دوال مثلثية

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

في الرياضيات، الدوال المثلثية أو التوابع المثلثية هي دوال لزاوية هندسية. وهي دوال مهمة عندما يُراد دراسة مثلث أوعرض ظواهرِ دورية أو متكررة كالموجات. يمكن تعريف هذه الدوال نسبةً بين أضلاع مثلث قائم يَحتوي تلك الزاويةَ أَو بشكل أكثر عمومية إحداثياتٍ على دائرة مثلثية أو دائرة واحدية. يعتبر دوما عند الإشارة إلى المثلثات أن الحديث يدور حول مثلث في سطح مستوي (مستوى إحداثي أو إقليدي)، وذلك ليكون مجموع الزوايا 180 درجة دائما.

الدوال المثلثية الأكثر انتشارا هي دالة الجيب (يرمز إليها ب Sin) ودالة الجيب التمام (يرمز إليها ب Cos) ودالة الظل (يرمز إليها ب Tg أو Tan).

التعريف باستعمال المثلث قائم الزاوية[عدل]

A right triangle always includes a 90° (π/2 radians) angle, here labeled C. Angles A and B may vary. Trigonometric functions specify the relationships among side lengths and interior angles of a right triangle.

توجد ثلاثة دوال مثلثية أساسية هي:

  • الجيب، ويساوي النسبة بين الضلع المقابل للزاوية مقسوما على الوتر.
  • جيب التمام، ويساوي النسبة بين الضلع المجاور للزاوية مقسوما على الوتر.
  • الظل، ويساوي النسبية بين الضلع المقابل للزاوية والضلع المجاور لها.
اسم الدالة الاختصار الاختصار بالإنجليزية العلاقة
جيب جا sin \sin \theta = \cos \left(\frac{\pi}{2} - \theta \right) \,
جيب تمام جتا cos \cos \theta = \sin \left(\frac{\pi}{2} - \theta \right)\,
ظل ظا tan \tan \theta = \frac{1}{\cot \theta} = \frac{\sin \theta}{\cos \theta} = \cot \left(\frac{\pi}{2} - \theta \right)  \,
ظل تمام ظتا cot \cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \tan \left(\frac{\pi}{2} - \theta \right) \,
Secant أو قاطع قا sec \sec \theta = \frac{1}{\cos \theta} = \csc \left(\frac{\pi}{2} - \theta \right) \,
Cosecant أو قاطع تمام قتا csc \csc \theta =\frac{1}{\sin \theta} = \sec \left(\frac{\pi}{2} - \theta \right) \,

جيب زاوية والجيب التمام لزاوية وظل زاوية[عدل]

التعريف باستعمال الدائرة الوحدة[عدل]

يمكن أن تعرف الدوال المثلثية الستة بواسطة الدائرة الوحدة(دائرة شعاعها يساوي الواحد ومركزها هو أصل المَعلم).

يمكن هذا التعريف من تعريف الدوال المثلثية بالنسبة لجميع الأعداد الموجبة والسالبة وليس فقط الأعداد المحصورة بين الصفر و π/2 راديان.

التعريف باستعمال المتسلسلات[عدل]

دالة الجيب (باللون الأزرق) تحسب بصفة تقريبية اقترابا كبيرا بواسطة متعددة الحدود لتايلور من الدرجة السابعة (باللون الوردي) بالنسبة لدورة كاملة متمركزة حول أصل المَعلم.

الدوال المثلثية هي دوال تحليلية. يمكن تمثيل جميع الدوال المثلثية بواسطة متسلسة تايلور كالتالي:

الزاوية x مقاسة بالتقدير الدائري في جميع السلاسل التالية

جيب الزاوية:


\begin{align}
\sin x & = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\[8pt]
& = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1}, \\[8pt]
\end{align}

جيب تمام الزاوية:


\begin{align}
\cos x & = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \\
& = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!}.
\end{align}

تعتبر هاتان الصيغتان في بعض الأحيان تعريفيت لدالتي الجيب والجيب التمام. عادة ما تُستعملان نقطة بداية في إطار التطرق القوي والدقيق إلى الدوال المثلثية (على سبيل المثال متسلسلة فورييه).

ظل الزاوية:


\begin{align}
\tan x & {} = \sum_{n=0}^\infty \frac{U_{2n+1} x^{2n+1}}{(2n+1)!} \\
& {} = \sum_{n=1}^\infty \frac{(-1)^{n-1} 2^{2n} (2^{2n}-1) B_{2n} x^{2n-1}}{(2n)!} \\
& {} = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \cdots, \qquad \text{for } |x| < \frac{\pi}{2}.
\end{align}

قاطع تمام:


\begin{align}
\csc x & {} = \sum_{n=0}^\infty \frac{(-1)^{n+1} 2 (2^{2n-1}-1) B_{2n} x^{2n-1}}{(2n)!} \\
& {} = x^{-1} + \frac{1}{6}x + \frac{7}{360}x^3 + \frac{31}{15120}x^5 + \cdots, \qquad \text{for } 0 < |x| < \pi.
\end{align}

