فلز ثقيل

من ويكيبيديا، الموسوعة الحرة
(بالتحويل من معدن ثقيل)
اذهب إلى التنقل اذهب إلى البحث
A silvery thumbnail-size chunk of osmium with a highly irregular crystalline surface.
كريستالات الأوزميوم، وهو فلز ثقيل يُعادل في كثافته ضعف كثافة الرصاص.[1]

الفلزات الثقيلة هي فلزات تتميز بأن لها كثافة أو عدد ذري أو كتلة ذرية مرتفعة نسبيًا مثل الفلزات الانتقالية، وبعض أشباه الفلزات، واللانثانيدات، الأكتينيدات.

تتواجد الفلزات الثقيلة بصورة طبيعية في النظام البيئي، مع اختلافات كبيرة في التركيز. لكن ازياد نسبها مؤخراً يرجع إلى المصادر الصناعية والنفايات الصناعية السائلة والنض أيونات الفلزات من التربة إلى البحيرات والأنهار والأمطار الحمضية، والتلوث الحادث من النفايات المتأتية من الوقود بشكل خاص.

معايير التعريفات[عدل]

خريطة حرارية للفلزات الثقيلة بالجدول الدوري
فلز قلوي فلز قلوي ترابي عناصر المجموعة الثالثة عناصر المجموعة الرابعة عناصر المجموعة الخامسة عناصر المجموعة السادسة عناصر المجموعة السابعة عناصر المجموعة الثامنة عناصر المجموعة التاسعة عناصر المجموعة العاشرة عناصر المجموعة الحادية عشرة عناصر المجموعة الثانية عشرة مجموعة البورون مجموعة الكربون مجموعة النتروجين كالكوجين هالوجين غاز نبيل
دورة الجدول الدوري هيدروجين هيليوم
دورة الجدول الدوري ليثيوم بيريليوم بورون كربون نيتروجين أكسجين فلور نيون
دورة الجدول الدوري صوديوم مغنسيوم ألومنيوم سيليكون فسفور كبريت كلور أرغون (عنصر كيميائي)
دورة الجدول الدوري بوتاسيوم كالسيوم سكانديوم تيتانيوم فاناديوم كروم منغنيز حديد كوبالت نيكل نحاس زنك غاليوم جرمانيوم زرنيخ سيلينيوم بروم كريبتون
دورة الجدول الدوري روبيديوم سترونشيوم إتريوم زركونيوم نيوبيوم موليبدنوم تكنيشيوم روثينيوم روديوم بالاديوم فضة كادميوم إنديوم قصدير إثمد تيلوريوم يود زينون
دورة الجدول الدوري سيزيوم باريوم لانثانوم هافنيوم تانتالوم تنجستن رينيوم أوزميوم إريديوم بلاتين ذهب زئبق ثاليوم رصاص بزموت بولونيوم أستاتين رادون
دورة الجدول الدوري فرانسيوم راديوم أكتينيوم رذرفورديوم دوبنيوم سيبورغيوم بوريوم هاسيوم مايتنريوم دارمشتاتيوم رونتجينيوم كوبرنيسيوم نيهونيوم فليروفيوم موسكوفيوم ليفرموريوم تينيسين أوغانيسون
     
سيريوم براسوديميوم نيوديميوم بروميثيوم ساماريوم يوروبيوم غادولينيوم تربيوم ديسبروسيوم هولميوم إربيوم ثوليوم إتيربيوم لوتيشيوم
ثوريوم بروتكتينيوم يورانيوم نبتونيوم بلوتونيوم أمريسيوم كوريوم بركيليوم كاليفورنيوم أينشتاينيوم فيرميوم مندليفيوم نوبليوم لورنسيوم
 
عدد المعايير المُستوفاة:
ععد العناصر:
  
