هيدروجين

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
نجمة المقالة المرشحة للاختيار
هذه المقالة مرشحة حاليا لتكون مقالة مختارة. شارك في تقييمها وفق الشروط المحددة في معايير المقالة المختارة وساهم برأيك في صفحة ترشيحها . تاريخ الترشيح: 13 أبريل 2014
هيليومهيدروجين ← -
-

H

Li
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: أرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونشيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بالاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: أنون تريوم (Uut)
Element 114: فليروفيوم (Uuq)
Element 115: أنون بينتيوم (Uup)
Element 116: أنون هيكسيوم (Uuh)
Element 117: أنون سيبتيوم (Uus)
Element 118: أنون أوكتيوم (Uuo)
1H
المظهر
غاز عديم اللون ذو وميض أرجواني في حالة البلازما


الخطوط الطيفية للهيدروجين [ملحوظة 1]
الخصائص العامة
الاسم، العدد، الرمز هيدروجين، 1، H
تصنيف العنصر لا فلز
المجموعة، الدورة، المستوى الفرعي 1، 1، s
الكتلة الذرية 1.00794غ·مول−1
توزيع إلكتروني 1s1
توزيع الإلكترونات لكل غلاف تكافؤ 1 (صورة)
الخصائص الفيزيائية
الطور غاز
اللون عديم اللون
الكثافة (0 °س، 101.325 كيلوباسكال)
0.08988 غ/ل
كثافة السائل عند نقطة الانصهار 0.07 (0.0763 صلب)[2] غ·سم−3
كثافة السائل عند نقطة الغليان 0.07099 غ·سم−3
نقطة الانصهار 13.81 [1] ك، - 259.34 [1] °س
نقطة الغليان 20.28 [1] ك، - 423.17 [1] °ف
نقطة ثلاثية 13.8033 كلفن (-259°س)، 
7.042 كيلوباسكال
النقطة الحرجة 32.97 ك، 1.293 ميغاباسكال
حرارة الانصهار 0.117 كيلوجول·مول−1
حرارة التبخر 0.904 كيلوجول·مول−1
السعة الحرارية (25 °س) 28.836 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 15 20
الخصائص الذرية
أرقام الأكسدة 1، -1
الكهرسلبية 2.20 (مقياس باولنغ)
طاقات التأين الأول: 1312.0 كيلوجول·مول−1
نصف قطر تساهمي 5±31 بيكومتر
نصف قطر فان دير فالس 120 بيكومتر
خصائص أخرى
البنية البلورية نظام بلوري سداسي
المغناطيسية مغناطيسية معاكسة[3]
الناقلية الحرارية 0.1805 واط·متر−1·كلفن−1 (300 كلفن)
سرعة الصوت (غاز، 27 °س) 1310 متر/ثانية
رقم الكاس 1333-74-0
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر الهيدروجين
النظائر توافر طبيعي عمر النصف نمط الاضمحلال طاقة الاضمحلال (ميغا إلكترون فولت) ناتج الاضمحلال
1H 99.985% 1H هو نظير مستقر وله 0 نيوترون
2H 0.015% 2H هو نظير مستقر وله 1 نيوترون
3H نادر 12.32 سنة β 0.01861 3He
ع · ن · ت

الهيدروجين هو عنصر كيميائي له الرمز H وله العدد الذري 1. يقع الهيدروجين في الجدول الدوري ضمن عناصر الدورة الأولى وفوق عناصر المجموعة الأولى. في الظروف القياسية من الضغط والحرارة فإن الهيدروجين عبارة عن غاز عديم اللون والرائحة، سريع الاشتعال، غير سام، ثنائي الذرة أحادي التكافؤ له الصيغة الجزيئية H2. أكثر نظائر الهيدروجين وفرة هو البروتيوم، الذي له الرمز 1H ويتألف من بروتون واحد فقط دون وجود نيوترونات في النواة.

يعد الهيدروجين أخف العناصر الكيميائية وأكثرها وفرة في الكون، حيث يشكل 75% من حجم الكون. [4] إن أغلب الهيدروجين الموجود على الأرض يوجد على شكل جزيئي وذلك بدخوله على شكل رابطة تساهمية في بنية الماء وأغلب المركبات العضوية.

التاريخ[عدل]

الاكتشاف وأصل التسمية[عدل]

هنري كافيندش، مكتشف الهيدروجين

يعود الفضل في اكتشاف الهيدروجين إلى العالم هنري كافيندش وذلك عام 1766 حيث عرف الهيدروجين لأول مرة كمادة متميزة عن غيرها من الغازات القابلة للاشتعال.[5] سمّى كافيندش الغاز المنطلق الناتج عن تفاعل الفلزات مع الأحماض الممددة بالهواء القابل للاشتعال،[6] وافترض أن هذه المادة مماثلة للمادة الافتراضية فلوجستون،[7] وفي عام 1781 اكتشف أن هذا الغاز يعطي باحتراقه الماء، لذلك ينسب اكتشاف هذا العنصر له.[8][9]

في عام 1783، قام العالم أنطوان لافوازييه بمنح اسم العنصر المكتشف اسم الهيدروجين، وذلك باشتقاق التسمية من الإغريقية، حيث أن لفظة هيدرو ὕδρω تعني ماء ولفظة جين γενῆς تعني مكوّن أو مولّد أو مشكّل،[10] وذلك عندما قام هو وبيير لابلاس بإعادة تجربة كافنديش بتشكيل الماء عند حرق الهيدروجين.[9]

أنطوان لافوازييه، مقترح تسمية الهيدروجين

سُيّل الهيدروجين لأول مرة عام 1898 من قبل جيمس ديوار باستعمال التبريد لتسييل الغاز وبحقظه في إناء ديوار.[9] في العام التالي قام ديوار بتحضير الهيدروجين الصلب.اكتشف نظير الهيدروجين المسمّى ديوتيريوم من قبل هارولد يوري عام 1931، في حين أن النظير الآخر تريتيوم اكتشف عام 1934 من قبل إرنست رذرفورد ومارك أوليفانت وباول هارتيك.[8]

كان نفخ المناطيد من أول استخدامات الهيدروجين، وكان جاك شارل أول من قام بهذا العمل وذلك عام 1783.[9] بناء على هذه الفكرة قام الكونت الألماني فرديناند فون زبلين بتسويق فكرة المناطيد المزودة بالهيدروجين، حيث أسس لاحقاً شركة متخصصة بهذا الشأن أسماها على اسمه مناطيد زبلين، والتي كانت الرحلة الأولى لها عام 1900.[9] إلا أن هذه المناطيد لم تكن آمنة وتراجع استخدامها بعد حادث تحطم هيندنبورغ.[9] أول من حضر غاز الهيدروجين صناعياً هو فيليب فون بوسلاغر وذلك بخلط المعادن بالأحماض القوية.[11]

دوره في نظرية الكم[عدل]

نظراً للبنية الذرية البسيطة لذرة الهيدروجين حيث تتألف من بروتون واحد وإلكترون واحد، فإنها استخدمت لتفسير نظرية البنية الذرية، وذلك عن طريق تفسير طيف إصدار الهيدروجين في المجال المرئي.[12] تعد ذرة الهيدروجين على سبيل المثال، الذرة الوحيدة المعتدلة التي لها حل في معادلة شرودنغر.

