شبه منحرف
شبه منحرف
|
شبه المنحرف[1] هو رباعي أضلاع يكون فيه اثنان من الأضلاع المتقابلة متوازيان. ويمكن تعريفه على أنه رباعي أضلاع له فقط ضلعين متقابلين متوازيين، وبذلك يتم استثناء متوازي الأضلاع من التعريف الذي غالباً ما يعتبر حالة خاصة من شبه المنحرف.
المساحة[عدل]
لتكن K مساحة شبه منحرف كيفي
K بدلالة القاعدتين الكبرى والصغرى والارتفاع تكون:
K بدلالة الأضلاع الأربعة تكون:
حيث أن:
K حسب علاقة بريتشنايدر:
الارتفاع[عدل]
ارتفاع شبه المنحرف بدلالة الأضلاع الأربعة يكون حسب العلاقة التالية:
القاعدتان[عدل]
القاعدتان الكبرى والصغرى لشبه منحرف كيفي بدلالة القطرين والضلعين الجانبيين حسب علاقة بن عيشة جمال الدين:
حيث أن AC=p، BD=q، AD=c و BC=d مع p لايساوي q.
يمكن استعمال علاقة جمال في اثبات توازي مستقيمين، حيث بالنسبة للشكل الذي لدينا: إذا كان 0<b² فإن a و b متوازيان، وإذا كان b²<0 فإن a و b غير متوازيين.
القطران[عدل]
يمكن حساب قطري شبه المنحرف انطلاقا من الأطوال الأربعة باستخدام العلاقة التالية:
مع p لايساوي q. الا في حالة ان يكون شبه المنحرف متطابق الساقين
انظر أيضًا[عدل]
مراجع[عدل]
- ^ قاموس المورد، البعلبكي، بيروت، لبنان.
وصلات خارجية[عدل]
![]() |
في كومنز صور وملفات عن: شبه منحرف |
جزء من سلسلة مقالات حول |
الهندسة الرياضية |
---|
![]() |
|
صفري الأبعاد |
وحيد البعد |
المُسطَّحات
|
ما فوق البعد الثالث |
علماء الهندسة |
وفق الاسم
|
وفق الحقبة
|
بوابة هندسة رياضية |