10
3
  
9
5
  
8
14
  
6–7
56
  
4–5
14
  
1–3
4
  
0
3
  
لا فلزs
19
يبين هذا الجدول عدد معايير الفلزات الثقيلة التي يستوفيها كل فلز من بين المعايير العشرة المذكورة في هذا القسم، أي اثنين على أساس الكثافة، وثلاثة على أساس الوزن الذري، واثنين على أساس العدد الذري، وثلاثة على أساس الخصائص الكيميائية[n 1] يوضح الجدول عدم وجود اتفاق مُجمع عليه بخصوص وجود تعريف مُحدّد للفلزات الثقيلة، مع احتمال وجود الزئبق والرصاص والبزموت. تعتبر ستة عناصر قرب نهاية دورات الجدول الدوري في الصفوف من 4 إلى 7 في بعض الأحيان كأشباه فلزات، ولكنها تُصنّف هنا باعتبار أنها فلزات ثقيلة وهي الجرمانيوم، والزرنيخ، والسيلينيوم، والإثمد، والتيلوريوم، والأستاتين.[15][n 2] يتم التعامل مع الأوغانيسون أنه لا فلز.

من المتوقع أن يكون للمعادن التي تحتوي على خط متقطع (أو تقع ضمن ـ At و Fm – Ts) كثافة تزيد عن 5 جم سم مكعب.


لا يوجد تعريف مُتفّق عليه على نطاق واسع للمعادن الثقيلة. قد تُرفق معانٍ مختلفة لهذا المصطلح حسب السياق. في علم الفلزات على سبيل المثال، يمكن تعريف المعدن الثقيل على أساس الكثافة،[16] في حين قد يكون المعيار المميز في الفيزياء هو العدد الذري،[17] ومن المحتمل أن يهتم المعيار الكيميائي بالسلوك الكيميائي بشكل أكثر.[9]

تتراوح معايير الكثافة من أعلى من 3.5 جم / سم مكعب إلى أعلى من 7 جم / سم مكعب.[2] ويمكن أن تتراوح تعريفات الوزن الذري للفلزات الثقيلة ذات الوزن الذري الأكبر من الصوديوم (الوزن الذري 22.98)،[2] أو أكبر من 40 باستثناء المستوى الفرعي s للجدول الدوري والمستوى الفرعي F للجدول الدوري للمعادن، وبالتالي تبدأ بعنصر السكانديوم،[3] أو أكثر من 200 أي بدءًا من عنصر الزئبق فصاعدًا.[4] تُعطى الأعداد الذرية للمعادن الثقيلة بشكل عام أكبر من 20، وهو العدد الذري للكالسيوم،[2] في بعض الأحيان يتم تقييد هذا العدد عند 92 وهو العدد الذري لليورانيوم.[5] وقد تم انتقاد التعاريف القائمة على العدد الذري لتضمين المعادن ذات الكثافة المنخفضة. فعلى سبيل المثال، يحتوي الروبيديوم في عمود 1 للفلزات القلوية من الجدول الدوري على رقم ذري 37 ولكن كثافة 1.532 غم / سم مكعب فقط، وهي أقل من القيمة الدُنيا المستخدمة في مراجع أخرى.[18] قد تحدث نفس المشكلة مع التعريفات القائمة على الوزن الذري.[19]

يحتوي دستور الأدوية الأمريكي على اختبار للمعادن الثقيلة التي تشمل الشوائب المعدنية المترسبة في صورة كبريتيد ملون.[6][n 3] وكتب ستيفن هوكس، وهو أستاذ كيمياء ذو خمسين سنة من الخبرة في هذا المجال، في عام 1997 قائلًا إن التعريف ينطبق على المعادن ذات الكبريتيدات غير القابلة للذوبان والهيدروكسيدات، التي تنتج أملاحها محاليل ملونة في الماء، عادةً ما تكون مركباتها ملونة. كما اقترح على أساس المعادن التي شاهدها والتي يُشار إليها بالمعادن الثقيلة، أنه من المفيد تعريفها على أنها تشمل جميع فلزات عناصر المجموعة الثالثة حتى الكالكوجين الموجودة في الصف 4 أو أكثر، أو بعبارة أخرى الفلزات الانتقالية والفلزات بعد الانتقالية.[9][n 4] يناسب هذا التعريف اللانثانيدات؛ ولم يُحسم الأمر بعد بالنسبة للأكتينيدات.[n 5][n 6]

