بورون

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
نجمة المقالة المرشحة للاختيار
هذه المقالة مرشحة حاليا لتكون مقالة مختارة ، شارك في تقييمها وفق الشروط المحددة في معايير المقالة المختارة وساهم برأيك في صفحة ترشيحها . تاريخ الترشيح: 23 أكتوبر/تشرين الأول 2014


كربونبورونبيريليوم
-

B

Al
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: أرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونشيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بالاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: أنون تريوم (Uut)
Element 114: فليروفيوم (Uuq)
Element 115: أنون بينتيوم (Uup)
Element 116: أنون هيكسيوم (Uuh)
Element 117: أنون سيبتيوم (Uus)
Element 118: أنون أوكتيوم (Uuo)
5B
المظهر
أسود - بني
الخصائص العامة
الاسم، العدد، الرمز بورون، 5، B
تصنيف العنصر شبه فلز
المجموعة، الدورة، المستوى الفرعي 13، 2، p
الكتلة الذرية 10.811غ·مول−1
توزيع إلكتروني He] 2s2 2p1]
توزيع الإلكترونات لكل غلاف تكافؤ 2, 3 (صورة)
الخصائص الفيزيائية
الطور صلب
كثافة السائل عند نقطة الانصهار 2.08 غ·سم−3
نقطة الانصهار 2349 ك، 2076 °س، 3769 °ف
نقطة الغليان 4200 ك، 3927 °س، 7101 °ف
حرارة الانصهار 50.2 كيلوجول·مول−1
حرارة التبخر 480 كيلوجول·مول−1
السعة الحرارية (25 °س) 11.087 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 2348 2562 2822 3141 3545 4072
الخصائص الذرية
أرقام الأكسدة 3, 2, 1[1]
(أكسيده متوسط الحموضة)
الكهرسلبية 2.04 (مقياس باولنغ)
طاقات التأين الأول: 800.6 كيلوجول·مول−1
الثاني: 2427.1 كيلوجول·مول−1
الثالث: 3659.7 كيلوجول·مول−1
نصف قطر ذري 90 بيكومتر
نصف قطر تساهمي 3±84 بيكومتر
نصف قطر فان دير فالس 192 بيكومتر
خصائص أخرى
المغناطيسية مغناطيسية معاكسة[2]
مقاومة كهربائية ~106 أوم·متر (20 °س)
الناقلية الحرارية 27.4 واط·متر−1·كلفن−1 (300 كلفن)
التمدد الحراري (الشكل ß بيتا) 5–7 [3] ميكرومتر·متر−1·كلفن−1 (25 °س)
سرعة الصوت (سلك رفيع) 16,200 متر/ثانية (20 °س)
صلادة موس ~9.5
رقم الكاس 7440-42-8
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر البورون
النظائر توافر طبيعي عمر النصف نمط الاضمحلال طاقة الاضمحلال (ميغا إلكترون فولت) ناتج الاضمحلال
10B 19.9(7)%* 10B هو نظير مستقر وله 5 نيوترون

[4]

11B 80.1(7)%* 11B هو نظير مستقر وله 6 نيوترون

[4]

* إن محتوى البورون-10 يمكن أن تتراوح قيمته بين الحد الأدنى 19.1%
والحد الأعلى 20.3% في العينات الطبيعية، ويكون البورون-11 هو المتبقي.
[5]
ع · ن · ت

البورون (أو اختصاراً البور)[6] هو عنصر كيميائي له الرمز B والعدد الذرّي 5. يقع البورون ضمن عناصر الدورة الثانية وعلى رأس المجموعة الثالثة عشر في الجدول الدوري وذلك كعنصر مجموعة رئيسي، حيث أن مجموعته تسمّى باسمه، مجموعة البورون. إنّ عنصر البورون بشكله الفلزي الحر عبارة عن شبه فلز قليل الوفرة في الكون وعلى سطح الأرض، وغالباً ما يوجد متّحداً مع الأكسجين على شكل معادن البورات مثل البورق. لا يوجد البورون بشكل حر في الطبيعة، كما يصعب إنتاجه بالشكل النقي صناعياً لتشكيله مواد حراريّة حاوية على كمّيّات من الكربون وعناصر أخرى. هناك عدّة متآصلات للبورون، فالشكل اللابلوري عبارة عن مسحوق بني، في حين أن البورون البلّوري عبارة عن مادة صلبة سوداء اللون وقاسية، ذات موصلية كهربائية رديئة.

إنّ لمركّبات البورون تطبيقات مختلفة في صناعات عدّة. على سبيل المثال تستخدم مركّبات البورون كمواد مضافة في صناعة الألياف الزجاجية المستخدمة في مجال العزل ومواد البناء، كما تدخل في تركيب زجاج البوروسيليكات وفي صناعة الخزف، بالإضافة إلى صناعة الأسمدة، وفي مجال المنظّفات والمبيّضات.

لا توجد سمّيّة لأملاح البورات بالنسبة للثدييات، لكنّها بالمقابل سامة بالنسبة لمفصليات الأرجل، لذلك تستخدم كمبيدات حشرية. يستخدم حمض البوريك كمضاد ميكروبي، كما أن هناك عدة مضادات حيوية عضوية طبيعية حاوية على عنصر البورون. إن وجود عنصر البورون في التربة ضروري بالنسبة للنباتات، حيث أن مركبات البورون تلعب دوراً داعماً للجدار الخلوي في مختلف النباتات.

التاريخ وأصل التسمية[عدل]

إن تسمية بورون مشتقة من البورق (وذلك من الكلمة الفارسية بوره إلى العربية بورق منه إلى الإغريقية βοραχου والتي أصبحت البوراكس borax فيما بعد)،[7] وسمّي العنصر لاحقاً بالبورون على وزن كربون، وذلك لتشابههما في بعض الخصائص.

لوي جوزيف غي ـ لوساك

عرفت مركبات البورون منذ القدم، ففي مصر القديمة استخدم معدن النطرون من أجل تحنيط المومياءات، والذي كان يحوي، بالإضافة إلى بعض المركبات الأخرى، على البورات. منذ القرن الرابع للميلاد استعملت مركبات البورون في إمبراطورية الصين لإنتاج زجاج البورق، وعبر طريق الحرير انتقل إلى غرب أسيا، حيث ورد ذكر البورق في كتب جابر بن حيان حوالي سنة 700 بعد الميلاد. وصل زجاج البورق إلى أوروبا بواسطة الرحالة ماركو بولو، والذي جلبه إلى إيطاليا في القرن الثالث عشر ميلادي. وصف جورجيوس أغريكولا في القرن السادس عشر استعمال البورق كصهارة في علم الفلزات. في سنة 1777، عرف حمض البوريك في الينابيع الساخنة قرب فلورنسا تحت اسم sal sedativum، وكان يستعمل للأغراض الطبية. كان معدن الساسوليت المصدر الرئيسي للبورق في أوروبا حتى نهاية القرن التاسع عشر إلى أن جرى الاستيراد من مصادر أمريكية.[8][9] شاع إنتاج البورق في الولايات المتحدة نهاية القرن التاسع عشر بسبب كبر الكميات المنتجة، وكان فرانسيس ماريون سميث، والذي يعرف باسم ملك البورق، أحد الرواد في هذا المجال، حيث أسس شركة Pacific Coast Borax Company، مما أدى إلى انخفاض سعرها.[10]

لوي جاك تينار

عزل البورون كعنصر لأول مرة سنة 1808 من قبل لوي جوزيف غي ـ لوساك ولوي جاك تينار وذلك بإجراء عملية اختزال لمركب ثلاثي أكسيد البورون باستخدام البوتاسيوم.[11] استخدم غي ـ لوساك وتينار فلز الحديد لاختزال حمض البوريك عند درجات حرارة مرتفعة، وبيّنا من خلال أكسدة البورون بالهواء أن حمض البوريك هو ناتج لعملية الأكسدة هذه.[11][12]

بشكل منفصل، تمكن همفري ديفي لاحقاً سنة 1809 من عزل العنصر والتعرّف عليه، وذلك بإجراء عملية تحليل كهربائي لحمض البوريك.[13] وفي تجارب لاحقة استطاع ديفي عزل كميات كافية من البورون باختزال حمض البوريك بالبوتاسيوم بدل إجراء عملية التحليل الكهربائي، وسمّى العنصر الجديد باسم بوراسيوم boracium.[13]

تمكن يونس ياكوب بيرسيليوس من تحديد البورون كعنصر في سنة 1824، وذلك عن طريق اختزال ملح بوروفلوريد البوتاسيوم (رباعي فلوروبورات البوتاسيوم) باستخدام البوتاسيوم.[14] في وقت لاحق، تمكن فاينتراوب سنة 1909 من الحصول على البورون بشكل نقي، وذلك باختزال ثلاثي أكسيد البورون بالهيدروجين في قوس التفريغ.[15][16][17]

الوفرة الطبيعية[عدل]

قطعة من معدن الأوليكسيت

إن البورون عنصر نادر الوجود في المجموعة الشمسية وفي القشرة الأرضية، وذلك بسبب ندرة الكميات المتشكلة في الانفجار العظيم وفي النجوم، بحيث أن هذا العنصر ينتج بشكل كامل بواسطة تشظية الأشعة الكونية وليس عن طريق تفاعلات الانصهار النجمي.[18] يمكن أن يوجد العنصر بشكله الحر في الغبار الكوني وفي المواد المكونة للنيازك.