الوفرة الطبيعية[عدل]

في الكون[عدل]

يعد الهيدروجين بالشكل الذري H أكثر العناصر الكيميائية وفرةً في الكون حيث يشكّل 75% من الكتلة بالنسبة لباقي العناصر، وفي نفس الوقت أكثر من 90% بالنسبة لعدد ذرات العناصر في الكون. تجدر الإشارة إلى أن معظم كتلة الكون توجد على شكل مغاير للمادة الموجودة على الأرض وذلك من حيث ارتباط العناصر، ولكن يعتقد أنها توجد على شكل مادة و طاقة مظلمة.[13] يوجد عنصر الهيدروجين بكمات كبيرة في النجوم والعماليق الغازية، كما تلعب السحب الجزيئية للهيدروجين H2 دوراً في ولادة النجوم وفي تزويدها بالوقود اللازم من خلال سلسلة تفاعل بروتون-بروتون ومن خلال دورة كربون-نيتروجين-أكسجين CNO لتشكيل الهيليوم عن طريق الاندماج النووي.[14] إن عنصر الهيدروجين الموجود على مدى الكون يكون في الحالة الذرية وفي حالة البلازما واللتان تختلفان بخواصهما عن شكل الهيدروحين الجزيئي. في حالة البلازما مثلاً، فإن إلكترون وبروتون الهيدروجين غير مرتبطين ببعضهما البعض، إنما في حالة سحابة متداخلة، مما يمنحه ناقلية كهربائية وإشعاعية عالية كحالته في النجوم مثل الشمس. هذه الجسيمات المشحونة تتأثر بالمجالات المغناطيسية والكهربائية، كما يحدث في الرياح الشمسية التي تتأثر بالغلاف المغناطيسي للأرض مشكّلةً تيارات بيركلاند والشفق القطبي. بالمقابل، فإن الحالة الذرية المعتدلة للهيدروجين تكثر في الأوساط بين النجمية، حيث أن أنظمة لايمان-ألفا المخمدة توجد فيها كميات كبيرة من الهيدروجين الذري المعتدل مشكلة قسماً كبيراً من كثافة الباريونات الكونية حيث تؤدي إلى حدوث انزياح أحمر بمقدار z=4 في الكون.[15]

يتوافر الهيدروجين خارج الأنظمة النجمية على شكل سحب غازية، وذلك في مناطق الهيدروجين I حيث يوجد على شكل ذري معتدل غير متأين. هذه المناطق تصدر إشعاعاً له تردد 1420 ميغا هرتز، والذي يسمى خط هيدروجين. هذا الإشعاع يمكّن من تحديد مواقع تركز الهيدروجين في الكون. بالمقابل، فإن السحب الغازية المتأينة للهيدروجين تسمى مناطق هيدروجين II. في هذه المناطق الأخيرة تصدر النجوم إشعاعاً بكميات كبيرة، مما يمكّن من إجراء البحث حول تركيب المادة المكونة للوسط بين النجمي.

يوجد شكل جزيئي للهيدروجين على نمط كاتيون ثلاثي الهيدروجين +H3 وذلك في الوسط بين النجمي نتيجة تأيّن الهيدروجين الجزيئي بالأشعة الكونية. لوحظ وجود هذا الكاتيون في طبقات الغلاف الجوي العليا لكوكب المشتري. إن هذا الكاتيون يلعب دوراً مهماً في كيمياء الوسط بين النجمي.[16] إن النمط المعتدل من الهيدروجين ثلاثي الذرة يصعب وجوده في الحالة المستقرة،[17] بالمقابل، فإن الكاتيون ثنائي الهيدروجين H+2 نادر الوجود في الكون.

على الأرض[عدل]

ضمن الشروط الطبيعية على الكرة الأرضية فإن عنصر الهيدروجين يوجد بالشكل الحر على نمط غازي ثنائي الذرة H2 ولكن بشكل نادر جداً، حيث يشكل جزء واحد من المليون بالنسبة للحجم في الغلاف الجوي. ينتج غاز الهيدروجين طبيعياً من بعض البكتريا والطحالب. بالمقابل، فإن عنصر الهيدروجين يوجد بوفرة كبيرة على سطح الأرض وذلك عندما يرتبط على شكل مركبات كيميائية مثل الهيدروكربونات والماء،[18] حيث يعد بذلك ثالث أكثر العناصر وفرة على سطح الأرض وذلك بعد الأكسجين والسيليكون.[19] [20]إن أكثر من نصف المعادن المكتشفة لحد الآن تحوي في تركيبها على الهيدروجين.[21]

الإنتاج[عدل]

في المختبر[عدل]

توجد عدة طرق مستخدمة في المختبرات الكيميائية لإنتاج كميات صغيرة من غاز الهيدروجين، لكنها ليست مناسبة للتطبيق على مستوى صناعي.

تفاعل الفلزات مع الأحماض[عدل]

يحضّر الهيدروجين H2 مخبرياً من تفاعل الأحماض الممددة مع فلزات نشيطة مثل الحديد أو المغنسيوم أو القصدير أو الزنك كما في التفاعل:

Zn + 2H+ → Zn2+ + H2

يجب الانتباه إلى أن الفلزات القلوية والقلوية الترابية تطلق الهيدروجين بشدة، مما يجعل من الصعب السيطرة على التفاعل.[20] أما المعادن الأخرى مثل الفضة والذهب والزئبق والنحاس فهي لا تطلق الهدروجين بتفاعلها مع الأحماض.

أثر الماء على هيدريدات الفلزات[عدل]

ينتج الهيدروجين مخبرياً من أثر الماء على هيدريدات الفلزات بتفاعل حلمهة كما في تفاعل الماء مع هيدريد الصوديوم أو هيدريد الكالسيوم[20]:

NaH + H2O → NaOH + H2
CaH2 + H2O → Ca(OH)2 + H2

أثر الفلزات المذبذبة على القواعد[عدل]

ينتج الهيدروجين مخبرياً من أثر بعض الفلزات المذبذبة على القواعد[20]:

Zn + 2NaOH → Na2ZnO2 + H2

صناعياً[عدل]

من الماء[عدل]

ينتج الهيدروجين من إجراء عملية تحليل كهربائي للماء، وهي طريقة قديمة بسيطة يمكن تطبيقها بتمرير تيار كهربائي بين قطبين كهربائيين مغموسين في الماء.

(2H2O (l) → 2H2 (g) + O2 (g

نتيجة لذلك يتشكل الهيدروجين على المهبط في حين أن الأكسجين يتشكل على المصعد. يصنع المهبط عادةً من البلاتين أو أي فلز خامل آخر. لا يمكن الاعتماد على هذه العملية لإنتاج الهيدروجين صناعياً لأنها غير مجدية اقتصادياً للطاقة الكبيرة المستهلكة لإجراء العملية، ولحدوث تفاعلات جانبية تقلل من الكفاءة. إن الكفاءة النظرية للعملية تقع ضمن مجال يتراوح بين 80–94%.[22] ينتج الهيدروجين أيضاً من التحليل الكهربائي للأجاج أثناء إنتاج الكلور.[23]

لا زالت الأبحاث جارية لزيادة فعّالية العملية، من بينها بحث نشر عام 2007 يتضمّن وصف طريقة استخدام سبيكة من الألومنيوم والغاليوم على شكل حبيبات تضاف إلى الماء لتوليد الهيدروجين. هذه العملية تشكل الألومينا بالإضافة إلى الغاليوم الذي يمنع تشكل طبقة الأكسيد على الحبيبات مما يمكّن من إعادة استخدامها. هذه الطريقة توفّر أحد المقترحات لصالح اقتصاد الهيدروجين بحيث أن الهيدروجين يولّد في الموقع دون الحاجة لنقله.[24]

من الطرق الأخرى التي لا تزال ضمن موضوع البحث استخدام طرق كيميائية حرارية لإنتاج الهيدروجين من الطاقة الشمسية لتحليل الماء دون استخدام الكهرباء كمصدر للطاقة.[25] هنالك أكثر من 200 طريقة لا تزال ضمن دائرة البحث العلمي، تدعى هذه الطرق بالدورات الكيميائية الحرارية .[26] من الأمثلة المقترحة: دورة أكسيد الحديد و دورة أكسيد السيريوم الرباعي-أكسيد السيريوم الثلاثي ودورة زنك-أكسيد الزنك ودورة كبريت-يود ودورة نحاس-كلور ودورة الكبريت الهجينة.

من الوقود الأحفوري[عدل]

إن أكثر الطرق كفاءةً من الناحية الاقتصادية لإنتاج الهيدروجين هي عملية إصلاح بخاري للهيدروكربونات وخاصة بالنسبة للغاز الطبيعي.[27] ينتج الهيدروجين في هذه العملية كناتج ثانوي حيث يمرر بخار الماء عند درجات حرارة مرتفعة تتراوح بين 700 إلى 1000°س على الهيدروكربونات (غاز الميثان في المثال أدناه) وينتج بذلك غاز الاصطناع، وعو مزيج من الهيدروجين وأحادي أكسيد الكربون.