قاطع:


\begin{align}
\sec x & {} = \sum_{n=0}^\infty \frac{U_{2n} x^{2n}}{(2n)!}
= \sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!} \\
& {} = 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + \frac{61}{720}x^6 + \cdots, \qquad \text{for } |x| < \frac{\pi}{2}.
\end{align}

ظل تمام:


\begin{align}
\cot x & {} = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!} \\
& {} = x^{-1} - \frac{1}{3}x - \frac{1}{45}x^3 - \frac{2}{945}x^5 - \cdots, \qquad \text{for } 0 < |x| < \pi.
\end{align}

العلاقة بدالة الأس وبالأعداد العقدية[عدل]

يمكن أن يُبين من خلال التعريفات باستعمال المتسلسلات بأن دالتي الجيب والجيب التمام هما الجزء العقدي والجزء الحقيقي على التوالي، لدالة الأس المطبقة على الأعداد العقدية، حين يكون مدخلها عددا تخيليا صرفا:

 e^{i \theta} = \cos\theta + i\sin\theta. \,

تسمى هاته المتطابقة بصيغة أويلر. هكذا، تصير الدوال المثلثية مركزية وأساسية في الفهم الهندسي للتحليل العقدي.

قد تستعمل صيغة أويلر للحصول على بعض المتطابقات المثلثية، وذلك بكتابة دالتي الجيب والجيب التمام كما يلي:

 \sin\theta = \frac{e^{i \theta} - e^{-i \theta}}{2i} \;
 \cos\theta = \frac{e^{i \theta} + e^{-i \theta}}{2} \;

بالإضافة إلى ذلك، يمكن هذا الأمر من تعريف الدوال المثلثية على الأعداد العقدية.

انظر إلى دالة كاملة.

التعريف بواسطة المعادلات التفاضلية[عدل]

كل من دالتي الجيب والجيب التمام تحققان المعادلة التفاضلية التالية:

y'' = -y.\,

بتعبير آخر، كل منهما تساوي مقابل مشتقتها من الدرجة الثانية.

متطابقات[عدل]

هناك عدد من المتطابقات تربط الدوال المثلثية بعضها ببعض. تعتبر متطابقة فيتاغورس واحدة من أكثر المتطابقات انتشارا واستعمالا. تنص هاته المتطابقة على أن مجموع مربع جيب زاوية ما، ومربع الجيب التمام لهاته الزاوية يساوي واحدا.

\sin^2 x  + \cos^2 x  = 1, \,

حيث يرمزsin2 x + cos2 x إلى sin x)2 + (cos x)2).

 \sin(\frac\pi2-x) = \cos(x)

\cos(\frac\pi2-x) = \sin(x)

\cos(\pi-x)=\cos(\frac \pi2-(x-\frac \pi2))=\sin(x-\frac \pi2)=-\sin(\frac \pi2 -x)=-\cos(x)

\sin(\pi-x)=\sin(\frac \pi2-(x-\frac \pi2))=\cos(x-\frac \pi2)=\cos(\frac \pi2 -x)=\sin(x)

الحساب[عدل]

حساب قيم الدوال المثلثية موضوع صعب ومعقد.

الدوال العكسية[عدل]

الدوال المثلثية دورية، وبذلك، هي ليست تباينية, وبالتالي ليس لديها دالة عكسية. لهذا السبب، يصير من الضروري تقليص مجال تعريفها من أجل تعريف دالة عكسية، حتى الدوال المثلثية دوالا تقابلية.

الدالة التعريف مجال التعريف
 \arcsin x = y \,  \sin y = x \,  -\frac{\pi}{2} \le y \le \frac{\pi}{2} \,
 \arccos x = y \,  \cos y = x \,  0 \le y \le \pi \,
 \arctan x = y \,  \tan y = x \,  -\frac{\pi}{2} < y < \frac{\pi}{2} \,
 \arccsc x = y \,  \csc y = x \,  -\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0 \,
 \arcsec x = y \,  \sec y = x \,  0 \le y \le \pi, y \ne \frac{\pi}{2} \,
 \arccot x = y \,  \cot y = x \,  0 < y < \pi \,

يُمكن للدوال المثلثية العكسية أن تعرف بواسطة المتسلسلات تماما كما هو الحال بالنسبة للدوال المثلثية. على سبيل المثال،


\arcsin z = z + \left(\frac {1} {2} \right) \frac {z^3} {3} + \left(\frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left(\frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots\,.

خصائص وتطبيقات[عدل]

قانون الجيب[عدل]

انظر إلى قانون الجيب.

منحنى ليساجو, شكل كُون باستعمال دوال تعتمد على الداوال المثلثية.

قانون الجيب التمام[عدل]

انظر إلى قانون جيب التمام.

c^2=a^2+b^2-2ab\cos C, \,

وقد تكتب هاته الصيغة كما يلي:

\cos C=\frac{a^2+b^2-c^2}{2ab}.

قانون الظل[عدل]

قانون الظل التمام[عدل]

الدوال الدورية[عدل]

انقر على الصورة من أجل النظر إلى صورة متحركة of the additive synthesis of a موجة مربعية with an increasing number of harmonics

الدوال المثلثية مهمة أيضا في الفيزياء. انظر إلى الحركة التوافقية البسيطة.