في الكيمياء الحيوية، تُعرّف الفلزات الثقيلة في بعض الأحيان على أساس تحلل أيوناتهم في محلول مائي مع أحماض وقواعد لويس مثل الصنف B والمعادن الحدودية.[40] في هذا المخطط، تفضل الأيونات المعدنية من الفئة A الأوكسجين، بينما تُفضل أيونات الطبقة B النيتروجين أو الكبريت، وتُظهر الأيونات الحدوددية أو المتناقضة إما خصائص الفئة A أو B تبعًا لظروف التفاعل.[n 7] تشمل معادن الفئة A، التي تميل إلى أن تكون ذات كهرسلبية منخفضة وتشكل روابط ذات طبيعة أيونية كبيرة مع القلويات، الفلزات القلوية والفلزات القلوية الترابية والألومنيوم وعناصر المجموعة الثالثة واللانثانيدات والأكتينيدات. [n 8] بينما تشمل الفلزات من الصنف B، والتي تميل إلى أن تكون ذات كهرسلبية أعلى وتكوين روابط تساهمية، الفلزات الانتقالية والفلزات بعد الانتقالية. تتكون المعادنالفلزات الحدودية بشكل كبير من فلزات انتقالية أخف وفلزات ما بعد انتقالية (بالإضافة إلى الزرنيخ والإثمد). يعتبر التمييز بين معادن الفئة A والفئتين الأخريين حادًا.[44] لم يُتبنى أي مقترح يتم الاستشهاد به بشكل متكرر[n 9] لاستخدام فئات التصنيف هذه بدلاً من اسم الفلز الثقيل الأكثر استحضارًا على نطاق واسع.[46]

قائمة المعادن الثقيلة على أساس الكثافة[عدل]

حُددت الكثافة التي تزيد عن 5 جم / سم مكعب في بعض الأحيان كعامل شائع لتحديد الفلزات الثقيلة.[47] وفي غياب تعريف مُجمع عليه للفلزات الثقيلة، تُستخدم هذه القائمة ما لم يذكر خلاف ذلك توجيه في بقية المقالة. تُعد الفلزات التي تستوفي المعايير السارية - مثل الزرنيخ والأنتيمون على سبيل المثال - في بعض الأحيان معادن ثقيلة، خاصةً في الكيمياء البيئية،[48] كما هو الحال هنا. أُدرج السيلنيوم ذو الكثافة 4.8 غرام / سم مكعب[49] في القائمة أيضًا. يفتقر السيلينيوم بشكل طفيف إلى معيار الكثافة، ويُعتبر بشكل أقل شيوعًا من أشباه الفلزات[50] ولكنه يتمتع يكيمياء مُتعلقة الخصائص بالماء ومُشابهة في بعض النواحي للزرنيخ والأنتيمون.[50] تُصنف بعض الفلزات الأخرى أحيانًا أو تُعامل كفلزات ثقيلة، مثل البريليوم[51] ذو الكثافة 1.8 جم / سم مكعب،[52] والألومنيوم[51] ذو الكثافة 2.7 جم / سم مكعب، [53] والكالسيوم[54] ذو الكثافة 1.55 غم / سم مكعب،[55] والباريوم[54] ذو الكثافة 3.6 غم / سم مكعب[56] ولكنها تُصنّف في هذه المقالة وبشكل عام كفلزات خفيفة.

فلزات تُنتج بشكل رئيسي عن طريق التعدين التجاري''' (مصنفة بشكل غير رسمي من حيث الأهمية الاقتصادية)
عناصر تعتبر حيوية بالنسبة لدول عدة.
عناصر ثمينة
عناصر استراتيجية
غير استراتيجية
عناصر تُعامل كسلع، وتُنتج وتُباع بالطن
عناصر استراتيجية
غير استراتيجية
عناصر دُنيا، ليست حيوية ولا ثمينة ولا تُعامل كسلع
عناصر تُنتح غالبًا عن طريق التحول النووي (تُصنّف رسميًا بالنسبة لحالتها المُستقرّة)
عناصر طويلة الأجل

(عمر النصف أكثر من يوم)

عناصر سريعة الزوال

(عمر النصف أقل من يوم)