CH4 + H2O → CO + 3H2

هذا التفاعل يفضّل إجراؤه تحت ضغوط منخفضة ولكن عملياً يجرى تحت ضغوط مرتفعة (حوالي 2 ميغا باسكال)، لأن تسويق الهيدروجين المضغوط أسهل، ولأن أنظمة وحدات الامتزاز بالضغط المتأرجح تعمل بشكل أفضل عند ضغوط مرتفعة. يستعمل غاز الاصطناع بشكل رئيسي لإنتاج الميثانول والمركبات المتعلقة.

تتضمن عملية الإصلاح البخاري استخدام زيادة من بخار الماء، ولضبط كميّة الغازين إلى بعضهما البعض يستخدم تفاعل انزياح ماء-غاز لتوليد كمية إضافية من الهيدروجين، وذلك بوجود حفاز من أكسيد الحديد. هذا التفاعل بدوره يعد طريقة صناعية لتحضير ثنائي أكسيد الكربون.[27]

CO + H2O → CO2 + H2

من إحدى الطرق الأخرى المهمة لإنتاج الهيدروجين هي الأكسدة الجزئية للهيدروكربونات:[28]

2CH4 + O2 → 2CO + 4H2

واستخدام الفحم كإحدى المواد الأولية لتفاعل انزياح ماء-غاز:[27]

C + H2O → CO + H2

ينتج الهيدروجين أحياناً في العمليات الصناعية ويستهلك في نفس العملية دون الحاجة إلى فصله. ففي عملية هابر لإنتاج الأمونيا يتولد الهيدروجين من الغاز الطبيعي لاستخدامه من أجل الإنتاج.[29]

طرائق بديلة[عدل]

يجري البحث في الوقت الراهن على إيجاد طرق بديلة لإنتاج الهيدروجين نتيجة ازدياد الطلب على مصادر الطاقة إما باستخدام الأشنيات الخضراء أو الأنزيمات. من الاقتراحات التي ظهرت مؤخراً عام 2014 استخدام طريقة محفّزة أنزيمياً لتحويل الزيلوز إلى الهيدروجين. تتضمن العملية استخدام 13 أنزيم من ضمنها زيلولوكيناز Xylulokinase متعدد الفوسفات.[30][31]

الخصائص الفيزيائية[عدل]

الهيدروجين أخف العناصر الكيميائية على الإطلاق وأقلها كثافة حيث يتكون من بروتون وإلكترون واحد. في درجة الحرارة والضغط القياسيين يكون الهيدروجين على شكل غاز ثنائي الذرة. يعد غاز الهيدروجين H2 أخف من الهواء بحوالي 14 مرة، وله درجة غليان مقدارها 21.15 كلفن (−252 °س) ودرجة انصهار 14.02 كلفن (−259 °س). تبلغ انحلالية (ذوبانية) الهيدروجين في الماء حوالي 1.6 مغ/ل. يتميز الهيدروجين عن باقي الغازات أن له أكبر قدرة على الانتشار وأن له أعلى ناقلية حرارية وأن له أكبر قدرة على التدفق، كما ان له لزوجة منخفضة نسبياً.

إن الهيدروجين له قابلية عالية للانحلال في العناصر الأرضية النادرة والفلزات الانتقالية،[32] كما انه ينحل في الفلزات اللابلورية.[33] إن انحلالية الهيدروجين في الفلزات تتأثر بوجود عدم انتظام موضعي وبوجود شوائب في الشبكة البلورية.[34] هذه الخصائص تفيد بمعرفة مدى نقاوة الهيدروجين بتمريره عبر أقراص ساخنة من البالاديوم. بالمقابل تمثل هذه الانحلالية إحدى المشاكل في التعدين، حيث تؤدي إلى حدوث ظاهرة التقصف الهيدروجيني للعديد من الفلزات، مما يجعلها أكثر هشاشة وعرضة للكسر،[35] مما يعقد من مسألة نقل وتخزين الهيدروجين.[36]

خطوط طيف إصدار الهيدروجين في المجال المرئي، هنالك أربعة خطوط مرئية من سلسلة بالمر.

يظهر الهيدروجين خطوط طيفية مميزة في المجال المرئي، تدعى بسلسلة بالمر، والتي تقع عند 656 و 468 و 434 و 410 نانومتر. هنالك أيضاً سلسلة من الخطوط الطيفية للهيدروجين واقعة ضمن مجال الأشعة تحت الحمراء (وهي: سلسلة باشن وسلسلة براكيت وسلسلة بفوند) بالإضافة إلى الخطوط الواقعة ضمن مجال الأشعة فوق البنفسجية (سلسلة لايمان) وذلك بالنسبة للطيف كهرومغناطيسي.

يبدي الهيدروجين H2 ضمن حقل مغناطيسي خاصيّة مغناطيسية معاكسة ضعيفة جداً، حيث أن القابلية المغناطيسية له \chi_{m} يبلغ مقدارها −2.2×10−9. يعد الهيدروجين عازلاً للتيار الكهربائي، حيث أن شدة العزل له كبيرة في الحقول الكهربائية.

أطوار الهيدروجين[عدل]

وعاء تخزين للهيدروجين السائل

يوجد الهيدروجين في الشروط القياسية من الضغط ودرجة الحرارة على شكل غاز ثنائي الذرة H2. عند درجات حرارة أقل من 21.15 كلفن يتكاثف الهيدروجين إلى سائل عديم اللون يدعى بالهيدروجين السائل ويرمز له LH2. يبدأ الهيدروجين بتشكيل بلورات صلبة عند درجة حرارة مقدارها 14.02 كلفن (−259.2 °س) ويتشكل عندها مزيج من الهيدروجين السائل والهيدروجين الصلب، والذي يدعى بالطين الهيدروجيني. عند درجات حرارة أقل من 14.02 كلفن يوجد الهيدروجين بالشكل الصلب فقط.

بخلاف الهيليوم الذي يبدي عند تسييله ميوعة فائقة فإن الهيدروجين لا يبدي هذه الخاصيّة. تعد النقطة الثلاثية للهيدروجين، حيث توجد الأطوار الثلاثة للهيدروجين في حالة توازن، إحدى النقاط الثابتة في مقياس درجة الحرارة العالمي ومقدارها 13.8033 كلفن عند ضغط 7.042 كيلو باسكال. [37] تقع النقطة الحرجة للهيدروجين عند درجة حرارة مقدارها 33.18 كلفن وذلك عند ضغط مقداره 13.0 بار.[37]

تنبأ فريق بحث سوفييتي في السابق أن الهيدروجين يكتسب فجأة لدى تعريضه إلى ضغط يبلغ ثلاثة ملايين ضغط جوي خاصة غريبة وهي أنه يصبح ناقلا للكهرباء كأي فلز من الفلزات المعروفة. [38] تحت ظروف الضغط العالية، كالتي توجد في مركز العملاق الغازي يفقد الهيدروجين خواصه ويصبح على شكل هيدروحين فلزي. وتحت ظروف الضغط المنخفض كالتي توجد في الفضاء، يميل الهيدروجين لأن يتواجد في شكل ذرات مفردة، نظرا لعدم وجود ظروف مناسبة لها لأن تتحد، تتكون سحب من الهيدروجين H2 عند ولادة النجوم.