لا يوجد عنصر البورون بالشكل الحر على سطح الأرض، إنما مرتبطاً مع الأكسجين، وذلك بسبب المحتوى العالي من الأكسجين في غلاف الأرض الجوي. يمكن أن يتوافر البورون في الطبيعة إما على شكل أملاح بورات منحلة أو حمض البوريك، أو على شكل معادن مثل البورق. من معادن البورات المعروفة بالإضافة إلى البورق، كل من الكيرنيت والأوليكسيت والكوليمانيت، بالإضافة إلى معدن البوراسيت.

يوجد هناك كميات كبيرة من معادن البورات في محافظتي بالق أسير وأسكي شهر غربي تركيا،[19] وفي صحراء موهافي في الولايات المتحدة الأمريكية، كما توجد كميات أقل منها في ألمانيا وفي الأرجنتين.

التحضير والإنتاج[عدل]

التحضير المخبري[عدل]

في السابق كان البورون يحضر مخبرياً من اختزال ثلاثي أكسيد البورون بواسطة فلزات مثل المغنسيوم أو الألومنيوم، ويكون البورون الناتح بهذه الطريقة لابلورياً، كما غالباً ما يكون مشوباً ببوريدات الفلزات الموافقة.

\mathrm{B_{2}O_{3}\ +\ 3\ Mg\ \rightarrow\ 2\ B\ +\ 3\ MgO}

كما يمكن أن يحضر من التحليل الكهربائي لمزيج من أكسيد البورون مع أكسيد وفلوريد المغنسيوم.[6]

يمكن الحصول على البورون النقي البلوري من تسخين البورون اللابلوري إلى درجات حرارة تتجاوز 1400 °س، أو من اختزال هاليدات البورون المتطايرة مثل ثلاثي كلوريد البورون باستخدام غاز الهيدروجين على سلك من التنغستن المسخن إلى درجات حرارة مرتفعة.[6]

ينتج البورون عالي النقاوة والمستخدم في صناعة أشباه الموصلات عن طريق إجراء عملية تفكك حراري لمركب ثنائي البوران عند درجات حرارة مرتفعة، ومن ثم التنقية بواسطة تقنية الصهر النطاقي أو عملية تشوخرالسكي.[20]

الإنتاج الصناعي[عدل]

بلورات البورق.

إن مصادر البورون المهمة اقتصادياً هي معادنه مثل الكوليمانيت والكيرنيت والأوليكسيت بالإضافة إلى البورق. تشكل هذه المعادن حوالي 90% من الخامات الحاوية على البورون والتي يتم تعدينها. تقدر الاحتياطات العالمية من معادن البورون بأنها تفوق بليون طن متري، وأن الإنتاج العالمي من البورون يقدر بحوالي أربع ملايين طن سنوياً.[21]

تعد تركيا والولايات المتحدة الأمريكية أكبر الدول المصدرة لمنتجات البورون في العالم. إن أكبر احتياطي عالمي من الترسبات الحاوية على البورق توجد غربي تركيا، وذلك في محافظات أسكي شهر وكوتاهيا وبالق أسير.[22][23][24] تغطي تركيا حوالي نصف الطلب العالمي من البورون وذلك من خلال شركة إيتي للتعدين Eti Maden İşletmeleri، وهي شركة مناجم حكومية لها حقوق في استخراج معادن البورات.[25] في سنة 2012، استطاعت الشركة أن تمتلك 47% من حصة السوق في إنتاج معادن البورات متفوقة على منافستها الرئيسية وهي مجموعة ريو تينتو.[26] تنتج مجموعة ريو تينتو حوالي ربع الإنتاج العالمي من البورون، وذلك من منجم ريو تينتو للبورق، والذي يقع في تجمع بورون في مقاطعة كيرن في ولاية كاليفورنيا الأمريكية.[27][28]

إن متوسط كلفة البورون البلوري تبلغ 5 دولار أمريكي لكل غرام.[29] أدى ازدياد الطلب على حمض البوريك إلى توجه المستثمرين إلى تأسيس منشآت إضافية. ففي تركيا افتتحت شركة إيتي للتعدين مصنعاً جديداً سنة 2003 لإنتاج حمض البوريك بالقرب من مدينة إيميت وذلك بطاقة إنتاجية تبلغ مئة ألف طن سنوياً. بالمقابل، عمدت مجموعة ريو تينتو إلى زيادة استطاعتها الإنتاجية السنوية من 260 ألف إلى 310 ألف طن سنة 2005، ومنه إلى 366 ألف طن سنة 2006. تعد الصين واحدة من أكبر الدول المستوردة لمشتقات البورون، حيث تضاعفت الكمية المستوردة من البورق حوالي مئة مرة بين سنتي 2000 و 2005، كما ازداد نسبة الاستيراد من حمض البوريك بحوالي 28% خلال الفترة نفسها.[30][31] من المتوقع أن يبقى الطلب على مشتقات البورون متزايداً في آسيا بنسبة ازدياد تصل إلى 5.7% سنوياً.[30][32]

النظائر[عدل]

للبورون نظيرين مستقرين، 10B و 11B. أكثرهما وفرة طبيعية هو النظير بورون-11، الذي يشكل 80.1%، في حين أن بورون-10 يشكل 19.9%. هناك 13 نظيراً معروفاً للبورون، أقصرها عمراً هو النظير بورون-7، حيث أن عمر النصف له يبلغ 3.5×10−22 ثانية، والذي يضمحل عن طريق إصدار بروتوني واضمحلال ألفا. يكون للنظير 17B نواة من النمط هالو، مما يعني أن نصف قطر هذه النواة أكبر مما هو متوقع حسب نموذج القطرة.[33] تجدر الإشارة إلى أن النظائر بورون-8 و بورون-19 لها نواة من النمط هالو أيضاً.

إن التجزئة النظيرية لنظيري البورون يتم التحكم بها من خلال تفاعلات التبادل لأنواع البورون B(OH)3 و [B(OH)4] (رباعي هيدروكسي بورات). كما تحدث هذه التجزئة خلال تبلور المعادن ومن خلال تغيرات أطوار الماء في الأنظمة الحرارية المائية (الحرمائية)، ومن خلال التحول الحرمائي للصخور. يلعب الأثر الأخير دوراً في الإزالة المفضّلة لأيون [10B(OH)4] في الغضار، والتي تؤدي إلى تخصيب المحاليل ب 11B(OH)3، وبالتالي يمكن أن تكون مسؤولة عن تخصيب كبير للنظير 11B في مياه البحار مقارنة مع مياه المحيطات والقشرة الأرضية؛ وهذا الفرق يمكن أن يعد سمة نظيرية.[34]

تخصيب البورون[عدل]

البورون-10[عدل]

المقطع العرضي النيوتروني للبورون، (الخط البياني العلوي هو للنظير 10B والسفلي للنظير 11B)

يعد النظير بورون-10 10B جيداً في اصطياد النيوترونات الحرارية، وذلك بسبب ارتفاع قيمة المقطع العرضي النيوتروني، لذلك فإنه في المنشآت النووية يجري تخصيب البورون للحصول على بورون-10 بشكل شبه كامل.[35]

طورت العديد من التقنيات لتخصيب البورون على مستوى صناعي، ولكن تبقي طريقة التقطير التجزيئي تحت الفراغ لناتج إضافة ثنائي ميثيل الإيثر إلى ثلاثي فلوريد البورون (DME-BF3) وطريقة استشراب العمود للبورات هي الطرق الأكثر استخداماً.[36][37]

العلاج باصطياد النيوترون[عدل]

يستخدم البورون-10 كواقي من الإشعاع وكنويدة أولية في طريقة علاج باصطياد النيوترون بالبورون BNCT. في هذه الطريقة يتم إضافة النظير 10B إلى المادة الدوائية عن طريق الوسم النظيري. تعطى هذه المادة بشكل انتقائي للمريض المصاب بالسرطان بحيث أنها تتركز في منطقة الورم الخبيث والأنسجة المحيطة به. يعرض المريض بعد ذلك إلى حزمة مخففة الشدة من أشعة النيوترونات منخفضة الطاقة.

نتيجة هذا التعرض للأشعة، يحدث تفاعل نووي داخل جسم المريض بين النيوترونات منخفضة الطاقة وبين البورون-10 المتركز في منطقة الورم، وينتج عنه جسيمات ألفا و نوى ليثيوم-7. هذا الإشعاع الأيوني يتسلط على الورم داخل خلايا الورم نفسه.[38][39][40][41]

المفاعلات النووية[عدل]

في المفاعلات النووية، يستخدم 10B من أجل ضبط تفاعل الانشطار وكوسيلة إطفاء سريع للمفاعل. يتوافر البورون-10 عادة إما على شكل قضبان تحكم مصنوعة من البوروسيليكات أو على شكل حمض البوريك. في مفاعلات الماء المضغوط يضاف حمض البوريك إلى مبردات المفاعل عندما تطفأ المنشأة من أجل إعادة التزود بالوقود. أثناء التشغيل وبعد مضي عدة أشهر، يجرى التخلص من الحمض بشكل تدريجي حيث أن المادة الانشطارية تصبح أقل نشاطاً وفاعلية.[42]

البورون المنضب[عدل]

إن البورون المنضب (بورون-11) هو الناتج الثانوي من استخدام البورون المخصب (بورون-10) في المنشآت النووية.[42] يستخدم البورون-11 في تركيب أشباه الموصلات المقساة ضد الإشعاع الداخلة في تركيب الأجهزة الإلكترونية في المركبات الفضائية. السبب يعود إلى أن الأشعة الكونية تولد نيوترونات عندما تصطدم بمكونات المركبة الفضائية، وهذه النيوترونات سيتم اصطيادها بواسطة البورون-10 في حال عدم استخدام البورون المنضب، مما يؤدي إلى حدوث تفاعل نووي وتشكل جسيمات ألفا بالإضافة إلى أشعة غاما وأيونات ليثيوم، والتي تسبب فقدان البيانات في المعالجات ومشاكل تقنية مشابهة.