يُعترف عادة بالإثمد والزرنيخ والجرمانيوم والتيلوريوم كأشباه فلزات؛ والسيلينيوم أقل شيوعًا في ذلك.[57]
يُتوقع أن يكون الأستاتين من الفلزات..[58]
Radioactive جميع النظائر الكيميائية لهذه العناصر الـ 34 غير مستقرة وبالتالي تُعتبر مشعة. في حين ينطبق هذا أيضًا على البزموت، إلا أنه لم يكن ملحوظًا إلى حدٍ كبير، حيث أن نصف عمره البالغ 19 مليار مليار سنة يزيد عن مليار مرة من عمر الكون البالغ 13.8 مليار سنة.[59][60]
لا تتواجد تلك العناصر بصورة كبيرة في الطبيعة ولكن بكميات لا تجعل عملية استخراجها مُفيدة من الناحية الاقتصادية.[61]

أصل مصطلح الفلزات الثقيلة واستخدامه[عدل]

قد يكون ثقل المعادن الموجودة في الطبيعة مثل الذهب والنحاس والحديد قد لوحظت في عصور ما قبل التاريخ، وفي ضوء قابليتها للتشكيل، أدّت إلى المحاولات الأولى لصنع الحلي المعدنية والأدوات والأسلحة.[62] كانت جميع المعادن المكتشفة منذ ذلك الحين حتى عام 1809ذات كثافة عالية نسبيًا. ويعتبر ثقلهم معيارًا مميزًا بشكل فريد.[63]

من عام 1809 فصاعدًا، تم عزل المعادن الخفيفة مثل الصوديوم والبوتاسيوم والسترونتيوم. أدت كثافة تلك المعادن المنخفضة إلى اقتراح اعتبارها أشباه فلزات، بمعنى أنها تشبه المعادن في الشكل أو المظهر.[64] تم تجاهل هذا الاقتراح، وصُنفت العناصر الجديدة كفلزات، واستُخدم المصطلح أشباه الفلزات للإشارة إلى العناصر غير المعدنية، وفيما بعد، للإشارة إلى العناصر التي كان من الصعب وصفها كمعادن أو غير معدنية.[65]

يرجع استخدام مصطلح الفلزات الثقيلة في وقت مبكر إلى عام 1817، عندما قسم الكيميائي الألماني ليوبولد غملين العناصر إلى اللافلزات والفلزات الخفيفة الفلزات الثقيلة.[66] كانت للفلزات الخفيفة كثافة تتراوح من 0،860 إلى 5،0 جم سم مكعب؛ وللفلزات الثقيلة كثافة تتراوح من 5.308إلى 22.000 جم سم مكعب.[67][n 10] وارتبط المصطلح فيما بعد بعناصر ذات وزن ذري مرتفع أو عدد ذري ​​مرتفع.[18] يُستخدم المطلح في بعض الأحيان بالتبادل مع مصطلح العنصر الثقيل. ففي مناقشة تاريخ الكيمياء النووية على سبيل المثال، لاحظ ماجي[68] أن الأكتينيدات كان يُعتقد في السابق أنها تمثل مجموعة انتقال جديدة للعناصر الثقيلة في حين مال سيبورغ وزملاءه إلى وصفها بسلسلة معادن شبيهة بمعادن الأرض النادرة. في علم الفلك، يُعرّف العنصر الثقيلعلى أنه أي عنصر أثقل من الهيدروجين والهيليوم.[69]

الانتقادات[عدل]

في عام 2002، استعرض عالم السموم الأسكتلندي جون دوفوس التعريفات المستخدمة على مدى الستين عامًا الماضية، وخلص إلى أنها متنوعة للغاية بحيث تجعل المصطلح فعليًا بلا معنى.[70] وإلى جانب هذه النتيجة، تُحدد بعض العناصر على أنها من الفلزات الثقيلة في بعض الأحيان على أساس أنها خفيفة للغاية، أو تشارك في عمليات بيولوجية، أو نادرًا ما تشكل مخاطر بيئية. ومن الأمثلة على ذلك السكانديوم ذو الوزن الذري الخفيف جدًا،[18][71] ومن الفاناديوم إلى الزنك حيث يُستخدمون في العمليات البيولوجية،[72] والروديوم والإنديوم والأوزميوم والذين يُعتبروا عناصر نادرة جدًا.[73]