مستويات الطاقة الإلكترونية[عدل]

إن مستوى الطاقة للحالة الأرضية للإلكترون الموجود في ذرة الهيدروجين تساوي 13.6 إلكترون فولت، والتي تعادل تقريباً طاقة فوتون من المنطقة فوق البنفسجية له طول موجة 92 نانو متر.[39]

يمكن عن طريق نموذج بور أن يتم حساب مستويات طاقة الهيدروجين بطريقة شبه دقيقة. ويتم هذا بجعل الإلكترون يدور حول البروتون مثلما تدور الأرض حول الشمس. ولكن الأرض لها مدار ثابت حول الشمس محكوم بقوى الجاذبية بين الأرض والشمس، أما الإلكترون فإنه يحتفظ بمداره تحت تأثير القوة الكهرومغناطيسية. كما يوجد فرق آخر بين النظامين، وهو أنه طبقا لميكانيكا الكم يمكن للإلكترون أن يكون على مسافة ثابتة فقط من البروتون. وعند عمل تصور لذرة الهيدروجين طبقا لهذا النظام وفق نموذج بور فإن هنالك طاقات مسموحة ومحددة للإلكترون.[40] يمكن تقديم وصف أدق لذرة الهيدروجين من خلال استعمال معادلة شرودنغر أو بحساب احتمالية تواجد الإلكترون حول البروتون باستخدام حسابات فاينمان.[41]

أشكال ارتباط الهيدروجين الجزيئي[عدل]

أشكال ارتباط الهيدروجين الجزيئي، أورثو و بارا

في الظروف العادية فإن غاز الهيدروجين الجزيئي H2 عبارة عن خليط من نوعين يختلفان عن بعضهما البعض وذلك باتجاه اللف المغزلي للبروتون، وتدعى هذين الحالتين أورثو و بارا.[42] في حالة الهيدروجين أورثو فإن البروتونين يقومان بلف مغزلي موازي، أما في حالة الهيدروجين بارا فإن اللف المغزلي لبروتوني النواة يكون باتجاه معاكس.[43]

في الظروف القياسية يتكون الهيدروجين من 25% من النمط بارا و 75% من النمط أورثو.[44] تعتمد نسبة التوازن بين هذين الشكلين على درجة الحرارة، خاصّةً أن الهيدروجين أورثو له طاقة أكبر ويكون في الحالة المثارة، فبالتالي لا يكون مستقراً في حالته النقية. لذلك فإن إجراء عملية تكثيف سريعة للهيدروجين، تجعله حاوياً على نسبة أكبر من النمط أورثو عالي الطاقة، والذي يتحول ببطء إلى النمط بارا.[45] عند درجات حرارة منخضة جداً فإن الهيدروجين يكون بشكل شبه حصري من النمط بارا. يمكن تمييز ظاهرة وجود أورثو/بارا الهيدروجين في المركبات الحاوية على الهيدروجين مثل الماء أو مجموعة الميثيلين، ولكن لذلك تأثير ضئيل على خصائصها الحرارية.[46]

إن لخاصية تحول الهيدروجين المكثف بين النمطين أورثو/بارا لها أهمية في مجال تحضير وتخزين الهيدروجين السائل، حيث أن التحول من النمط أورثو إلى النمط بارا عملية ناشرة للحرارة، بحيث أن تقدم حرارة كافية لتبخير قسم من الهيدروجين السائل، مما يؤدي إلى حدوث خسارة في المادة المسالة. من أجل ذلك تضاف حفّازات لعملية تحول أورثو/بارا مثل أكسيد الحديد الثلاثي وأكسيد الزنك.[47]

الخصائص الكيميائية[عدل]

الاحتراق[عدل]

احتراق غاز الهيدروجين مع الأكسجين في محرك مكوك الفضاء الرئيسي.

إن غاز الهيدروجين سريع الاشتعال ويحترق في الهواء ضمن مجال كبير من التركيز يتراوح بين 4% و 75% تركيز حجمي.[48] إن المحتوى الحراري القياسي للاحتراق بالنسبة لغاز الهيدروجين يبلغ −286 كيلوجول/مول.[49]

يحدث تفاعل الاحتراق وفق التفاعل:

(2H2(g) + O2(g) → 2H2O(l

يمكن أن يتشكل مزيج انفجاري مع الهواء بتراكيز منخفضة من الهيدروجين وذلك بوجود مصدر حراري أو نتيجة تماس كهربائي. إن درجة حرارة الاشتعال الذاتي للهيدروجين تبلغ 500°س.[50] يصدر الهيدروجين بتفاعله مع كميات كبيرة من الأكسجبن عند الاحتراق لهباً لا يرى بالعين المجردة لأن له إصدار في منطقة الأشعة فوق البنفسجية، مما يتطلب وجود كواشف خاصة للهب من أجل الكشف عن الهيدروجين المحترق. في الشروط العادية يحترق الهيدروجين بلهب أزرق يشبه لهب احتراق الغاز الطبيعي.[51]

المركبات[عدل]

العضوية والتساهمية[عدل]

يتفاعل غاز الهيدروجين مع العناصر المؤكسدة التي لها كهرسلبية كبيرة مثل الأكسجين حيث يتشكل الماء عن طريق مخلوط هيدروجين وأكسجين. كما يتفاعل مع الفلور والكلور ليشكل الهاليدات الموافقة: فلوريد وكلوريد الهيدروجين، والتي تعد من الأحماض الأكّالة.[52] في هذه المركبات يكون للهيدروجين شحنة جزئية موجبة، وغالباً ما تكون له عدد أكسدة مقداره +1.[53] عند ارتباط الهيدروجين مع الأكسجين أو النيتروجين أو الفلور فإن الهيدروجين يشكل نوعاً من أنواع الروابط الكيميائيةالتي تدعى رابطة هيدروجينية، والتي لها أهمية كبيرة في استقرار الجزيئات الحيوية.[54][55] يشكل الهيدروجين مع الكربون بالإضافة إلى عدة ذرات غير متجانسة أخرى طيفاًً واسعاً من المركبات الكيمائية التي تدعى الهيدروكربونات والتي تصنف تحت المركبات العضوية.[56]

الهيدريدات[عدل]

يشكل الهيدروجين مركبات أيضاً مع عناصر لها كهرسلبية ضعيفة نسبياً مثل الفلزات وأشباهها، حيث يحمل الهيدروجين في المركبات الناتجة شحنة جزئية سالبة H. تدعى هذه المركبات باسم الهيدريدات.[57]

أشكال ارتباط الهيدروجين مع الأكسجين

غالباً ما يطلق اسم الهيدريدات عند ارتباط الهيدروجين مع عناصر المجموعة الأولى والثانية كما في مركبات هيدريد الليثيوم وهيدريد الصوديوم وهيدريد الروبيديوم بالإضافة إلى هيدريد الكالسيوم. هنالك حالات قليلة يرتبط فيها الهيدروجيين على شكل هيدريد مع فلزات أخرى مثل الألومنيوم كما في هيدريد الألومنيوم وفي هيدريد ألومنيوم الليثيوم.

الأحماض[عدل]

إن أكسدة الهيدروجين تؤدي إلى فقدان إلكترون ليعطي جسيم H+ والذي لا بحوي على أي إلكترون آخر وتتكون نواته من بروتون واحد، لذلك يدعى H+ باسم البروتون، والذي له أهمية كبيرة في تكوين الأحماض حسب نظرية برونستد-لوري والتي تكون فيها الأحماض مانحة للبروتون في حين أن القواعد مستقبلة للبروتون.

لا يمكن عزل البروتون في الأوساط المائية حيث يوجد على شكل أيون الهيدرونيوم H3O+. على أرض الواقع يوجد الهيدروجين على شكل أيونات أوكسونيوم أخرى في الأوساط الحمضية ومع مذيبات أخرى.[58][59]

الأكاسيد[عدل]

يعد الماء من الناحية الكيميائية النظرية أكسيداً للهيدروجين، كما يعد الماء الأكسجيني، والذي اسمه العلمي فوق أكسيد الهيدروجين H2O2 عبارة عن فوق أكسيد للهيدروجين.

هناك أيضاً مركب أكسجيني آخر للهيدروجين يعرف باسم ثلاثي أكسيد ثنائي الهيدروجين (أو تريوكسيدان) وله الصيغة H2O3.

النظائر[عدل]

نظائر الهيدروجين: البروتيوم والديوتيريوم والتريتيوم

للهيدروجين ثلاثة نظائر رئيسية وهي 1H ويدعى البروتيوم وله الرمز H، و2H ويدعى ديوتيريوم وله الرمز D، و3H ويدعى تريتيوم وله الرمز T. وبذلك يعد الهيدروجين العنصر الوحيد الذي لنظائره أسماء مختلفة، حيث أن أسماء نظائر باقي العناصر يشار إليها باسم العنصر مرفقاً بعدد النيوترونات في النواة.