الخصائص الفيزيائية[عدل]

إن البورون شفاف بالنسبة للأشعة تحت الحمراء، ويظهر عند درجة حرارة الغرفة ناقلية كهربائية ضعيفة، تزداد بارتفاع درجة الحرارة. إن قيمة مقاومة الشد للبورون لها أعلى قيمة من بين جميع العناصر الكيميائية، كما أن له ثاني أعلى قيمة صلادة، وذلك بعد الكربون على شكل الألماس. يكون لأشكال البورون المختلفة تشابه فيزيائي وكيميائي في الخصائص مع مواد سيراميكية صلدة مثل كربيد التنغستن.

متآصلات البورون[عدل]

قطع من البورون

يشبه البورون الكربون في مقدرته على الوجود بعدة متآصلات ثابتة، حيث أن البورون يستطيع أن يشكل شبكة جزيئية مترابطة تساهمياً. حتى البورون اللابلوري يحوي على مجموعات من عشرينيات السطوح، والتي ترتبط مع بعضها البعض بشكل عشوائي دون انتظام.[43][44]

إن البورون البلوري مادة قاسية جداً سوداء اللون لها نقطة انصهار مرتفعة تتجاوز 2000 °س. يوجد البورون البلوري في أربعة أشكال رئيسية، وهي المعيني-α والمعيني-β (يرمز لها α-R و β-R على الترتيب) ورباعي السطوح-γ ورباعي السطوح-β (يرمز له β-T أو مجرد T). هناك شكل إضافي وهو رباعي السطوح-α، ولكنه من الصعب جداً الحصول عليه دون وجود شوائب.

إن الأشكال α و β و T تعتمد في تكوينها على عشرينيات السطوح B12، في حين أن الشكل γ يكون تركيبه مشابهاً لترتيب ملح كلوريد الصوديوم وذلك بالنسبة للأزواج الذرية من عشرينيات السطوح و B2.[45] يحصل على الشكل γ بتعريض الأشكال الأخرى من البورون البلوري إلى ضغوط مرتفعة تتراوح بين 12 إلى 20 غيغاباسكال وبالتسخين إلى درجات حرارة بين 1500-1800 °س. يبقى الشكل γ على حاله حتى بعد إزالة الشروط القاسية من الضغط ودرجة الحرارة. يحصل على الشكل T تحت ضغوط مماثلة ولكن درجة الحرارة أعلى 1800–2200 °س. أما بالنسبة للشكلين α و β فيمكن أن يتواجدا في الشروط العادية من الضغط ودرجة الحرارة، مع كون الشكل β أكثر استقراراً.[45][46][47]

أظهرت التجارب أن ضغط البورون فوق 160 غيغاباسكال يعطي شكلاً جديداً من البورون، لم يعرف له تركيب حتى الآن، وهذا الشكل من البورون له موصلية فائقة عند درجات حرارة بين 6-12 كلفن.[48]

شكل البورون α-R β-R γ β-T
النظام البلوري معيني معيني معيني قائم رباعي
عدد الذرات/وحدة الخلية[45] 12 ~105 28
الكثافة (غ/سم3)[49][50][51][52] 2.46 2.35 2.52 2.36
صلادة فيكرز (غيغاباسكال)[53][54] 42 45 50–58
معامل الحجم (غيغاباسكال)[54][55] 185 224 227
فجوة النطاق (إلكترون فولت)[54][56] 2 1.6 2.1

الخصائص الكيميائية[عدل]

نموذج أنيون رباعي البورات، والموجود في بنية البورق Na2[B4O5(OH)4]·8H2O. تقوم ذرات الأكسجين (اللون الأحمر) بتشكيل جسور بين ذرات البورون (اللون الزهري)، في حين أن ذرات الهيدروجين (اللون الأبيض) تشكل مع الأكسجين مجموعات الهيدروكسل.

بسبب ارتفاع طاقة تأين البورون، فإنه لا يعرف له كاتيون 3+B. إن التوزيع الإلكتروني للبورون 1s22s22p1 تظهر أن ثلاثة إلكترونات فقط من الغلاف الثاني تكون متوفرة من أجل إنشاء روابط تساهمية، مما يسهم في إمكانية تشكيل روابط متعددة المراكز، مثل الروابط ثلاثية المركز، بالإضافة إلى مركبات مستقبلة للإلكترونات، أي حمض لويس. جرى التمكن مؤخراً من إنتاج مركب له ترابط بين ذرتي بورون B≡B، وذلك على شكل رابطة ثلاثية.[57]

ينتمي البورون إلى فصيلة أشباه الفلزات، وهو يشبه السيليكون في خصائصه الكيميائية أكثر من الألومنيوم. إن البورون البلوري خامل كيميائياً، ومقاوم لأثر حمض الهيدروفلوريك وحمض الهيدروكلوريك الساخن، ولا يظهر أثر حمض الفوسفوريك على البورون إلا عند درجات حرارة أعلى من 600°س. ولكن عند تفتيته إلى مسحوق ناعم فإنه يتفاعل مع الأحماض المركزة الساخنة عند درجات حرارة حوالي 200 °س مثل حمض النتريك وحمض الكبريتيك، بالإضافة إلى المؤكسدات المركزة والساخنة مثل فوق أكسيد الهيدروجين أو مزيج من حمض الكبريتيك وحمض الكروميك.[16]

إن معدل أكسدة البورون يعتمد على تبلوره وعلى حجم القطع المتفاعلة وعلى نقاوته وعلى درجة الحرارة. لا يتفاعل البورون مع أكسجين الهواء عند درجة حرارة الغرفة، ولكنه يحترق عند درجات حرارة مرتفعة أعلى من 700 °س ليشكل ثلاثي أكسيد البورون.[58]

\mathrm{4\ B\ +\ 3\ O_2\ \xrightarrow {\Delta}\ 2\ B_2O_3}

يخضع البورون إلى تفاعل هلجنة ليعطي الهاليدات الموافقة، فعلى سبيل المثال يعطي التفاعل مع البروم مركب ثلاثي بروميد البورون حسب التفاعل:

\mathrm{2\ B +\ 3\ Br_2\ \longrightarrow\ 2\ BBr_3}

كما يمكن الحصول على الهاليدات من تفاعل الهالوجين مع الأكسيد، مثلما يحصل على ثلاثي كلوريد البورون عملياً.[58]

عند إذابة أكسيد البورون B2O3 في الماء نحصل على حمض البوريك، والذي تكون مركبات الإستر الخاصة به مثل ثلاثي ميثيل البورات متطايرة،وتلون اللهب بلون أخضر قوي.

لهب أخضر من مركب ثلاثي ميثيل البورات

المركبات الكيميائية[عدل]

من مركبات البورون اللاعضوية المهمة مركباته مع هيدروجين على شكل بورانات، بالإضافة إلى مركباته مع الهيدروجين والنتروجين مثل البورازين B3N3H6، المتساوي إلكترونياً مع البنزين، لذلك يسمى البنزين اللاعضوي. هناك سلسلة من مركبات البورون العضوية مثل أحماض البورونيك المختلفة.

مركبات البورون اللاعضوية[عدل]

بنية ثلاثي فلوريد البورون، حيث تظهر الرابطة التناسقية بين الفلور ومدارات p الفارغة للبورون.

يكون للبورون حالة أكسدة من النمط III في مركباته، وهذا يتضمن مركبات الأكسيد والكبريتيد والنتريد والهاليدات الموافقة.[58]

تكون بنية ثلاثيات هاليد البورون ذات بنية جزيئية مستوية ثلاثية، وهي مركبات ذات طبيعة تساهمية.[6] تعد BX3 من أحماض لويس، حيث أنها تشكل نواتج ضم مع مانحات الأزواج الإلكترونية، والتي تدعى قواعد لويس. على ىسبيل المثال، فإن أيون الفلوريد F وثلاثي فلوريد البورون BF3 يتحدا سويةً ليشكلا أيون رباعي فلوروبورات، والذي يعد الأنيون الحامل للشحنة السالبة BF4 في حمض الفلوروبوريك HBF4. تتفاعل الهاليدات مع الماء لتعطي حمض البوريك.[58]

هناك عدة أكاسيد للبورون ثلاثي التكافؤ في الطبيعة، والتي غالباً ما تكون مترافقة مع عناصر أخرى، كما هو الحال في العديد من معادن البورات. تشبه هذه المعادن السيليكات من عدة أوجه، لكن هناك اختلافات بنيوية، حيث أن السيليكون يتناسق مع الأكسجين على شكل رباعيات سطوح فقط، في حين أن البورون يشكل بالإضافة إليها ترتيبات بنيوية ثلاثية مستوية. من الأمثلة الشائعة لمركبات البورون مع الأكسجين مركبات البورات المختلفة مثل أنيون رباعي البورات في تركيب البورق، والذي تتساوى فيه الشحنة من تأثير الكاتيونات مثل الصوديوم +Na.[58] هناك أيضاً أملاح فوق البورات، المستخدمة في مجال القصر والتبييض مثل فوق بورات الصوديوم.