شعبية المصطلح[عدل]

على الرغم من معناها المشكوك فيه، إلا أن مصطلح الفلزات الثقيلة يظهر بانتظام في الأدبيات العلمية. وجدت دراسة أُجريت عام 2010 أنه استُخدم بشكل متزايد ويبدو أنه أصبح جزءًا من لغة العلم.[74] شاع في الأوساط العلمية أنه مصطلح مقبول، نظرًا لسهولته وانتشاره، طالما أنه يقترن بتعريف صارم.[40] أوردت جمعية المعادن والفلزات والمواد أن الفلزات الخفيفة والثقيلة تشمل الألومنيوم والمغنيسيوم والبريليوم والتيتانيوم والليثيوم والمعادن الأخرى التفاعلية،[75] والتي تتراوح كثافتها من 0.534 إلى 4.54 جم / سم مكعب.

دورها الحيوي[عدل]

متوسط كمية الفلزات الثقيلة في جسم إنسان يبلغ 70 كغم.
العنصر بالميلليغرام[76]
حديد 4000 4000
 
زنك 2500 2500
 
رصاص[n 11] 120 120
 
نحاس 70 70
 
قصدير[n 12] 30 30
 
فاناديوم 20 20
 
كادميوم 20 20
 
نيكل[n 13] 15 15
 
سيلينيوم 14 14
 
منغنيز 12 12
 
مواد أخرى[n 14] 200 200
 
المجموع 7000

يتطلب وجود كميات ضئيلة من بعض الفلزات الثقيلة، ومعظمها في الفترة الرابعة، لبعض العمليات البيولوجية. تشمل تلك الفلزات الحديد والنحاس والأكسجين ونقل الإلكترونات والكوبالت لتوليف مركبات استقلاب الخلية، والزنك،[81] والفاناديوم والمنجنيز لتنظيم أو عمل الإنزيمات، والكروم لاستخدام الجلوكوز،و النيكل لنمو الخلايا، والزرنيخ للنمو والتمثيل الغذائي في بعض الحيوانات وربما في البشر، والسيلينيوم كمضاد تأكسد ويعمل كمحفز للهرمونات.[82] تحتوي الدورة الخماسة والسادسة على عدد أقل من المعادن الثقيلة الأساسية، بما يتماشى مع النمط العام الذي تميل الفلزات الثقيلة إلى أن تكون أقل وفرة وأأقل احتمالا لتكون ضرورية من الناحية التغذوية.[83] في الدورة 5، يلزم وجود الموليبدينوم لتحفيز تفاعلات الأكسدة والاختزال، ويُستخدم الكادميوم من قبل بعض الدياتومات البحرية لنفس الغرض، وقد يستلزم وجود القصدير للنمو في عدد قليل من الأنواع.[84] في الدورة 6، تحتاج بعض البكتيريا القديمة إلى التنغستن لعمليات الأيض.[85] قد يؤدي أي نقص في أي من الفلزات الثقيلة بالدورات من الرابعة إلى السادسة إلى زيادة قابلية التسمم بالمعادن الثقيلة[86] وعلى عكس ما كان يُعتقد، تسبب زيادة تلك العناصر أيضًا تأثيرات بيولوجية ضارة أيضًا. يبلغ متوسط ​​وزن الجسم البشري 70 كيلوجرام ويتكون حوالي 0.01٪ منه من المعادن الثقيلة بما يعادل 7 جم تقريبًا، أي ما يعادل وزن حبتين من البازلاء المجففة، ونسبة حديد تعادل 4 جم، و2.5 جم من الزنك ، مما يشكل 0.12 جم من المكونات الرئيسية)، و2 ٪ منه من المعادن الخفيفة أي ما يُعادل 1.4 كجم تقريبًا، وهو وزن زجاجة النبيذ، وما يقرب من 98٪ من اللافلزات، معظمها ماء.[87][n 15]



لوحظ أن بعض المعادن الثقيلة غير الأساسية لها تأثيرات بيولوجية. يمكن أن يحفز الغاليوم، والجرمانيوم، والإنديوم، ومعظم اللانثانيدات عملية الأيض، ويشجع التيتانيوم النمو في النباتات[88] على الرغم من أنه لا يعتبر دائمًا من الفلزات الثقيلة.