النظير الاسم الرمز الخصائص
   1H بروتيوم   H أكثر نظائر الهيدروجين ثباتا وأخفها [38]، وله نواة ذرة تتكون من بروتون واحد، ويستخدم الاسم بروتيوم للتعبير عن هذا النظير (اسم غير شائع الاستخدام).[60] لهذا النظير وفرة نسبية مقدارها 99.98%.
   2H ديوتيريوم   D للنظير 2H نيوترون بالإضافة إلى البروتون الموجود في النواة، ويسمى ديوتيريوم وله الرمز D. وهو يشكل 0.015% من ذرات الهيدروجين في الطبيعة. إن الديويتيريوم عبارة عن نظير غير مشع ولا يشكل خطر على جسم الإنسان. تستخدم المركبات والمذيبات الموسومة بالديوتيريوم في تجارب مطيافية الرنين المغناطيسي النووي. [61] يدعى الماء الذي تكون جزيئاته مخصّبة بالديوتيريوم D مكان الهيدروجين (البروتيوم) H باسم الماء الثقيل. والديتريوم قليل جدًا في الماء، إذ توجد منه ذرة واحدة فقط مقابل 6700 ذرة من البروتيوم.[38] يستعمل الماء الثقيل في المفاعلات النووية كمهدئ للنيوترونات وكمادة تبريد. يعد الديويتيريوم كأحد الاحتمالات لاستخدامه كوقود للاندماج النووي.[62]
   3H تريتيوم   T للنظير 3H نواة تتكون من نيوترونين اثنين وبروتون واحد، ويعرف باسم تريتيوم وله الرمز T. يعد التريتيوم نظيراً مشعاً ويضمحل عبر إشعاع بيتا إلى النظير هيليوم-3 وذلك بعمر نصف مقداره 12.32 سنة.[18] يوجد التريتيوم في الطبيعة بنسبة ضئيلة جداً وذلك من أثر الأشعة الكونية على غازات الغلاف الجوي.[38][63] أدت التجارب النووية إلى إصدار نسبة من التريتيوم في الطبيعة.[64] يستخدم التريتيوم في مفاعلات الاندماج النووي،[65] وكمادة تتبّع في جيوكيمياء النظائر [66] وفي إضاءة التريتيوم [67] وكمادة للوسم الإشعاعي في التجارب الكيميائية والحيوية.[68]

للهيدروجين نظائر مشعة أخرى لا توجد في الطبيعة وهي هيدروجين-4 4H و هيدروجين-5 5H و هيدروجين-6 6H بالإضافة إلى هيدروجين-7 7H المصطنع حديثاً.[69][70]

الاستخدامات[عدل]

تطبيقات في العمليات الكيميائية[عدل]

يدخل الهيدروجين كعنصر أساسي في العديد من العمليات وذلك في الصناعات الكيميائية والنفطية. من أكبر الاستخدامات للهيدروجين هو دخوله في تصنيع الأمونيا من خلال عملية هابر-بوش وكذلك في عمليات تحسين نوعية الوقود الأحفوري مثل عملية نزع الكبريت المهدرج والتكسير الهيدروجيني بالإضافة إلى كونه عامل أساسي في عملية الهدرجة.

يستخدم الهيدروجين عامل اختزال في العديد من التطبيقات منها استخدامه لاختزال الخامات المعدنية.[71]

تطبيقات فيزيائية وهندسية[عدل]

يستخدم الهيدروجين كغاز واقي في عمليات اللحام مثل عملية اللحام الهيدروجيني الذري.[72][73] كما يستخدم الهيدروجين في أبحاث التبريد العميق بما فيها دراسات حول الموصلية الفائقة.[74]

نظراً لأن له مقاومة مائع ولزوجة منخفضة، يستخدم الهيدروجين في تبريد المولدات التوربينية.[75]

يستعمل مزيج من غاز الهيدروجين مع غاز النيتروجين من أجل الكشف عن وجود تسريبات دقيقة في الأنظمة المستخدمة في الصناعات الكيميائية ومحطات توليد الطاقة وفي صناعة السيارات والمركبات الفضائية.[76] يسمح استخدام غاز الهيدروجين في الاتحاد الأوروبي كمادة للكشف عن تسريبات أغلفة الأغذية وله رقم إي (E 949) كما يستفاد من خواصه الاختزالية.[77]

طاقة الهيدروجين البديلة[عدل]

نتيجة الاضمحلال التدريجي لمصادر الطاقة المعتمدة على الوقود الأحفوري ظهرت اقتراحات بالاتجاه نحو مصادر طاقة بديلة تعتمد على الهيدروجين، فظهرت دراسات حول التوجه نحو اقتصاد الهيدروجين من أجل استخدام الهيدروجين كحامل مستقبلي للطاقة.[78] مع العلم أن تكاليف هذا التوجه من بنية تحتية هيدروجينية مرتفعة جداً.[79] تجدر الإشارة إلى الهيدروجين نفسه لا يعد عملياً ضمن ضوء التطبيقات الحالية مصدراً للطاقة إنما هو عبارة عن حامل للطاقة،[80] وذلك أن اعتباره مصدر للطاقة يكون في مفاعلات الاندماج النووي، والتي لا تطبق عملياً في شكل واسع.[81]

من المشاكل التي تواجه العمل في استخدام الهيدروجين كحامل للطاقة هو كثافة الطاقة بالنسبة للحجم الموجودة لدى الهيدروجين السائل حيث أنها أقل من مصدر طاقة تقليدي، مع العلم أن كثافة الطاقة بالنسبة للكتلة أعلى من مصادر الطاقة التقليدية.[80] فعلى سبيل المقارنة بين الهيدروجين ووقود السيارات (البنزين)، فإن كثافة الطاقة بالنسبة للكتلة للهيدروجين أعلى منها للبنزين بأكثر من ضعفين، حيث تعادل 33.3 كيلوواط ساعي لكل كيلوغرام هيدروجين مقابل 12.7 كيلوواط ساعي لكل كيلوغرام بنزين. بالمقابل، فإن كثافة الطاقة بالنسبة للحجم للهيدروجين أقل بحوالي أربع مرات منها للبنزين، حيث تعادل 2360 كيلو واط ساعي لكل متر مكعب هيدروجين سائل مقابل 8760 كيلو واط ساعي لكل متر مكعب بنزين.[82]

من مشروعات المحافظة على البيئة والاستغناء عن الوقود الأحفوري مشروع استخدام غاز الهيدروجين لإنتاج الطاقة وذلك عن طريق خلايا وقود. وخلية الطاقة تُنتج الكهرباء من خلال تفاعل كيميائي باستخدام الهيدروجين والأكسجين، ومن أحد التطبيقات والذي لا يزال ضمن الدراسة الاستخدام في إنتاج السيارات الهيدروجينية.

الدور الحيوي[عدل]

إنتاج الهيدروجين الحيوي عن طريق الطحالب

يعد الهيدروجين H2 أحد النواتج الطبيعية لبعض أنواع الاستقلاب اللاهوائي (التخمر) وينتج من قبل عدة أنواع من الميكروبات وذلك من خلال تفاعل محفّز بأنزيمات حاوية في تركيبها على الحديد أو النيكل وتدعى باسم هيدروجيناز. هذه الأنزيمات تحفز تفاعل أكسدة-اختزال بين H2 وبين بروتونين وإلكترونين اثنين. على سبيل المثال ينتج غاز الهيدروجين عند عملية استقلاب البيروفات إلى الماء.[83]

إن عملية فصل الماء إلى مكوناته من الأكسجين والهيدروجين تحدث في التفاعالات الضوئية التي تحدث في المتعضيات المعتمدة على التركيب الضوئي في بقائها. هنالك بعض الأنواع من الطحالب الخضراء تدعى Chlamydomonas reinhardtii وأنواع من الجراثيم الزرقاء (زراقم) تقوم بنوع من التفاعلات المظلمة (غير المعتمدة على الضوء) حيث يتجري عملية اختزال تتحول فيها البروتونات والإلكترونات لتشكّل غاز الهيدروجين بنوع خاص من أنزيم الهيدروجيناز موجود في البلاستيدات الخضراء.[84] تجري بعض الأبحاث لتعديل هيدروجيناز الجراثيم الزرقاء لتقوم بإنتاج H2 حتى بوجود الأكسجين.[85] كما أن هناك محاولات أخرى لإنتاج الهيدروجين من الطحالب المعدلة وراثياً من أجل إنتاج الهيدروجين الحيوي.[86]