من مركبات البورون اللاعضوية المهمة مركباته مع الهيدروجين على شكل بورانات، والتي لها الصيغة العامة BxHy. لا توجد هذه المركبات في الطبيعة، حيث أنها تتأكسد فوراً بأكسجين الهواء، وذلك بعنف في بعض الأحيان. يدعى المركب الأساس ضمن فئة هذه المركبات باسم بوران، وله الصيغة BH3، وهو غير مستقر ويوجد فقط في الحالة الغازية، حيث سرعان ما يتفاعل ما جزيء بوران آخر ليشكل ثنائي وحدات (ديمر) يعرف باسم ثنائي البوران B2H6. إن البورانات العليا، وهي الحاوية على عدد كبير من ذرات البورون والهيدروجين الموافقة، تتألف من عناقيد من البورون متعددة السطوح. أشهر مركبات البورانات هو ثنائي البوران ونواتج تحلله الحراري، وهي خماسي البوران B5H9 وعشاري البوران B10H14. يكون عدد الأكسدة للبورون في البورانات ذو قيمة موجبة، وذلك بافتراض أن الهيدروجين له عدد الأكسدة −1 ويرتبط على شكل هيدريد فلزي. لذلك فإنه في ثنائي البوران B2H6 يكون عدد أكسدة البورون +3، في حين أنه في عشاري البوران B10H14 يكون له القيمة 75 أو +1.4.

إن نتريدات البورون ذات أهمية كبيرة، وذلك لتنوع البنى التي يمكن أن تتبناها، حيث يمكن أن يكون لها بنى مماثلة لبنى متآصلات الكربون بما فيها الغرافيت والألماس والأنابيب النانوية الكربونية. ففي بنية نتريد البورون المكعبة المشابهة لبنية الألماس، والتي تسمى بورازون، فإن ذرات البورون توجد في بنية جزيئية رباعية السطوح كما في ذرات الكربون في الألماس، ولكن واحدة من كل أربع روابط B-N تكون على شكل رابطة تساهمية تناسقية. يكون للبورازون صلادة مقاربة للألماس، لذلك يستخدم كمادة ساحجة. في نتريد البورون الذي له بنية مشابهة للغرافيت، أو يعرف تحت اسم نتريد البورون سداسي الأضلاع (h-BN)، فإن ذرات البورون المشحون إيجاباً والنتروجين المشحونة سلباً في كل مستوي تتوضع بشكل مقارب إلى الذرات المعاكسة للشحنة في المستوي المقابل. بناء على ذلك، فإن خصائص h-BN والغرافيت مختلفة تماماً. يستخدم مركب h-BN كمزلق في بعض التطبيقات الخاصة حيث تنزلق المستويات بسهولة، بالمقابل فإن لمركب h-BN ناقلية كهربائية وحرارية ضعيفة على الاتجاه المستوي.[59][60] يشكل نتريد البورون السداسي طبقات ذرية يمكن أن تزيد من حركية الإلكترون في الأجهزة الحاوية على الغرافين.[61][62] كما أن نتريد البورون يمكن أن يشكل أنابيب نانوية لها العديد من الخصائص المميزة، مثل المتانة والثباتية الكيميائية والناقلية الحرارية.[63]

مركبات البورون العضوية[عدل]

يشكل البورون العديد من مركبات البورون العضوية والتي لها أهمية كبيرة في الاصطناع العضوي. تنتج العديد من هذه المركبات من تفاعل إضافة البورون الهيدروجينية وذلك من ركازات مثل ثنائي البوران.

تكون بنية مركبات البورون العضوية إما رباعية السطوح أو ثلاثية مستوية، على سبيل المثال، فإن لأنيون رباعي فينيل البورات -[B(C6H5)4] بنية رباعية السطوح، في حين أن مركب ثلاثي فينيل البوران له بنية ثلاثية مستوية.

هناك العديد من مركبات البورون العضوية المختلفة مثل كربيد البورون، وهو مادة سيراميكية قاسية جداً تتألف من عناقيد من أنيونات وكاتيونات البورون والكربون، ومثل الكربورانات، وهي مركبات تجميعية من البورون والكربون، والتي يمكن هلجنتها لتشكل بنى فعالة من ضمنها حمض الكربوران، وهو حمض فائق، بالإضافة إلى مركبات أخرى مثل بور البنزين.

نموذج بنيوي لمركب ثنائي بوريد المغنسيوم، الموصل الفائق. تشكل ذرات البورون (اللون الزهري) شبكة سداسية مستوية شبيهة بالغرافيت، في حين أن أيونات المغنسيوم الثنائي تتوضع بين الطبقات.

مركبات البورون الأحادي والثنائي[عدل]

يستطيع البورون أن يشكل العديد من المركبات المستقرة التي يكون فيها البورون بحالة أكسدة أقل من 3، ولكن هذه المركبات قليلة الوفرة بشكل طبيعي على الأرض. كما هو الحال في العديد من المركبات التساهمية، فإن حالة الأكسدة لا تكون ذات أهمية كبيرة في هيدريدات البورون (البورانات) وفي بوريدات الفلزات. إن هاليدات البورون الأحادي والثنائي مثل رباعي فلوريد ثنائي البوران B2F4 ورباعي كلوريد ثنائي البوران B2Cl4 معروفة، في حين أن مركب فلوريد البورون الأحادي BF، المتساوي إلكترونياً مع N2، لا يمكن عزله.[64]

تحوي مركبات بوريدات الفلزات على البورون في حالة أكسدة أقل من 3، وكمثال عليها سداسي بوريد الكالسيوم CaB6 وثنائي بوريد المغنسيوم MgB2. تكون مراكز البورون في المركب الأخير ثلاثية مستوية، مع وجود رابطة مضاعفة إضافية لكل ذرة بورون، بحيث تشكل شبكة سداسية الأضلاع شبيهة بالغرافيت. ولكن على العكس من شبكة نتريد البورون سداسي الأضلاع h-BN، والتي تفتقد إلى إلكترونات على مستوى الذرات التساهمية، فإن وجود إلكترونات غير متموضعة وحرة الحركة بين المستويات يجعل من مركب ثنائي بوريد المغنسيوم ناقلاً للكهرباء مثل الغرافيت. بالإضافة إلى ذلك، أظهرت الأبحاث سنة 2001 أن MgB2 موصل فائق عند درجات حرارة مرتفعة نسبياً.[65][66] إن العديد من مركبات بوريدات الفلزات تتمتع بصلادة كبيرة، لذلك تستخدم في صنع أدوات القطع.[67]

الكيمياء التحليلية[عدل]

مطيافية الرنين المغناطيسي النووي[عدل]

إن كل من النظيرين 10B و 11B لديهما لف مغزلي، للنظير 10B فيمة قدرها 3 وللنظير 11B قيمة قدرها 32. هذه النظائر تستخدم في الرنين المغناطيسي النووي، وهناك أجهزة مطيافية لقياس الرنين المغناطيسي النووي لنوى بورون-11 متوفرة تجارياً. تسبب نوى 10B و 11B انشطار في رنين النوى المرفقة مع البورون في المركب.[68]

التحليل الكمي للبورون[عدل]

يمكن تحديد كمية البورون في العينات باستخدام طريقة الكوركومين. في هذه العملية يحول البورون إلى حمض البوريك أو البورات الموافقة، ويفاعل مع الكوركومين في وسط حمضي، حيث يتشكل معقد تناسقي متمخلب مع البورون، له لون أحمر، ويعرف باسم روزوسيانين، وتعرف الكمية عن طريق قياس الألوان.[69]

الاستخدامات[عدل]

إن الاستخدام العالمي الأكبر على المستوى الصناعي بالنسبة لمركبات البورون (حوالي 45%) هو في إنتاج الليف الزجاجي من أجل صناعة اللدائن المدعمة بألياف زجاجية والمستخدمة في مجالات العزل وتصنيع مواد البناء. من الاستخدامات المهمة أيضاً للبورون دخوله في تركيب زجاج البوروسيليكات (حوالي 10% من الإنتاج العالمي)، بالإضافة إلى صناعة الخزف (سيراميك البورون)، والذي يستهلك حوالي 15% من الإنتاج العالمي. تستهلك التطبيقات الزراعية حوالي 11% من البورون عالمياً، في حين أن صناعة المنظفات ومواد التبييض تستهلك حوالي 6% من الإنتاج العالمي.[70]

ألياف البورون[عدل]

إن ألياف البورون هي مواد شديدة المتانة خفيفة الوزن، مغزولة على شكل ألياف ومصنوعة من عنصر البورون اللابلوري. تنتج هذه الألياف من إجراء عملية ترسيب كيميائي لبخار البورون على وشيعة من التنغستن.[71][72] إن استخدام الترسيب الكيميائي للبخار المساعد بالليزر يمكن أن ينتج ألياف بورون ذات أبعاد دقيقة جداً، كما أن استخدام حزمة الليزر المركزة يسمح بالحصول على بنى حلزونية معقدة، تتمتع بخصائص ميكانيكية مميزة بحيث يمكن أن تستخدم كمواد مدعمة للنظم الكهروميكانيكية الصغرى.[73]

تستخدم ألياف البورون بشكل رئيسي في تركيب الطائرات والمركيات الفضائية وذلك كمادة مركبة، كما تستخدم في إنتاج المواد الاستهلاكية والمنتجات الرياضية مثل مضارب الغولف وصنانير صيد الأسماك.[74][75]

زجاج البوروسيليكات[عدل]

أدوات مخبرية زجاجية مصنوعة من زجاج البوروسيليكات.

