مصفوفة قابلة للعكس

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث

في الجبر الخطي، يقال عن مصفوفة مربعة A أنها قابلة للعكس (بالإنجليزية: Invertible matrix)‏ إذا وُجدت مصفوفة مربعة B حيث:

حيث In هي مصفوفة الوحدة وحيث الجداء المشار إليه في هذه الصيغة هو جداء المصفوفات الاعتيادي.[1][2][3]

معكوس مصفوفة هو المعكوس الضربى لها حيث يساوي حاصل ضرب المصفوفة في معكوسها مصفوفة الوحدة.[4][5]

خصائص[عدل]

مبرهنة المصفوفة القابلة للعكس[عدل]

لتكن A مصفوفة بُعدها هو n*n عرفت على حقل K (مجموعة الأعداد الحقيقية مثالا). النصوص التالية متكافئة مع بعضها البعض. أي أنهن بالنسبة لمصفوفة ما، جميعهن خاطئات أو جميعهن صحيحات.

  • المصفوفة A قابلة للعكس،
  • لا حلول للمعادلة Ax = 0 غير الحل البديهي 0.
  • أعمدة المصفوفة A مستقلة خطيا.
  • AT المصفوفة المنقولة للمصفوفة A، هي مصفوفة قابلة للعكس. هذا يجعل صفوف المصفوفة A مستقلة خطيا أيضا كما هن أعمدتها.

مثال[عدل]

لتكن المصفوفة التالية ذات البُعد الثاني:

هذه المصفوفة قابلة للعكس لكون محددها مختلفا عن الصفر. .

المصفوفة التالية غير قابلة للعكس لأن محددها يساوي الصفر:

كيا يظهر فيما يلي

طرق عكس مصفوفة[عدل]

لحساب معكوس المصفوفة، هناك عدة طرق لحساب معكوس المصفوفة واكثرها بساطة موصوف بالخوارزمية التالية: المدخل: مصفوفة (A(n*n. المخرج: A−1

  • نوسع المصفوفة ِA بإضافة دالة الوحدة عن يمينها
  • نبدا بالسطر الأخير للدالة A يجب أن نقوم بعمليات أساسية على السطر بحيث يصبح بالشكل التالي :(0001...0)
  • نقوم بما فعلناه من عمليات أساسية بنفس الترتيب على دالة الوحدة
  • نقوم بهذا لكل سطر بحيث يجب علينا القيام بالعمليات الأساسية حتى نحصل على المتجه المناسب أي : ان كنا في السطر i يجب
  • ان نجعل السطر ال-i بالشكل التالي: (000...0001...0)أي ان 1 يجب أن يكون في الخانة i
  • وبالقيام بما فعلناه في السطر ال-i على مصفوفة الوحدة نحصل في مصفوفة الوحدة على المصفوفة العكسية بينما في ِA على مصفوفة الوحدة
  • ان تعذر القيام بذلك فذلك يعني ان للمصفوفة لا يوجد معكوس.
  • حساب محددة المصفوفة والتأكد أنه لا يساوى صفر
  • حساب المصفوفة المرتبطة
  • حساب المعكوس

حذف غاوسي[عدل]

حذف غاوس-جوردان هو خوارزمية تمكن أن تستعمل من أجل تحديد ما إذا كانت مصفوفة ما قابلة للعكس أم لا ومن أجل تحديد هذا العكس إ.ذا كان موجودا.

طريقة نيوتن[عدل]

انظر إلى طريقة نيوتن

طريقة كايلي-هاميلتون[عدل]

انظر إلى مبرهنة كايلي-هاميلتون

التفكيك إلى جداء القيم الذاتية[عدل]

تطبيقات[عدل]

ايجاد معكوس مصفوفة[عدل]

يمكن إيجاد معكوس المصفوفة من القانون التالي:

حيث |A| يقصد بها محددة المصفوفة و adj A هي المصفوفة المرتبطة.

المصفوفة الشاذة[عدل]

المصفوفة الشاذة (singular matrix) هي المصفوفة التي ليس لها معكوس ويمكن تحديد ما إذا كانت المصفوفة شاذة أو لا إذا كانت 0=|A| فهي مصفوفة شاذة. في هذه الحالة يمكن الاستعانة بعملية مشابهة ألا وهي عملية شبه عكس المصفوفة.

خواص معكوس المصفوفة[عدل]

  1. معكوس حاصل ضرب مصفوفتين غير شاذتين يساوى حاصل ضرب معكوس كل من المصفوفتين
  2. معكوس مدور المصفوفة يساوى مدور معكوس المصفوفة

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ "معلومات عن مصفوفة قابلة للعكس على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 16 سبتمبر 2017. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. ^ "معلومات عن مصفوفة قابلة للعكس على موقع enciclopedia.cat". enciclopedia.cat. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. ^ "معلومات عن مصفوفة قابلة للعكس على موقع babelnet.org". babelnet.org. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  4. ^ "معلومات عن معكوس مصفوفة على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 20 سبتمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  5. ^ "معلومات عن معكوس مصفوفة على موقع psh.techlib.cz". psh.techlib.cz. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)

وصلات خارجية[عدل]