يوجد الهيدروجين في جسم الإنسان والثدييات الأخرى على شكل مركبات كيميائية حيوية كالماء والسكريات (الكربوهيدرات). يحتل الهيدروجين المرتبة الثالثة من حيث ترتيب العناصر الموجودة في جسم الإنسان وذلك بالنسبة للكتلة. على سبيل المثال بالنسبة لإنسان يزن 70 كيلوغرام فإن حوالي 10% منه (أي 7 كغ) عبارة عن هيدروجين. فقط الأكسجين (حوالي 63% من الوزن) والكربون (حوالي 20% من الوزن) يفوقان الهيدروجين في هذا الترتيب. إذا قمنا بترتيب العناصر في جسم الإنسان بالنسبة لعددها، فإن الهيدروجين بذلك يحتل صدارة القائمة (عدد الذرات الموجودة في 7 كغ في جسم الإنسان توافق 3.5×103 مول أي 4.2×1027 ذرة هيدروجين).

اندماج الهيدروجين في الشمس والنجوم[عدل]

عن طريق الاندماج النووي تستمد الشمس حرارتها وكذلك النجوم. في هذا التفاعل تندمج ذرات الهيدروجين في درجة حرارة نحو 12 مليون درجة مئوية وضغط عالي جدا فيتكون الهيليوم. ويقوم النجم بذلك التفاعل أثناء 90% من عمره، بعد ذلك يكون الجزء الأكبر من الهيدروجين قد استهلك وتحول إلى هيليوم.

يمكن سريان التفاعل الاندماجي بطريقتين، وبواسطتهما يلتحم 4 بروتونات وهي أنوية الهيدروجين فتكون نواة الهيليوم 4He عن طريق:

وعند حساب الطاقة الناتجة فيجب الأخذ في الحسبان تولد اثنين من البوزيترونات في كل تفاعل يؤدي إلى هيليوم-4 سواء في تفاعل البروتون-بروتون أو في دورة CNO. يتفاعل كل بوزيترون مع أحد الإلكترونات في الحال عن طريق إفناء إلكترون-بوزيترون وينتجا طاقة إضافية قدرها 1.022 ميغا إلكترون فولت. أي أنه يلزم لحساب الطاقة الناتجة حساب نقص الكتلة للأربعة بروتونات التي التحمت مكونة نواة الهيليوم بالإضافة إلى ضعف كتلة الإلكترون. ونقص الكتلة هو الفرق في كتلة المواد الداخلة في التفاعل وهي كتلة أربعة ذرات الهيدروجين (وهي تتكون من 4 بروتونات وأربعة إلكترونات) وطرح كتلة ذرة الهليوم 4He. كما ينتج عن ذلك أيضا نيوترينو يأخذ جزءا من الطاقة ويغادر بها الشمس أو النجم.

وعن طريق الاندماج النووي يفقد الهيدروجين الداخل في التفاعل نحو 0.73% من كتلته تتحول إلى طاقة وتلك ما يسمى نقص الكتلة. ويمكن حساب الطاقة الناتجة عن ذلك النقص في الكتلة عن طريق المعادلة الشهيرة لأينشتاين وهي معادلة تكافؤ المادة والطاقة: E = mc² حيث m الكتلة و c سرعة الضوء في الفراغ.

يعتبر الاندماج النووي بين الهيدروجين لإنتاج الهيليوم أكثر التفاعلات النووية منتجة للطاقة من بين التفاعلات النووية الأخرى.

احتياطات الأمان[عدل]

إن غاز الهيدروجين غير سام وغير مضر للبيئة، لذلك لا يذكر له قيمة عددية تعرّف حد التعرض للأخطار المهنية.

يشكّل الهيدروجين في بعض الحالات خطراً على السلامة البشرية وذلك إما على شكل انفجارات أو حرائق عند امتزاجه مع الهواء أو لكونه مسبباً للاختناق في جو خال ٍ من الأكسجين.[87] عند تراكيز عالية من الهيدروجين تفوق 30% تبدأ عوارض عدم انتظام حركات الجسم وفقدان الوعي، والتي يمكن ان تنتهي بالوفاة في حال عدم توفر الأكسجين.[88]

إن الهيدروجين غاز له قابلية كبيرة للاشتعال حتى في التركيزات القليلة حتى 4%. كما أنه يتفاعل بشدة مع الكلور والفلور لينتج أحماض أكّالة والتي تكون مضرة للجهاز التنفسي عند استنشاقها كما انها مخرّشة للأنسجة الحيوية. وعند خلطه مع الأكسجين فإن الهيدروجين ينفجر عند الاشتعال. والهيدروجين أيضا له خاصية فريدة هي أن شعلته في الهواء نظيفة تماما. وعلى هذا فإنه من الصعب معرفة حدوث أي احتراق يحدث من تسرب الهيدروجين، كما أنه هناك خطر كبير من أن يكون هناك حريق هيدروجين بدون أي ملاحظة.[89]

بالإضافة إلى ذلك فإن الهدروجين السائل يكون في حالة تبريد عميق ويمكن بذلك أن يسبب ما يسمى عضة برد، والتي يمكن ان تحدث عند التعامل مع السوائل المبردة بشدّة.[90]

اقرأ أيضاً[عدل]

هوامش[عدل]

ملاحظات[عدل]

  1. ^ الجدول أدناه يوضع الانبعاثات الطيفية والطول الموجي لها.
    لون الخط الطيفي المنبعث الطولي الموجي
    الأحمر 656.2
    الأخضر والأزرق 486.1
    الأزرق البنفسجي 434.0
    بنفسجي 410.1

مراجع[عدل]