إن زجاج البوروسيليكات هو نوع من الزجاج له التركيب النمطي التالي: من 12-15% أكسيد البورون B2O3، 80% ثنائي أكسيد السيليكون (سيليكا)، و2% أكسيد الألومنيوم (ألومينا). يتميز زجاج البوروسيليكات بأن له معامل تمدد حراري منخفض، مما يمنحه مقاومة جيدة للصدمة الحرارية. تعد شركة Owens-Corning الأمريكية صاحبة العلامة التجارية بيركس Pyrex، بالإضافة شركة Schott AG الألمانية صاحبة العلامة التجارية Duran أشهر الشركات المنتجة لزجاجيات المختبر ولوازم المطبخ في العالم.[76]

الألياف الزجاجية[عدل]

يضاف البورون إلى الزجاج على شكل بورق أو أكسيد البورون وذلك من أجل تدعيم قوة الألياف الزجاجية، ومن أجل استخدامه كصهارة للتقليل من درجة انصهار السيليكا.[77] تستخدم هذه الألياف الزجاجية في العديد من التطبيقات، من بينها دخولها في تركيب اللدائن المدعمة بألياف زجاجية (الفايبركلاس).

إن الزجاج الحاوي على أعلى نسبة من البورون في الفايبركلاس هو E-glass، وهو زجاج من ألومينو-بوروسيليكات يحوي على نسبة أقل من 1% وزناً من الأكاسيد القلوية. يستعمل هذا الزجاج للتطبيقات الكهربائية ومن أجل اللدائن المدعمة بالألياف الزجاجية. من الأنواع الأخرى المستعملة أيضاً C-glass، وهو زجاج كلسي-قلوي يحوي نسبة عالية من أكسيد البورون، ويستخدم من أجل تدعيم المنسوجات وفي صناعة مواد العزل، بالإضافة إلى D-glass، وهو زجاج البوروسيليكات.[78]

المواد السيراميكية[عدل]

إن العديد من مركبات البورون تعد من المواد السيراميكية وذلك نظراً للصلادة والقساوة المرتفعة لها. من بين هذه المركبات كربيد ونتريد البورون. يحصل على كربيد البورون من تفاعل أكسيد البورون مع الكربون عند درجات حرارة مرتفعة. تتكون بنية المركب من سلاسل بوليمرية طويلة، بالإضافة إلى البناء البلوري المميز، مما يمنحه متانة بنيوية بالنسبة لوحدة الوزن. يستخدم في بناء المدرعات والستر واقية من الرصاص، بالإضافة إلى العديد من التطبيقات البنيوية الأخرى. كما يستفاد من خاصية امتصاصه للنيوترونات في دخوله في العديد من التطبيقات في المنشآت النووية، وذلك كقضبان تحكم أو دروع الوقاية.[79] يستخدم كربيد البورون ونتريد البورون كمواد ساحجة، حيث أن لنتريد البورون مكعب البنية c-BN صلادة مقاربة للألماس، وهو يعرف بالاسم التجاري بورازون.[80]

الخصائص الميكانيكية لمواد BCN [81]
المادة الألماس BC2N المكعب BC5 المكعب BN المكعب B4C
صلادة فيكرز (غيغاباسكال) 115 76 71 62 38
قساوة الصدع (ميغاباسكال.م1⁄2) 5.3 4.5 9.5 6.8 3.5

من المواد المطورة حديثاً مركبات من البورون والكربون والنتروجين BCN، وتعرف باسم الألماس غير المتجانس. يحصل على هذه المواد عند درجات حرارة وضغط مرتفعين، وذلك بتطبيق موجة صادمة من متفجرات على مزيج من الألماس والبورازون. إن الألماس غير المتجانس مادة متعددة البلورات تكون مترافقة مع بلورات نانوية، ولها صلادة قريبة من الألماس، ومقاومة حرارية قريبة من البورازون. تعود هذه الخصائص إلى البنية الألماسية بالإضافة إلى وجود روابط سيغما ذات التهجين المداري sp3 بين الكربون والذرات غير المتجانسة.[82] من الأمثلة على هذه المركبات BC2N المكعب، والذي قيمة معامل الحجم له مرتفع، ولا يفوقه فيها إلا الألماس والبورازون.[83]

إن إضافة بوريدات الفلزات على شكل طبقة على سطح المواد المستخدنة في صناعة الأدوات يتم من خلال الترسيب الكيميائي للبخار أو بالترسيب الفيزيائي للبخار، حيث أن إضافة أيونات البورون إلى الفلزات والسبائك يؤدي إلى زيادة ملحوظة في مقاومة السطح وفي الصلادة الميكروية. تعد هذه المواد المغطاة بطبقة من البوريد بدائل عن الأدوات المغطاة بالألماس، ويكون لسطوحها المعالجة خصائص مشابهة للمواد المصنوعة من البوريد بالكامل.[84]

أشباه الموصلات[عدل]

إن البورون مفيد بكونه عامل إشابة بالنسبة لأشباه الموصلات مثل السيليكون والجرمانيوم وكربيد السيليكون. بما أن للبورون إلكترون تكافؤ أقل من الذرة المضيفة، فإنه يسبب في حدوث ثغرة إلكترونية، مما يؤدي إلى الحصول على شبه موصل موجب. كانت عملية إضافة البورون إلى أشباه الموصلات تجري تقليدياً من خلال الانتشار الذري عند درجات حرارة مرتفعة، وذلك لمركبات البورون بمختلف الأطوار وذلك إما لأكسيد البورون الصلب أو لثلاثي بروميد البورون السائل أو لمصدر غازي للبورون مثل ثنائي البوران أو ثلاثي فلوريد البورون. استبدلت هذه العملية بعد سبعينات القرن العشرين بتقنية غرس الأيونات، والتي تعتمد بشكل شبه كامل على غاز BF3 كمصدر للبورون.[85]

إن غاز ثلاثي كلوريد البورون مهم أيضاً في مجال أشباه الموصلات، ولكن ليس كعامل إشابة، إنما من أجل إجراء عملية تنميش للفلزات وأكاسيدها وذلك بواسطة البلازما.[86]

أجهزة المغناطيس[عدل]

إن البورون هو مكون من مكونات مغناطيس النيوديميوم Nd2Fe14B، والذي يعد من أقوى أنواع المغناطيس الدائم. لأجهزة المغناطيس الدائم هذه العديد من التطبيقات المهمة، التي تتفاوت من التطبيقات الطبية مثل دخولها في تركيب أجهزة التصوير بالرنين المغناطيسي MRI، إلى دخولها في تركيب مكبرات الصوت في الأجهزة المحمولة، حيث تعمل على تأمين حقل مغناطيسي بشكل يكفي لتزويد شدة صوت كافية.[2]

تستخدم أسلاك مصنوعة من ثنائي بوريد المغنسيوم MgB2، والتي لها خصائص موصلية فائقة في تركيب أجزاء من المغناطيس فائق الموصلية.[87][88]

تطبيقات صيدلانية[عدل]

إن حمض البوريك له خصائص مطهرة ومضادة للفطريات، لذلك يستخدم في أنظمة تنقية المياه في المسابح.[89] كما تدخل المحاليل الممددة من حمض البوريك في صناعة بعض الأدوية الصيدلانية كمادة معقمة.[6]

يعد البورون عنصراً فعالاً في تركيب عقار بورتيزوميب، والذي يصنف تحت العقاقير المثبطة للجسيمات البروتينية من أجل علاج الورم النقوي المتعدد وبعض الأورام اللمفاوية. يقوم البورون في عقار البورتيزوميب بتثبيط الجسيم البروتيني 26S عن طريق الارتباط معه في الموقع التحفيزي وذلك بإلفة عالية وبشكل انتقائي.[90]

يستخدم البورون-10 كواقي من الإشعاع وكنويدة أولية في طريقة علاج السرطان باصطياد النيوترون بالبورون BNCT، لذلك توسم العقاقير الصيدلانية بالبورون-10 من أجل هذا الغرض.[91]

تطبيقات مختلفة[عدل]

إطلاق صاروخ أبولو 15 وذلك باستخدام ثلاثي إيثيل البورون كمادة لإشعال الوقود الصاروخي.
  • إن المواد اللاصقة المعتمدة في تركيبها على النشا والكازين تحوي في تركيبها على البورق (رباعي بورات الصوديوم عشاري الهيدرات Na2B4O7·10 H2O)، كما تحوي بعض مواد مانع التآكل على البورق في تركيبها أيضاً.[96] يستخدم البورق في إنتاج العديد من مواد التنظيف، كما يدخل في تركيب مستحضرات تبييض الأسنان.[97] يستخدم البورق (بورات الصوديوم) كصهارة من أجل لحام الفضة والذهب، ويستخدم مع كلوريد الأمونيوم من أجل لحام الفلزات الحديدية.[98] تستخدم البورات كمواد مضافة في مثبطات اللهب وذلك في المنتجات البلاستيكية والمطاطية.[99]

الدور الحيوي[عدل]

يوجد البورون في الأحياء على اختلافها، فقد جرى عزل نوع من المضادات الحيوية من البكتريا المتسلسلة، واسمه بورومايسين.[106][107]

إن البورون عنصر مغذي أساسي للنباتات، فهو ضروري من أجل جدران الخلايا، حيث أن نقصه يؤدي إلى حدوث مرض عوز البورون (نقص البورون). تتراوح نسبة البورون في المادة الجافة بين 2.3 إلى 11.3 مغ لكل 1 كغ في أحاديات الفلقة، أما نسبته في ثنائيات الفلقة فهي تتراوح بين 8 إلى 95 مغ لكل 1 كغ.[6]