التاريخ[عدل]

يمكن تتبع الدراسة في وقت مبكر من علم المثلثات إلى العصور القديمة، تم تطوير الدوال المثلثية لأنها تستخدم حتى اليوم. تم اكتشاف وظيفة الوتر (أطول ضلع من المثلث) من قبل هيبارخوس نيقية (180-125 قبل الميلاد) وبطليموس الروماني لمصر (90-165 م).

ويمكن إرجاع وظائف الجيب وجيب التمام وإلى jyā كوتي-jyā الدالات المستخدمة في الفترة غوبتا عالم الفلك الهندي (Aryabhatiya، SURYA Siddhanta)، عن طريق الترجمة من اللغة السنسكريتية إلى العربية ومن ثم من العربية إلى اللاتينية.

كانت تعرف كل ست وظائف المثلثية في الاستخدام الحالي في الرياضيات الإسلامية من القرن التاسع، كما كان قانون سينيسي ستخدم في حل المثلثات. اهتم الخوارزمي إنتاج جداول جيب التمام، وسينيس اهتم بالظلال.

أدلى مادافا من Sangamagrama (سي 1400) في وقت مبكر من خطوات تحليل الدوال المثلثية من حيث سلسلة لا نهاية لها.

نشرت أول استخدام من "الخطيئة" الاختصارات "كوس"، و"تان" هو من القرن 16 الفرنسي جيرار عالم الرياضيات ألبرت.

في ورقة نشرت في 1682، أثبت أن لايبنتز الخطيئة x هو ليس وظيفة جبري العاشر.

كان Introductio يونارد يولر في infinitorum analysin (1748) المسؤولة في الغالب لإنشاء المعاملة التحليلية للالدوال المثلثية في أوروبا، وتحديد أيضا على أنها سلسلة لا نهاية لها وتقديم "أويلر صيغة"، فضلا عن الخطيئة الاختصارات شبه الحديثة.، كوس، تانغ.، المهد، ثوانى.، ومجلس الشاحنين السنغالي. [5]

وعدد قليل من الوظائف المشتركة تاريخيا، ولكنها الآن نادرا ما تستخدم، مثل وتر (CRD (θ) == 2 الخطيئة (θ / 2))، وversine (versin (θ) = 1 - جتا (θ) = 2 sin2 (θ / 2)) (الذي ظهر في أقرب الجداول [5])، وhaversine (haversin (θ) = versin (θ) / 2 = sin2 (θ / 2))، وexsecant (exsec (θ) = ثانية (θ) - 1) وexcosecant (excsc (θ) = exsec (π / 2 - θ) == ديوان الخدمة المدنية (θ) - 1) يتم سرد العديد من العلاقات بين هذه الوظائف أكثر في المقالة حول الهويات المثلثية.

اشتقاقي، وشرط كلمة مشتقة من الكلمة السنسكريتية لوتر النصف، jya-رقصة العرضة، يختصر إلى جيفا. وقد ترجم هذا في اللغة العربية jiba، JB مكتوب، حروف العلة لا يتم كتابتها باللغة العربية. المقبل، وكان هذا سوء الترجمة ترجمة في القرن 12th إلى اللاتينية والجيوب الأنفية، تحت انطباع خاطئ بأن JB قفت لjaib الكلمة، التي تعني "حضن" أو "باي" أو "اضعاف" باللغة العربية، وكذلك الجيوب الأنفية في اللاتينية [28] وأخيرا، تحويل استخدام اللغة الإنجليزية في الجيوب الأنفية شرط أن الكلمة اللاتينية [29] الظل كلمة تأتي من اللاتينية بمعنى tangens "لمس"، منذ تلامس خط دائرة نصف قطرها وحدة، في حين ينبع من القاطع secans اللاتينية - "قطع "- منذ السطر يقطع الدائرة.

تمثيل بياني لدالة جيب التمام[عدل]

Cosinus.svg

تمثيل بياني لدالة الجيب[عدل]

Sinus.svg

الظل التمام لزاوية[عدل]

صورة (1)

ظل تمام الزاوية هو النسبة بين جيب التمام والجيب لنفس الزاوية أي مقلوب ظل الزاوية. يمكن التعبير عن ظل تمام الزاوية لزاوية x -معبرا عنها بالتقدير الدائري- بواسطة سلسلة تايلور التالية:


\begin{align}
\cot x & {} = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!} \\
& {} = x^{-1} - \frac{1}{3}x - \frac{1}{45}x^3 - \frac{2}{945}x^5 - \cdots, \qquad \text{for } 0 < |x| < \pi.
\end{align}

التظل هو مقلوب الظل ويساوي المجاور على المقابل. مثال:

Tan-ar.JPG

مثلا: طول الضلع [أج] =15 سنتمتر طول الضلع [أب] =10 سنتمتر طول الضلع [ج ب] (الوتر) =19 سنتمتر لحساب تظل(cotan) الزاوية ب : المجاور [أب] / المقابل [أج] 10 / 15 = 0.66 إذن: تظل(cotan) الزاوية ب هو: 0.66

إنظر أيضا[عدل]