  1. ^ أ ب ت ث ج ح العنصر هيدروجين معمل جيفرسون
  2. ^ Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic chemistry. Academic Press. صفحة 240. ISBN 0123526515. 
  3. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  4. ^ بلامر، ديفيد. الهيدروجين في الكون. ناسا. وصل لهذا المسار في 25 فبراير 2011.
  5. ^ اكتشاف الهيدروجين والنظائر المشعة له.. هذه الصفحة هي جزء من مقالة مقسمة إلي مجموعة مقاطع منشورة المقدمة و الخصائص ومجموعة مقالات أخري . موسوعة كولومبيا وصل لهذا المسار في 25 يناير، 2011..
  6. ^ Ernst F. Schwenk: Sternstunden der frühen Chemie. Verlag C.H. Beck, 1998, ISBN 3-406-45601-4.
  7. ^ "Why did oxygen supplant phlogiston? Research programmes in the Chemical Revolution – Cambridge Books Online – Cambridge University Press". اطلع عليه بتاريخ 2011-10-22. 
  8. ^ أ ب "Hydrogen". Van Nostrand's Encyclopedia of Chemistry. Wylie-Interscience. 2005. pp. 797–799. ISBN 0-471-61525-0.
  9. ^ أ ب ت ث ج ح Emsley، John (2001). Nature's Building Blocks. Oxford: Oxford University Press. ISBN 0-19-850341-5. 
  10. ^ Stwertka، Albert (1996). A Guide to the Elements. Oxford University Press. ISBN 0-19-508083-1. 
  11. ^ Barron، Andrew R.. اكتشاف الهيدروجين. (بالإنجليزية). وصل لهذا المسار في 25 يناير، 2011.
  12. ^ Crepeau، Bob. Niels Bohr: The Atomic Model. Great Neck Publishing. ISBN 1-4298-0723-7. 
  13. ^ Gagnon، Steve. "Hydrogen". Jefferson Lab. اطلع عليه بتاريخ 2008-02-05. 
  14. ^ Haubold، Hans؛ Mathai، A. M. (November 15, 2007). "Solar Thermonuclear Energy Generation". Columbia University. اطلع عليه بتاريخ 2008-02-12. 
  15. ^ Storrie-Lombardi، Lisa J.؛ Wolfe، Arthur M. (2000). "Surveys for z > 3 Damped Lyman-alpha Absorption Systems: the Evolution of Neutral Gas". Astrophysical Journal 543 (2): 552–576. arXiv:astro-ph/0006044. Bibcode:2000ApJ...543..552S. doi:10.1086/317138. 
  16. ^ McCall Group, Oka Group (April 22, 2005). "H3+ Resource Center". Universities of Illinois and Chicago. اطلع عليه بتاريخ 2008-02-05. 
  17. ^ Helm, H. et al.. "Coupling of Bound States to Continuum States in Neutral Triatomic Hydrogen". Department of Molecular and Optical Physics, University of Freiburg, Germany. اطلع عليه بتاريخ 2009-11-25. 
  18. ^ أ ب Miessler، Gary L.؛ Tarr، Donald A. (2003). Inorganic Chemistry (الطبعة 3rd). Prentice Hall. ISBN 0-13-035471-6. 
  19. ^ Dresselhaus, Mildred et al. (May 15, 2003). "Basic Research Needs for the Hydrogen Economy" (PDF). Argonne National Laboratory, U.S. Department of Energy, Office of Science Laboratory. اطلع عليه بتاريخ 2008-02-05. 
  20. ^ أ ب ت ث "الهدروجين". الموسوعة العربية. اطلع عليه بتاريخ 2014-05-07. 
  21. ^ Webmineral – Mineral Species sorted by the element H (Hydrogen) .
  22. ^ Kruse، B.؛ Grinna، S.؛ Buch، C. (2002). "Hydrogen Status og Muligheter" (PDF). Bellona. اطلع عليه بتاريخ 2008-02-12. 
  23. ^ Lees، Andrew (2007). "Chemicals from salt". BBC. تمت أرشفته من الأصل على October 26, 2007. اطلع عليه بتاريخ 2008-03-11. 
  24. ^ Venere، Emil (May 15, 2007). "New process generates hydrogen from aluminum alloy to run engines, fuel cells". Purdue University. اطلع عليه بتاريخ 2008-02-05. 
  25. ^ Perret, Robert. "Development of Solar-Powered Thermochemical Production of Hydrogen from Water, DOE Hydrogen Program, 2007" (PDF). اطلع عليه بتاريخ 2008-05-17. 
  26. ^ "Development of solar-powered thermochemical production of hydrogen from water" (PDF). 
  27. ^ أ ب ت Oxtoby، D. W. (2002). Principles of Modern Chemistry (الطبعة 5th). Thomson Brooks/Cole. ISBN 0-03-035373-4. 
  28. ^ "Hydrogen Properties, Uses, Applications". Universal Industrial Gases, Inc. 2007. اطلع عليه بتاريخ 2008-03-11. 
  29. ^ Funderburg، Eddie (2008). "Why Are Nitrogen Prices So High?". The Samuel Roberts Noble Foundation. اطلع عليه بتاريخ 2008-03-11. 
  30. ^ "Virginia Tech team develops process for high-yield production of hydrogen from xylose under mild conditions". Green Car Congress. 2013-04-03. doi:10.1002/anie.201300766. اطلع عليه بتاريخ 2014-01-22. 
  31. ^ Martín Del Campo، J. S.؛ Rollin، J.؛ Myung، S.؛ Chun، Y.؛ Chandrayan، S.؛ Patiño، R.؛ Adams، M. W.؛ Zhang، Y. -H. P. (2013). "High-Yield Production of Dihydrogen from Xylose by Using a Synthetic Enzyme Cascade in a Cell-Free System". Angewandte Chemie International Edition 52 (17): 4587. doi:10.1002/anie.201300766.  edit
  32. ^ Takeshita، T.؛ Wallace، W.E.؛ Craig، R.S. (1974). "Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt". Inorganic Chemistry 13 (9): 2282–2283. doi:10.1021/ic50139a050. 
  33. ^ Kirchheim، R.؛ Mutschele، T.؛ Kieninger، W.؛ Gleiter، H؛ Birringer، R؛ Koble، T (1988). "Hydrogen in amorphous and nanocrystalline metals". Materials Science and Engineering 99: 457–462. doi:10.1016/0025-5416(88)90377-1. 
  34. ^ Kirchheim، R. (1988). "Hydrogen solubility and diffusivity in defective and amorphous metals". Progress in Materials Science 32 (4): 262–325. doi:10.1016/0079-6425(88)90010-2. 
  35. ^ Rogers، H.C. (1999). "Hydrogen Embrittlement of Metals". Science 159 (3819): 1057–1064. Bibcode:1968Sci...159.1057R. doi:10.1126/science.159.3819.1057. PMID 17775040. 
  36. ^ http://www.pro.ecs.dtu.dk/research/hydrogen-storage
  37. ^ أ ب P. J. Linstrom, W. G. Mallard (Hrsg.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD.
  38. ^ أ ب ت ث بتريانوف، إيغور فاسيلفيتش (1987)، "الماء: تلك المادة العجيبة"، دار مير للطباعة والنشر،ترجمة الدكتور عيسى مسوح 
  39. ^ Millar، Tom (December 10, 2003). "Lecture 7, Emission Lines — Examples". PH-3009 (P507/P706/M324) Interstellar Physics. University of Manchester. اطلع عليه بتاريخ 2008-02-05. 
  40. ^ Stern، David P. (2005-05-16). "The Atomic Nucleus and Bohr's Early Model of the Atom". NASA Goddard Space Flight Center (mirror). اطلع عليه بتاريخ 2007-12-20. 
  41. ^ Stern، David P. (2005-02-13). "Wave Mechanics". NASA Goddard Space Flight Center. اطلع عليه بتاريخ 2008-04-16. 
  42. ^ Staff (2003). "Hydrogen (H2) Properties, Uses, Applications: Hydrogen Gas and Liquid Hydrogen". Universal Industrial Gases, Inc. اطلع عليه بتاريخ 2008-02-05. 
  43. ^ P. Atkins and J. de Paula, Atkins' Physical Chemistry, 8th edition (W.H.Freeman 2006), p.452
  44. ^ Tikhonov، Vladimir I.؛ Volkov، Alexander A. (2002). "Separation of Water into Its Ortho and Para Isomers". Science 296 (5577): 2363. doi:10.1126/science.1069513. PMID 12089435. 
  45. ^ Milenko، Yu. Ya.؛ Sibileva، R. M.؛ Strzhemechny، M. A (1997). "Natural ortho-para conversion rate in liquid and gaseous hydrogen". Journal of Low Temperature Physics 107 (1–2): 77–92. Bibcode:1997JLTP..107...77M. doi:10.1007/BF02396837. 
  46. ^ Shinitzky، Meir؛ Elitzur، Avshalom C. (2006). "Ortho-para spin isomers of the protons in the methylene group". Chirality 18 (9): 754–756. doi:10.1002/chir.20319. PMID 16856167. 
  47. ^ Svadlenak، R. Eldo؛ Scott، Allen B (1957). "The Conversion of Ortho- to Parahydrogen on Iron Oxide-Zinc Oxide Catalysts". Journal of the American Chemical Society 79 (20): 5385–5388. doi:10.1021/ja01577a013. 