بالمقابل إن ارتفاع تركيز البورون عن حدود معينة يمكن أن يكون له تأثيرات عكسية. عندما تتجاوز مستويات البورون في نسيج النبات عن 200 ppm، فإن أعراض حدوث تسمم بالبورون قد تحدث في الغالب.[108][109][110]

كعنصر من العناصر الزهيدة، يلعب البورون دوراً حيوياً مهماً بالنسبة لبعض الثدييات. فعلى سبيل المثال يؤدي عوز البورون عند الجرذان إلى انخفاض في كمية ونوعية الفراء المغطي للبدن. لا يعرف بالضبط الدور الفيزيولوجي للبورون في المملكة الحيوانية،[111] إلا أنه يدخل كأحد العوامل في العمايات الكيميائية الحيوية في الحيوانات بالإضافة إلى الإنسان.[112] لكن بالمقابل، لا يبدي الإنسان أعراض نقص البورون، إذ أن الكميات المطلوبة منه متوفرة في النظام الغذائي، حيث أن البورون يتوافر في كافة أنواع الغذاء المنتج من النباتات. بينت معاهد الصحة الوطنية الأمريكية أن محتوى البورون في النظام الغذائي الطبيعي للإنسان يتراوح بين 2.1–4.3 مغ بورون يومياً.[113][114] على العموم، لا تزال أهمية البورون بالنسبة للإنسان موضع بحث.

احتياطات الأمان[عدل]

إن كل من البورون الفلزي وأكسيد البورون وحمض البوريك والبورات والعديد من مركبات البورون العضوية هي غير سامة بالنسبة للإنسان وللحيوانات. إن الجرعة المميتة للنصف (LD50) بالنسبة للحيوانات تبلغ 6 غ لكل كغ من وزن الجسم. إن الأثر التراكمي من عنصر البورون قد يكون مضراً، حيث وجد أن تناول البورون بما معدله 500 مغ لمدة 50 يوم يمكن أن يسبب مشاكل في جهاز الهضم، بالإضافة إلى مشاكل أخرى قد تشير إلى التسمم.[115]

إن البورانات هي مركبات سريعة الاشتعال، لذا ينبغي الحرص عند التعامل معها، كما أن بورهيدريد الصوديوم يعد من المواد الخطيرة المسببة للحرائق، وذلك لخصائصها الاختزالية، ولإمكانية تحرير الهيدروجين عند التماس مع الأحماض. تعد هاليدات البورون من المواد الأكالة.[116]

المراجع[عدل]