علاقة الفلزات الثقيلة بالكائنات الحية[عدل]

تحتاج الكائنات الحية إلى كميات مختلفة من الفلزات الثقيلة، مثل الحديد والكوبالت والنحاس والمنغنيز والموليبدينوم، والزنك والسيلنيوم، حيث يكون استهلاك هذه الفلزات ضروريا وهاما للمحافظة على عملية التمثيل الغذائي بجسم الكائن الحي. ولكن استهلاك كميات كبيرة منها بتركيزات عالية يكون ضارًا بل وسامًّا وينتج عنه ما يُسمى بتسمم الفلزات الثقيلة.[89][90]

تشكل الفلزات نسبة 45 من وزن جسم الإنسان، ويتركز معظمها في الهيكل العظمي. وتأتي خطورة الفلزات الثقيلة من تراكمها الحيوي داخل جسم الإنسان بشكل أسرع من انحلالها من خلال عملية التمثيل الغذائي أو إخراجها.

مثال لتلوث البيئة بالفلزات الثقيلة[عدل]

في عام 1932، صرفت مياه الصرف الصحي في اليابان والتي كانت تحتوى على نسب عالية من الزئبق في ميناء مينيماتا، والذي نجم عنه التراكم الحيوي للزئبق في الكائنات البحرية، وظهور حالات من التسمم في عام 1952 والتي عُرفت باسم داء ميناماتا أو متلازمة ميناماتا.

علاج التسمم بالفلزات الثقيلة[عدل]

الاختبارات[عدل]

أول خطوة في علاج التسمم الناتج عن الفلزات الثقيلة هو تحديد مصدر التسمم وتحديد نوع الفلز المتسبب في التسمم. يعتبر القيام بالاختبارات المخبريةو تحليل الشعر أسهل طريقة لتحديد ذلك على الرغم من اعتبارها طريقة مثيرة للجدل. توجد اختبارات إضافية تستخدم عقاقير الاستخلاب مع تجميع للبول على مدار 24 ساعة لتحديد نسبة الفلزات الثقيلة.ومن الاختبارات الأخرى الهامة تحليل البول، صورة الدم الكاملة.

العلاج[عدل]

العلاج الاستخلابي هى طريقة مقبولة عالميًا لتخليص الجسم من آثار سموم الفلزات الثقيلة. يرجع اشتقاق المصطلح إلى كلمة يونانية قديمة تعنى المخالب، ويستخدم في هذا النوع العلاجي عوامل تتحد مع الفلزات الثقيلة السامة مثل الزئبق، والرصاص أو الزرنيخ لتعادل تأثيرها وتسمح بخروجها من الجسم بدون التفاعل مع المواد الكيميائية الأخرى.

يطلق العلماء مصطلح الاستخلاب ليعطى معنى اختطاف المعدن من الجسم بهدف تسهيل امتصاصه أو إخراجه كما في حالة الفلزات السامة.

العلاج عن طريق الوريد باستخدام فيتامين (ج) والجلوتاثيون[عدل]

تُستخدم الكزبرة لعلاج تسمم الفلزات الثقيلة، كما يمنع النظام الغذائى الغني بالألياف والألياف على شكل الجيل من دخول الفلزات الثقيلة إلى المعدة.

تحمي الكزبرة المخ والجهاز العصبي المركزي من تأثير الفلزات الثقيلة.

الميلاتونين[عدل]

مركب من الماغنسيوم وحمض التفاح قادران على سحب الألومنيوم من الجسم. يتحد السيلنيوم مع الفلزات الثقيلة الأخرى مثل الكادميوم والزئبق ليقلل من سُميتها. ويمنع الزنك انتقال الكادميوم والرصاص إلى أنسجة الجسم المختلفة. ومن المعروف عن الزنك أنه عدو النحاس الأحمر.تساعد المواد الغذائية مثل الثوم وحامض ألفا الدهني، وهو الشكل العضوي للكبريت المتواجد في الأطعمة من منتجات الألبان والحبوب واللحوم والخضراوات والفاكهة في حماية جسم الإنسان من الفلزات الثقيلة بوجه عام، وبوجه خاص في التسمم الناتج عن الزئبق.