  48. ^ Carcassi، M.N.؛ Fineschi، F. (2005). "Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment". Energy 30 (8): 1439–1451. doi:10.1016/j.energy.2004.02.012. 
  49. ^ Committee on Alternatives and Strategies for Future Hydrogen Production and Use, United States National Research Council, US National Academy of Engineering (2004). The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies Press. صفحة 240. ISBN 0-309-09163-2. 
  50. ^ Patnaik, P (2007). A comprehensive guide to the hazardous properties of chemical substances. Wiley-Interscience. صفحة 402. ISBN 0-471-71458-5. 
  51. ^ hydrogen flame visibility
  52. ^ Clayton، D.D. (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. Cambridge University Press. ISBN 0-521-82381-1. 
  53. ^ Clark، Jim (2002). "The Acidity of the Hydrogen Halides". Chemguide. اطلع عليه بتاريخ 2008-03-09. 
  54. ^ Kimball، John W. (2003-08-07). "Hydrogen". Kimball's Biology Pages. اطلع عليه بتاريخ 2008-03-04. 
  55. ^ IUPAC Compendium of Chemical Terminology, Electronic version, Hydrogen Bond
  56. ^ "Structure and Nomenclature of Hydrocarbons". Purdue University. اطلع عليه بتاريخ 2008-03-23. 
  57. ^ Sandrock، Gary (2002-05-02). "Metal-Hydrogen Systems". Sandia National Laboratories. اطلع عليه بتاريخ 2008-03-23. 
  58. ^ Okumura، Anthony M.؛ Yeh، L. I.؛ Myers، J. D.؛ Y. T (1990). "Infrared spectra of the solvated hydronium ion: vibrational predissociation spectroscopy of mass-selected H3O+•(H2O)n•(H2)m". Journal of Physical Chemistry 94 (9): 3416–3427. doi:10.1021/j100372a014. 
  59. ^ Perdoncin، Giulio؛ Scorrano، Gianfranco (1977). "Protonation Equilibria in Water at Several Temperatures of Alcohols, Ethers, Acetone, Dimethyl Sulfide, and Dimethyl Sulfoxide". Journal of the American Chemical Society 99 (21): 6983–6986. doi:10.1021/ja00463a035. 
  60. ^ Urey، Harold C.؛ Brickwedde، F. G.؛ Murphy، G. M. (1933). "Names for the Hydrogen Isotopes". Science 78 (2035): 602–603. Bibcode:1933Sci....78..602U. doi:10.1126/science.78.2035.602. PMID 17797765. 
  61. ^ Oda, Y; Nakamura, H.; Yamazaki, T.; Nagayama, K.; Yoshida, M.; Kanaya, S.; Ikehara, M. (1992). "1H NMR studies of deuterated ribonuclease HI selectively labeled with protonated amino acids". Journal of Biomolecular NMR 2 (2): 137–47. doi:10.1007/BF01875525. PMID 1330130. 
  62. ^ Broad، William J. (November 11, 1991). "Breakthrough in Nuclear Fusion Offers Hope for Power of Future". The New York Times. اطلع عليه بتاريخ 2008-02-12. 
  63. ^ D. Lal und B. Peters: Cosmic ray produced radioactivity on the earth. Handbuch der Physik, Band 46/2, Springer, Berlin 1967, S. 551–612.
  64. ^ Staff (November 15, 2007). "Tritium". U.S. Environmental Protection Agency. اطلع عليه بتاريخ 2008-02-12. 
  65. ^ Nave، C. R. (2006). "Deuterium-Tritium Fusion". HyperPhysics. Georgia State University. اطلع عليه بتاريخ 2008-03-08. 
  66. ^ Kendall، Carol؛ Caldwell، Eric (1998). Fundamentals of Isotope Geochemistry. US Geological Survey. اطلع عليه بتاريخ 2008-03-08. 
  67. ^ "The Tritium Laboratory". University of Miami. 2008. اطلع عليه بتاريخ 2008-03-08. 
  68. ^ Holte، Aurali E.؛ Houck، Marilyn A.؛ Collie، Nathan L. (2004). "Potential Role of Parasitism in the Evolution of Mutualism in Astigmatid Mites". Experimental and Applied Acarology (Lubbock: Texas Tech University) 25 (2): 97–107. doi:10.1023/A:1010655610575. 
  69. ^ Gurov, Yu. B.; Aleshkin, D. V.; Behr, M. N.; Lapushkin, S. V.; Morokhov, P. V.; Pechkurov, V. A.; Poroshin, N. O.; Sandukovsky, V. G.; Tel'kushev, M. V.; Chernyshev, B. A.; Tschurenkova, T. D (2004). "Spectroscopy of superheavy hydrogen isotopes in stopped-pion absorption by nuclei". Physics of Atomic Nuclei 68 (3): 491–97. Bibcode:2005PAN....68..491G. doi:10.1134/1.1891200. 
  70. ^ Korsheninnikov، A.؛ Nikolskii، E.؛ Kuzmin، E.؛ Ozawa، A.؛ Morimoto، K.؛ Tokanai، F.؛ Kanungo، R.؛ Tanihata، I. et al. (2003). "Experimental Evidence for the Existence of 7H and for a Specific Structure of 8He". Physical Review Letters 90 (8): 082501. Bibcode:2003PhRvL..90h2501K. doi:10.1103/PhysRevLett.90.082501. 
  71. ^ Chemistry Operations (2003-12-15). "Hydrogen". Los Alamos National Laboratory. اطلع عليه بتاريخ 2008-02-05. 
  72. ^ Durgutlu، Ahmet (2003). "Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel". Materials & Design 25 (1): 19–23. doi:10.1016/j.matdes.2003.07.004. 
  73. ^ "Atomic Hydrogen Welding". Specialty Welds. 2007. تمت أرشفته من الأصل على 2011-07-16. 
  74. ^ Hardy، Walter N. (2003). "From H2 to cryogenic H masers to HiTc superconductors: An unlikely but rewarding path". Physica C: Superconductivity. 388–389: 1–6. Bibcode:2003PhyC..388....1H. doi:10.1016/S0921-4534(02)02591-1. 
  75. ^ Development of world's largest hydrogen-cooled turbine generator
  76. ^ Block, Matthias. "Hydrogen as Tracer Gas for Leak Detection".16th WCNDT 2004, Montreal, Canada:Sensistor Technologies. 
  77. ^ "Report from the Commission on Dietary Food Additive Intake" (PDF). European Union. اطلع عليه بتاريخ 2008-02-05. 
  78. ^ "DOE Seeks Applicants for Solicitation on the Employment Effects of a Transition to a Hydrogen Economy" (بيان إعلامي). US Department of Energy. 2006-03-22. Archived from the original on 2011-07-19. http://web.archive.org/web/20110719105413/http://www.hydrogen.energy.gov/news_transition.html. Retrieved 2008-03-16.
  79. ^ Romm، Joseph J. (2004). The Hype About Hydrogen: Fact And Fiction In The Race To Save The Climate (الطبعة 1st). Island Press. ISBN 1-55963-703-X. 
  80. ^ أ ب McCarthy، John (1995-12-31). "Hydrogen". Stanford University. اطلع عليه بتاريخ 2008-03-14. 
  81. ^ "Nuclear Fusion Power". World Nuclear Association. May 2007. اطلع عليه بتاريخ 2008-03-16. 
  82. ^ مقارنة كثافات الطاقة للوقود (لغة ألمانية)
  83. ^ Cammack، Richard؛ Robson، R. L. (2001). Hydrogen as a Fuel: Learning from Nature. Taylor & Francis Ltd. ISBN 0-415-24242-8. 
  84. ^ Kruse، O.؛ Rupprecht، J.؛ Bader، K.-P.؛ Thomas-Hall، S.؛ Schenk، P. M.؛ Finazzi، G.؛ Hankamer، B (2005). "Improved photobiological H2 production in engineered green algal cells". The Journal of Biological Chemistry 280 (40): 34170–7. doi:10.1074/jbc.M503840200. PMID 16100118. 
  85. ^ Smith، H. O.؛ Xu، Q (2005). "IV.E.6 Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacteria System" (PDF). FY2005 Progress Report. United States Department of Energy. اطلع عليه بتاريخ 2008-02-05. 
  86. ^ Williams، Chris (2006-02-24). "Pond life: the future of energy". Science (The Register). اطلع عليه بتاريخ 2008-03-24. 
  87. ^ Brown, W. J. et al. (1997). "Safety Standard for Hydrogen and Hydrogen Systems" (PDF). NASA. اطلع عليه بتاريخ 2008-02-05. 
  88. ^ Helmut Eichlseder, Manfred Klell: Wasserstoff in der Fahrzeugtechnik, 2010, ISBN 978-3-8348-0478-5.
  89. ^ Wasserstoff so sicher wie Benzin (PDF; 704 kB) (لغة ألمانية)
  90. ^ "Liquid Hydrogen MSDS" (PDF). Praxair, Inc. September 2004. اطلع عليه بتاريخ 2008-04-16. 

وصلات خارجية[عدل]