  1. ^ Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF". J. Molecular Spectroscopy 170: 82. doi:10.1006/jmsp.1995.1058. 
  2. ^ أ ب Lide, David R. (ed.) (2000). Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics. CRC press. ISBN 0849304814. 
  3. ^ Holcombe Jr., C. E.; Smith, D. D.; Lorc, J. D.; Duerlesen, W. K.; Carpenter; D. A. (1973). "Physical-Chemical Properties of beta-Rhombohedral Boron". High Temp. Sci. 5: 349. 
  4. ^ أ ب "Atomic Weights and Isotopic Compositions for All Elements". National Institute of Standards and Technology. اطلع عليه بتاريخ 2008-09-21. 
  5. ^ Szegedi, S.؛ Váradi، M.؛ Buczkó، Cs. M.؛ Várnagy، M.؛ Sztaricskai، T. (1990). "Determination of boron in glass by neutron transmission method". Journal of Radioanalytical and Nuclear Chemistry Letters 146: 177. doi:10.1007/BF02165219. 
  6. ^ أ ب ت ث ج ح عنصر البورون في الموسوعة العربية
  7. ^ أصل كلمة بوراكس في قاموس أكسفورد
  8. ^ Garrett, Donald E. (1998). Borates: handbook of deposits, processing, properties, and use. Academic Press. صفحات 102; 385–386. ISBN 0-12-276060-3. 
  9. ^ Calvert, J. B. "Boron". University of Denver. اطلع عليه بتاريخ 2009-05-05. 
  10. ^ Hildebrand, G. H. (1982) "Borax Pioneer: Francis Marion Smith." San Diego: Howell-North Books. p. 267 ISBN 0-8310-7148-6
  11. ^ أ ب Gay Lussac, J.L. and Thenard, L.J. (1808) "Sur la décomposition et la recomposition de l'acide boracique," Annales de chimie [later: Annales de chemie et de physique], vol. 68, pp. 169–174.
  12. ^ Weeks، Mary Elvira (1933). The Discovery of the Elements. Easton, PA: Journal of Chemical Education. صفحة 156. ISBN 0-7661-3872-0. 
  13. ^ أ ب Davy H (1809). "An account of some new analytical researches on the nature of certain bodies, particularly the alkalies, phosphorus, sulphur, carbonaceous matter, and the acids hitherto undecomposed: with some general observations on chemical theory". Philosophical Transactions of the Royal Society 99: 33–104. doi:10.1098/rstl.1809.0005. 
  14. ^ Berzelius, J. (1824) "Undersökning af flusspatssyran och dess märkvärdigaste föreningar" (Part 2) (Investigation of hydrofluoric acid and of its most noteworthy compounds), Kongliga Vetenskaps-Academiens Handlingar (Proceedings of the Royal Science Academy), vol. 12, pp. 46–98; see especially pp. 88ff. Reprinted in German as: Berzelius, J. J. (1824) "Untersuchungen über die Flußspathsäure und deren merkwürdigste Verbindungen", Poggendorff's Annalen der Physik und Chemie, vol. 78, pages 113–150.
  15. ^ Weintraub, Ezekiel (1910). "Preparation and properties of pure boron". Transactions of the American Electrochemical Society 16: 165–184. 
  16. ^ أ ب Laubengayer، A. W.؛ Hurd، D. T.؛ Newkirk، A. E.؛ Hoard، J. L. (1943). "Boron. I. Preparation and Properties of Pure Crystalline Boron". Journal of the American Chemical Society 65 (10): 1924–1931. doi:10.1021/ja01250a036. 
  17. ^ Borchert, W. ; Dietz, W. ; Koelker, H. (1970). "Crystal Growth of Beta–Rhombohedrical Boron". Zeitschrift für Angewandte Physik 29: 277. 
  18. ^ "Q & A: Where does the element Boron come from?". physics.illinois.edu. اطلع عليه بتاريخ 2011-12-04. 
  19. ^ Mineralienatlas: وفرة البورون.(لغة ألمانية)
  20. ^ Berger, L. I. (1996). Semiconductor materials. CRC Press. صفحات 37–43. ISBN 0-8493-8912-7. 
  21. ^ Global reserves chart Accessed August 14, 2014.
  22. ^ Kistler، R. B. (1994). "Boron and Borates". Industrial Minerals and Rocks (الطبعة 6) (Society of Mining, Metallurgy and Exploration, Inc.): 171–186. 
  23. ^ Zbayolu, G.; Poslu, K. (1992). "Mining and Processing of Borates in Turkey". Mineral Processing and Extractive Metallurgy Review 9 (1–4): 245–254. doi:10.1080/08827509208952709. 
  24. ^ Kar، Y.؛ Şen، Nejdet؛ Demİrbaş، Ayhan (2006). "Boron Minerals in Turkey, Their Application Areas and Importance for the Country's Economy". Minerals & Energy – Raw Materials Report 20 (3–4): 2–10. doi:10.1080/14041040500504293. 
  25. ^ Şebnem Önder, Ayşe Eda Biçer, and Işıl Selen Denemeç (September 2013). "Are certain minerals still under state monopoly?". Mining Turkey. اطلع عليه بتاريخ 21 December 2013. 
  26. ^ "Turkey as the global leader in boron export and production". European Association of Service Providers for Persons with Disabilities Annual Conference 2013. اطلع عليه بتاريخ 18 December 2013. 
  27. ^ "U.S. Borax Boron Mine". The Center for Land Use Interpretation, Ludb.clui.org. اطلع عليه بتاريخ 2013-04-26. 
  28. ^ "Boras". Rio Tinto. 10 April 2012. اطلع عليه بتاريخ 2013-04-26. 
  29. ^ "Boron Properties". Los Alamos National Laboratory. اطلع عليه بتاريخ 2008-09-18. 
  30. ^ أ ب The Economics of Boron, 11th edition. Roskill Information Services, Ltd. 2006. ISBN 0-86214-516-3. 
  31. ^ "Raw and Manufactured Materials 2006 Overview". اطلع عليه بتاريخ 2009-05-05. 
  32. ^ "Roskill reports: boron". Roskill. اطلع عليه بتاريخ 2009-05-05. 
  33. ^ Liu، Z. (2003). "Two-body and three-body halo nuclei". Science China Physics, Mechanics & Astronomy 46 (4): 441. Bibcode:2003ScChG..46..441L. doi:10.1360/03yw0027. 
  34. ^ Barth، S. (1997). "Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry". Chemical Geology 143 (3–4): 255–261. doi:10.1016/S0009-2541(97)00107-1. 
  35. ^ Steinbrück, Martin (2004). "Results of the B4C Control Rod Test QUENCH-07". Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft. 
  36. ^ "Commissioning of Boron Enrichment Plant". Indira Gandhi Centre for Atomic Research. تمت أرشفته من الأصل على 8 December 2008. اطلع عليه بتاريخ 2008-09-21. 
  37. ^ Aida، Masao؛ Fujii، Yasuhiko؛ Okamoto، Makoto (1986). "Chromatographic Enrichment of 10B by Using Weak-Base Anion-Exchange Resin". Separation Science and Technology 21 (6): 643–654. doi:10.1080/01496398608056140.  showing an enrichment from 18% to above 94%.
  38. ^ Barth، Rolf F. (2003). "A Critical Assessment of Boron Neutron Capture Therapy: An Overview". Journal of Neuro-Oncology 62 (1): 1–5. doi:10.1023/A:1023262817500. 
  39. ^ Coderre، Jeffrey A.؛ Morris، GM (1999). "The Radiation Biology of Boron Neutron Capture Therapy". Radiation Research 151 (1): 1–18. doi:10.2307/3579742. JSTOR 3579742. PMID 9973079. 
  40. ^ Barth، Rolf F.؛ S؛ F (1990). "Boron Neutron Capture Therapy of Cancer". Cancer Research 50 (4): 1061–1070. PMID 2404588. 
  41. ^ "Boron Neutron Capture Therapy – An Overview". Pharmainfo.net. 22 August 2006. اطلع عليه بتاريخ 2011-11-07. 
  42. ^ أ ب Duderstadt، James J.؛ Hamilton، Louis J. (1976). Nuclear Reactor Analysis. Wiley-Interscience. صفحة 245. ISBN 0-471-22363-8. 
  43. ^ Delaplane, R.G.؛ Dahlborg، U؛ Graneli، B؛ Fischer، P؛ Lundstrom، T (1988). "A neutron diffraction study of amorphous boron". Journal of Non-Crystalline Solids 104 (2–3): 249. Bibcode:1988JNCS..104..249D. doi:10.1016/0022-3093(88)90395-X. 
  44. ^ R.G. Delaplane؛ Dahlborg، U؛ Howells، W؛ Lundstrom، T (1988). "A neutron diffraction study of amorphous boron using a pulsed source". Journal of Non-Crystalline Solids 106: 66. Bibcode:1988JNCS..106...66D. doi:10.1016/0022-3093(88)90229-3. 
  45. ^ أ ب ت Oganov, A.R., Chen J., Gatti C., Ma Y.-M., Yu T., Liu Z., Glass C.W., Ma Y.-Z., Kurakevych O.O., Solozhenko V.L. (2009). "Ionic high-pressure form of elemental boron". Nature 457 (7231): 863–867. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. 
  46. ^ van Setten M.J., Uijttewaal M.A., de Wijs G.A., de Groot R.A. (2007). "Thermodynamic stability of boron: The role of defects and zero point motion". J. Am. Chem. Soc. 129 (9): 2458–2465. doi:10.1021/ja0631246. PMID 17295480. 
  47. ^ Widom M., Mihalkovic M. (2008). "Symmetry-broken crystal structure of elemental boron at low temperature". Phys. Rev. B 77 (6): 064113. arXiv:0712.0530. Bibcode:2008PhRvB..77f4113W. doi:10.1103/PhysRevB.77.064113. 
  48. ^ Eremets, M. I.؛ Struzhkin، VV؛ Mao، H؛ Hemley، RJ (2001). "Superconductivity in Boron". Science 293 (5528): 272–4. Bibcode:2001Sci...293..272E. doi:10.1126/science.1062286. PMID 11452118. 
  49. ^ Wentorf Jr، R. H. (1965). "Boron: Another Form". Science 147 (3653): 49–50 (Powder Diffraction File database (CAS number 7440–42–8)). Bibcode:1965Sci...147...49W. doi:10.1126/science.147.3653.49. PMID 17799779. 
  50. ^ Hoard, J. L.; Sullenger, D. B.; Kennard, C. H. L.; Hughes, R. E. (1970). "The structure analysis of β-rhombohedral boron". J. Solid State Chem. 1 (2): 268–277. Bibcode:1970JSSCh...1..268H. doi:10.1016/0022-4596(70)90022-8. 
  51. ^ Will, G.; Kiefer, B. (2001). "Electron Deformation Density in Rhombohedral a-Boron". Zeitschrift für anorganische und allgemeine Chemie 627 (9): 2100. doi:10.1002/1521-3749(200109)627:9<2100::AID-ZAAC2100>3.0.CO;2-G. 
  52. ^ Talley, C. P.; LaPlaca, S.; Post, B. (1960). "A new polymorph of boron". Acta Crystallogr. 13 (3): 271. doi:10.1107/S0365110X60000613. 
  53. ^ Solozhenko، V. L.؛ Kurakevych، O. O.؛ Oganov، A. R. (2008). "On the hardness of a new boron phase, orthorhombic γ-B28". Journal of Superhard Materials 30 (6): 428–429. doi:10.3103/S1063457608060117. 
  54. ^ أ ب ت Zarechnaya، E. Yu.؛ Dubrovinsky، L.؛ Dubrovinskaia، N.؛ Filinchuk، Y.؛ Chernyshov، D.؛ Dmitriev، V.؛ Miyajima، N.؛ El Goresy، A. et al. (2009). "Superhard Semiconducting Optically Transparent High Pressure Phase of Boron". Phys. Rev. Lett. 102 (18): 185501. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. 
  55. ^ Nelmes, R. J.؛ Loveday، J. S.؛ Allan، D. R.؛ Hull، S.؛ Hamel، G.؛ Grima، P.؛ Hull، S. (1993). "Neutron- and x-ray-diffraction measurements of the bulk modulus of boron". Phys. Rev. B 47 (13): 7668. Bibcode:1993PhRvB..47.7668N. doi:10.1103/PhysRevB.47.7668. 
  56. ^ Madelung, O., الناشر (1983). Landolt-Bornstein, New Series. Springer-Verlag. 
  57. ^ Holger Braunschweig, Rian D. Dewhurst, Kai Hammond, Jan Mies, Krzysztof Radacki and Alfredo Vargas: Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond, Science, 15. Juni 2012, Vol. 336 no. 6087 pp. 1420-1422, doi:10.1126/science.1221138.