طالع أيضاً[عدل]

ملاحظات[عدل]

فهارس[عدل]

اقتباسات[عدل]

  1. ^ Emsley 2011, pp. 288; 374
  2. ^ أ ب ت ث ج Duffus 2002, p. 798
  3. ^ أ ب Rand, Wells & McCarty 1995, p. 23
  4. ^ أ ب Baldwin & Marshall 1999, p. 267
  5. ^ أ ب Lyman 2003, p. 452
  6. ^ أ ب The United States Pharmacopeia 1985, p. 1189
  7. ^ أ ب Raghuram, Soma Raju & Sriramulu 2010, p. 15
  8. ^ أ ب Thorne & Roberts 1943, p. 534
  9. ^ أ ب ت ث Hawkes 1997
  10. ^ Nieboer & Richardson 1980, p. 4
  11. ^ أ ب Emsley 2011
  12. ^ Hoffman, Lee & Pershina 2011, pp. 1691,1723; Bonchev & Kamenska 1981, p. 1182
  13. ^ Silva 2010, pp. 1628, 1635, 1639, 1644
  14. ^ Fournier 1976, p. 243
  15. ^ Vernon 2013, p. 1703
  16. ^ Morris 1992, p. 1001
  17. ^ Gorbachev, Zamyatnin & Lbov 1980, p. 5
  18. ^ أ ب ت Duffus 2002, p. 797
  19. ^ Liens 2010, p. 1415
  20. ^ أ ب Longo 1974, p. 683
  21. ^ Tomasik & Ratajewicz 1985, p. 433
  22. ^ Herron 2000, p. 511
  23. ^ Nathans 1963, p. 265
  24. ^ Topp 1965, p. 106: Schweitzer & Pesterfield 2010, p. 284
  25. ^ King 1995, p. 297; Mellor 1924, p. 628
  26. ^ Cotton 2006, pp. 66
  27. ^ Albutt & Dell 1963, p. 1796
  28. ^ Wiberg 2001, pp. 1722–1723
  29. ^ Wiberg 2001, p. 1724
  30. ^ أ ب Edelstein et al. 2010, p. 1796
  31. ^ Haynes 2015, pp. 4–95
  32. ^ Weart 1983, p. 94
  33. ^ Deschlag 2011, p. 226
  34. ^ أ ب ت Wulfsberg 2000, pp. 209–211
  35. ^ Ahrland, Liljenzin & Rydberg 1973, p. 478
  36. ^ أ ب Korenman 1959, p. 1368
  37. ^ Yang, Jolly & O'Keefe 1977, p. 2980; Wiberg 2001, pp. 592; Kolthoff & Elving 1964, p. 529
  38. ^ Close 2015, p. 78
  39. ^ Parish 1977, p. 89
  40. ^ أ ب Rainbow 1991, p. 416
  41. ^ Nieboer & Richardson 1980, pp. 6–7
  42. ^ Lee 1996, pp. 332; 364
  43. ^ Clugston & Flemming 2000, pp. 294; 334, 336
  44. ^ Nieboer & Richardson 1980, p. 7
  45. ^ Nieboer & Richardson 1980
  46. ^ Hübner, Astin & Herbert 2010, pp. 1511–1512
  47. ^ Järup & 2003, p. 168; Rasic-Milutinovic & Jovanovic 2013, p. 6; Wijayawardena, Megharaj & Naidu 2016, p. 176
  48. ^ Duffus 2002, pp. 794–795; 800
  49. ^ Emsley 2011, p. 480
  50. ^ أ ب USEPA 1988, p. 1; Uden 2005, pp. 347–348; DeZuane 1997, p. 93; Dev 2008, pp. 2–3
  51. ^ أ ب Ikehata et al. 2015, p. 143
  52. ^ Emsley 2011, p. 71
  53. ^ Emsley 2011, p. 30
  54. ^ أ ب Podsiki 2008, p. 1
  55. ^ Emsley 2011, p. 106
  56. ^ Emsley 2011, p. 62
  57. ^ Vernon 2013, p. 1703
  58. ^ Hermann, Hoffmann & Ashcroft 2013, p. 11604-1
  59. ^ Emsley 2011, p. 75
  60. ^ Gribbon 2016, p. x
  61. ^ Emsley 2011, pp. 428–429; 414; Wiberg 2001, pp. 527; Emsley 2011, pp. 437; 21–22; 346–347; 408–409
  62. ^ Raymond 1984, pp. 8–9
  63. ^ Chambers 1743: "That which distinguishes metals from all other bodies ... is their heaviness ..."
  64. ^ Oxford English Dictionary 1989; Gordh & Headrick 2003, p. 753
  65. ^ Goldsmith 1982, p. 526
  66. ^ Habashi 2009, p. 31
  67. ^ Gmelin 1849, p. 2
  68. ^ Magee 1969, p. 14
  69. ^ Ridpath 2012, p. 208
  70. ^ Duffus 2002, p. 794
  71. ^ Leeper 1978, p. ix
  72. ^ Housecroft 2008, p. 802
  73. ^ Shaw, Sahu & Mishra 1999, p. 89; Martin & Coughtrey 1982, pp. 2–3
  74. ^ Hübner, Astin & Herbert 2010, p. 1513
  75. ^ The Minerals, Metals and Materials Society 2016
  76. ^ Emsley 2011, pp. 35; passim
  77. ^ Emsley 2011, pp. 280, 286; Baird & Cann 2012, pp. 549, 551
  78. ^ أ ب Haynes 2015, pp. 7–48
  79. ^ Iyengar 1998, p. 553
  80. ^ Emsley 2011, pp. 47; 331; 138; 133; passim
  81. ^ Nieboer & Richardson 1978, p. 2
  82. ^ Emsley 2011, pp. 604; 31; 133; 358; 47; 475
  83. ^ Valkovic 1990, pp. 214, 218
  84. ^ Emsley 2011, pp. 331; 89; 552
  85. ^ Emsley 2011, p. 571
  86. ^ Venugopal & Luckey 1978, p. 307
  87. ^ Emsley 2011, pp. 24; passim
  88. ^ Emsley 2011, pp. 192; 197; 240; 120, 166, 188, 224, 269, 299, 423, 464, 549, 614; 559
  89. ^ Duffus 2002, pp. 794; 799
  90. ^ Baird & Cann 2012, pp. 519–520; 567; Rusyniak et al. 2010, p. 387

