تطابق (هندسة)

من ويكيبيديا، الموسوعة الحرة
اذهب إلى التنقل اذهب إلى البحث
المثلثان على اليسار متطابقان. المثلث الثالث هو مثلث مشابه لهما، بينما الشكل الرابع على اليمين ليس مطابقا ولا مشابها.

في الهندسة الرياضية التطابق هو تساوي ضلع وزوايا مضلع مع نظيره من المضلع الآخر.[1][2][3]

التَّساويُّ والتَّطابقُ[عدل]

التمييز بين التساوي والتَّطابق
أضلاع زوايا
التَطَابُقُ يكون بين العناصر
التَسَاوِيُّ يكون بين القياسات

التطابق[عدل]

تطابق الأضلاع[عدل]

يتطابق الضلع مع الآخر إذا تساوي طوله مع نظيره (الضلع الآخر).

تطابق الزاوية[عدل]

تطابق الزاوية إذا تساوت قياسها مع نظيرتها.

تطابق الدائرة[عدل]

تتطابق الدائرة إذا تساوي قطرها مع نظيره من الدائرة الأخرى.

التطابق في المثلثات[عدل]

يتميز المثلث بوجود حالات تطابق أخرى غير كل الزوايا والأضلاع وهذه الحالات أربعة إلى جانب حالة تطابق باقي المضلعات.

تساوي ضلعين وزاوية[عدل]

يتطابق المثلثان إذا تطابق ضلعين ونقطة التقائهم (الزاوية المحصورة بينهم) مع نظائرهما من المثلث الآخر.

تساوي زاويتين وضلع[عدل]

يتطابق المثلثان إذا تطابق زاويتان والضلع الذي يوصلهما ببعضهما مع نظائرهم من المثلث الآخر.

تساوي الأضلاع الثلاثة[عدل]

يتطابق المثلثان إذا تساوي كل ضلع مع نظائرهم من المثلث الآخر.

تساوي ضلع ووتر[عدل]

هذه الحالة يختص بها مثلث قائم حيث أنه إذا تساوى أي ضلع والوتر (الضلع المقابل للزاوية القائمة) مع المثلث الآخر.

ملحوظات[عدل]

لا يتطابق المثلثان إذا تساوت زواياه مع النظير، بل يقال عنهما متشابهان.

  • التطابق ليس التساوي في الطول او العدد.

مراجع[عدل]

  1. ^ "Congruence". Math Open Reference. 2009. تمت أرشفته من الأصل في 05 أكتوبر 2017. اطلع عليه بتاريخ 02 يونيو 2017. 
  2. ^ Parr، H. E. (1970). Revision Course in School mathematics. Mathematics Textbooks Second Edition. G Bell and Sons Ltd. ISBN 0-7135-1717-4. 
  3. ^ A Congruence Problem for Polyhedra | Mathematical Association of America نسخة محفوظة 02 أبريل 2017 على موقع واي باك مشين.
Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.