  58. ^ أ ب ت ث ج Holleman، Arnold F.؛ Wiberg، Egon؛ Wiberg، Nils (1985). Lehrbuch der Anorganischen Chemie (باللغة German) (الطبعة 91–100). Walter de Gruyter. صفحات 814–864. ISBN 3-11-007511-3. 
  59. ^ Engler, M. (2007). "Hexagonal Boron Nitride (hBN) – Applications from Metallurgy to Cosmetics". Cfi/Ber. DKG 84: D25. ISSN 0173-9913. 
  60. ^ Greim, Jochen and Schwetz, Karl A. (2005). Boron Carbide, Boron Nitride, and Metal Borides, in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH: Weinheim. 
  61. ^ Dean، C.R.؛ Young، A.F.؛ Meric، I.؛ Lee، C.؛ Wang، L.؛ Sorgenfrei، S.؛ Watanabe، K.؛ Taniguchi، T.؛ Kim، P.؛ Shepard، K. L.؛ Hone، J. (2010). "Boron nitride substrates for high-quality graphene electronics". Nature Nanotechnology 5 (10): 722–726. arXiv:1005.4917. Bibcode:2010NatNa...5..722D. doi:10.1038/nnano.2010.172. PMID 20729834. 
  62. ^ Gannett، W.؛ Regan، W.؛ Watanabe، K.؛ Taniguchi، T.؛ Crommie، M. F.؛ Zettl، A. (2010). "Boron nitride substrates for high mobility chemical vapor deposited graphene". Applied Physics Letters 98 (24): 242105. arXiv:1105.4938. Bibcode:2011ApPhL..98x2105G. doi:10.1063/1.3599708. 
  63. ^ Zettl، Alex؛ Cohen، Marvin (2010). "The physics of boron nitride nanotubes". Physics Today 63 (11): 34–38. Bibcode:2010PhT....63k..34C. doi:10.1063/1.3518210. 
  64. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0080379419
  65. ^ Jones, Morton E. and Marsh, Richard E. (1954). "The Preparation and Structure of Magnesium Boride, MgB2". Journal of the American Chemical Society 76 (5): 1434. doi:10.1021/ja01634a089. 
  66. ^ Canfield، Paul C.؛ Crabtree، George W. (2003). "Magnesium Diboride: Better Late than Never". Physics Today 56 (3): 34. Bibcode:2003PhT....56c..34C. doi:10.1063/1.1570770. 
  67. ^ Cardarelli, François (2008). Materials handbook: A concise desktop reference. صفحات 638–639. ISBN 978-1-84628-668-1. 
  68. ^ "Boron NMR". BRUKER Biospin. تمت أرشفته من الأصل على 2 May 2009. اطلع عليه بتاريخ 2009-05-05. 
  69. ^ Silverman، L.؛ Trego، Katherine (1953). "Corrections-Colorimetric Microdetermination of Boron By The Curcumin-Acetone Solution Method". Anal. Chem. 25 (11): 1639. doi:10.1021/ac60083a061. 
  70. ^ Global end use of boron in 2011 Accessed August 14, 2014
  71. ^ Kostick (2006). [http://minerals.usgs.gov/minerals/pubs/commodity/boron/myb1-2006-boron.pdf first = Dennis S. "Mineral Yearbook: Boron"] (PDF). United States Geological Survey. اطلع عليه بتاريخ 2008-09-20. 
  72. ^ Cooke، Theodore F. (1991). "Inorganic Fibers—A Literature Review". Journal of the American Ceramic Society 74 (12): 2959–2978. doi:10.1111/j.1151-2916.1991.tb04289.x. 
  73. ^ Johansson، S.؛ Schweitz، Jan-Åke؛ Westberg، Helena؛ Boman، Mats (1992). "Microfabrication of three-dimensional boron structures by laser chemical processing". Journal Applied Physics 72 (12): 5956–5963. Bibcode:1992JAP....72.5956J. doi:10.1063/1.351904. 
  74. ^ Herring، H. W. (1966). "Selected Mechanical and Physical Properties of Boron Filaments". NASA. اطلع عليه بتاريخ 2008-09-20. 
  75. ^ Layden، G. K. (1973). "Fracture behaviour of boron filaments". Journal of Materials Science 8 (11): 1581–1589. Bibcode:1973JMatS...8.1581L. doi:10.1007/BF00754893. 
  76. ^ Pfaender، H. G. (1996). Schott guide to glass (الطبعة 2). Springer. صفحة 122. ISBN 0-412-62060-X. 
  77. ^ [1] Discussion of various types of boron addition to glass fibers in fiberglass. Accessed August 14, 2014.
  78. ^ E. Fitzer et al. "Fibers, 5. Synthetic Inorganic". Ullmann's Encyclopedia of Industrial Chemistry (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA). 
  79. ^ Weimer، Alan W. (1997). Carbide, Nitride and Boride Materials Synthesis and Processing. Chapman & Hall (London, New York). ISBN 0-412-54060-6. 
  80. ^ Wentorf، R. H. (1957). "Cubic form of boron nitride". J. Chem Phys. 26 (4): 956. Bibcode:1957JChPh..26..956W. doi:10.1063/1.1745964. 
  81. ^ Solozhenko، V. L.؛ Kurakevych، Oleksandr O.؛ Le Godec، Yann؛ Mezouar، Mohamed؛ Mezouar، Mohamed (2009). "Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5". Phys. Rev. Lett. 102 (1): 015506. Bibcode:2009PhRvL.102a5506S. doi:10.1103/PhysRevLett.102.015506. PMID 19257210. 
  82. ^ Komatsu, T.; Samedima, M.; Awano, T.; Kakadate, Y.; Fujiwara, S. (1999). "Creation of Superhard B–C–N Heterodiamond Using an Advanced Shock Wave Compression Technology". Journal of Materials Processing Technology 85 (1–3): 69–73. doi:10.1016/S0924-0136(98)00263-5. 
  83. ^ Solozhenko, V. L.; Andrault, D.; Fiquet, G.; Mezouar, M.; Rubie, D. C. (2001). "Synthesis of Superhard Cubic BC2N". Applied Physics Letter 78 (10): 1385–1387. Bibcode:2001ApPhL..78.1385S. doi:10.1063/1.1337623. 
  84. ^ Gogotsi, Y. G. and Andrievski, R.A. (1999). Materials Science of Carbides, Nitrides and Borides. Springer. صفحات 270–270. ISBN 0-7923-5707-8. 
  85. ^ May، Gary S.؛ Spanos، Costas J. (2006). Fundamentals of semiconductor manufacturing and process control. John Wiley and Sons. صفحات 51–54. ISBN 0-471-78406-0. 
  86. ^ Sherer، J. Michael (2005). Semiconductor industry: wafer fab exhaust management. CRC Press. صفحات 39–60. ISBN 1-57444-720-3. 
  87. ^ Canfield,، Paul C.؛ Crabtree، George W. (2003). "Magnesium Diboride: Better Late than Never". Physics Today 56 (3): 34–41. Bibcode:2003PhT....56c..34C. doi:10.1063/1.1570770. 
  88. ^ Braccini، Valeria؛ Nardelli، D؛ Penco، R؛ Grasso، G (2007). "Development of ex situ processed MgB2 wires and their applications to magnets". Physica C: Superconductivity 456 (1–2): 209–217. Bibcode:2007PhyC..456..209B. doi:10.1016/j.physc.2007.01.030. 
  89. ^ "Boric acid". chemicalland21.com. 
  90. ^ Bonvini P, Zorzi E, Basso G, Rosolen A (2007). "Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma". Leukemia 21 (4): 838–42. doi:10.1038/sj.leu.2404528. PMID 17268529. 
  91. ^ "Overview of neutron capture therapy pharmaceuticals". Pharmainfo.net. 22 August 2006. اطلع عليه بتاريخ 2013-04-26. 
  92. ^ Martin, James E (2008). Physics for Radiation Protection: A Handbook. صفحات 660–661. ISBN 978-3-527-61880-4. 
  93. ^ Kosanke, B. J. et al. (2004). Pyrotechnic Chemistry. Journal of Pyrotechnics. صفحة 419. ISBN 978-1-889526-15-7. 
  94. ^ Wu، Xiaowei؛ Chandel، R. S.؛ Li، Hang (2001). "Evaluation of transient liquid phase bonding between nickel-based superalloys". Journal of Materials Science 36 (6): 1539–1546. Bibcode:2001JMatS..36.1539W. doi:10.1023/A:1017513200502. 
  95. ^ Ulrich Baudis, Rudolf Fichte: Boron and Boron Alloys in Ullmann's Encyclopedia of Industrial Chemistry, 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, doi:10.1002/14356007.a04_281
  96. ^ "Borax Decahydrate". اطلع عليه بتاريخ 2009-05-05. 
  97. ^ أ ب Hammond, C. R. (2004). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0-8493-0485-7. 
  98. ^ Davies, A. C. (1992). The Science and Practice of Welding: Welding science and technology. Cambridge University Press. صفحة 56. ISBN 0-521-43565-X. 
  99. ^ Horrocks, A.R. and Price, D. (2001). Fire Retardant Materials. Woodhead Publishing Ltd. صفحة 55. ISBN 1-85573-419-2. 
  100. ^ Ide, F. (2003). "Information technology and polymers. Flat panel display". Engineering Materials 51: 84. 
  101. ^ Klotz، J. H.؛ Moss، JI؛ Zhao، R؛ Davis Jr، LR؛ Patterson، RS (1994). "Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae)". J. Econ. Entomol. 87 (6): 1534–1536. PMID 7836612. 
  102. ^ "Lockheed SR-71 Blackbird". March Field Air Museum. اطلع عليه بتاريخ 2009-05-05. 
  103. ^ Young, A. (2008). The Saturn V F-1 Engine: Powering Apollo Into History. Springer. صفحة 86. ISBN 0-387-09629-9. 
  104. ^ Carr، J. M.؛ Duggan، P. J.؛ Humphrey، D. G.؛ Platts، J. A.؛ Tyndall، E. M. (2010). "Wood Protection Properties of Quaternary Ammonium Arylspiroborate Esters Derived from Naphthalene 2,3-Diol, 2,2'-Biphenol and 3-Hydroxy-2-naphthoic Acid". Australian Journal of Chemistry 63 (10): 1423. doi:10.1071/CH10132. 
  105. ^ Thompson، R. (1974). "Industrial applications of boron compounds". Pure and Applied Chemistry 39 (4): 547. doi:10.1351/pac197439040547. 
  106. ^ Hütter، R.؛ Keller-Schien، W.؛ Knüsel، F.؛ Prelog، V.؛ Rodgers Jr.، G. C.؛ Suter، P.؛ Vogel، G.؛ Voser، W.؛ Zähner، H. (1967). "Stoffwechselprodukte von Mikroorganismen. 57. Mitteilung. Boromycin". Helvetica Chimica Acta 50 (6): 1533–1539. doi:10.1002/hlca.19670500612. PMID 6081908. 
  107. ^ Dunitz, J. D.; Hawley, D. M.; Miklos, D.; White, D. N. J.; Berlin, Y.; Marusić, R.; Prelog, V. (1971). "Structure of boromycin". Helvetica Chimica Acta 54 (6): 1709–1713. doi:10.1002/hlca.19710540624. 
  108. ^ Mahler، R. L. "Essential Plant Micronutrients. Boron in Idaho". University of Idaho. تمت أرشفته من الأصل على 1 October 2009. اطلع عليه بتاريخ 2009-05-05. 
  109. ^ "Functions of Boron in Plant Nutrition" (PDF). U.S. Borax Inc. تمت أرشفته من الأصل على 20 March 2009. 
  110. ^ Blevins، Dale G.؛ Lukaszewski، KM (1998). "Functions of Boron in Plant Nutrition". Annual Review of Plant Physiology and Plant Molecular Biology 49: 481–500. doi:10.1146/annurev.arplant.49.1.481. PMID 15012243. 
  111. ^ Nielsen، Forrest H. (1998). "Ultratrace elements in nutrition: Current knowledge and speculation". The Journal of Trace Elements in Experimental Medicine 11 (2–3): 251–274. doi:10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q. 
  112. ^ "Boron". PDRhealth. تمت أرشفته من الأصل على 24 May 2008. اطلع عليه بتاريخ 2008-09-18. 
  113. ^ Zook، E. G. (1965). "Total boron". J. Assoc. Off Agric. Chem 48: 850. 
  114. ^ United States. Environmental Protection Agency. Office of Water, U. S. Environmental Protection Agency Staff (1993). Health advisories for drinking water contaminants: United States Environmental Protection Agency Office of Water health advisories. CRC Press. صفحة 84. ISBN 0-87371-931-X. 
  115. ^ Nielsen، Forrest H. (1997). Plant and Soil 193 (2): 199. doi:10.1023/A:1004276311956. 
  116. ^ "Environmental Health Criteria 204: Boron". the International Programme on Chemical Safety. 1998. اطلع عليه بتاريخ 2009-05-05.