengage Learning. ISBN 978-0-547-20998-2. 
  3. ^ [1]), la définition « historique » reste parfois celle enseignée : cf. par exemple Mathématiques L1, Cours complet avec 1 000 tests et exercices corrigés sous la direction de J.-P. Marco et L. Lazzarini (2007) Pearson, (ردمك 9782744072581 ), p. 691-692, ou encore Mathématiques. Tout-en-un pour la Licence. Niveau L1 sous la direction de J.-P. Ramis et A. Warusfel, قالب:2e éd., 2013, p. 568, قالب:Google Livres.

انظر أيضا[عدل]

Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.