مراجع[عدل]

  • Ahrland S., Liljenzin J. O. & Rydberg J. 1973, "Solution chemistry," in J. C. Bailar & A. F. Trotman-Dickenson (eds), Comprehensive Inorganic Chemistry, vol. 5, The Actinides, Pergamon Press, Oxford.
  • Albutt M. & Dell R. 1963, The nitrites and sulphides of uranium, thorium and plutonium: A review of present knowledge, UK Atomic Energy Authority Research Group, مؤسسة الطاقة الذرية البريطانية, Berkshire.
  • Alves A. K., Berutti, F. A. & Sánche, F. A. L. 2012, "Nanomaterials and catalysis", in C. P. Bergmann & M. J. de Andrade (ads), Nanonstructured Materials for Engineering Applications, Springer-Verlag, Berlin, (ردمك 978-3-642-19130-5).
  • Amasawa E., Yi Teah H., Yu Ting Khew, J., Ikeda I. & Onuki M. 2016, "Drawing Lessons from the Minamata Incident for the General Public: Exercise on Resilience, Minamata Unit AY2014", in M. Esteban, T. Akiyama, C. Chen, I. Ikea, T. Mino (eds), Sustainability Science: Field Methods and Exercises, Springer International, Switzerland, pp. 93–116, doi:10.1007/978-3-319-32930-7_5 (ردمك 978-3-319-32929-1).
  • Ariel E., Barta J. & Brandon D. 1973, "Preparation and properties of heavy metals", Powder Metallurgy International, vol. 5, no. 3, pp. 126–129.
  • Atlas R. M. 1986, Basic and Practical Microbiology, Macmillan Publishing Company, New York, (ردمك 978-0-02-304350-5).
  • Australian Government 2016, National Pollutant Inventory, Department of the Environment and Energy, accessed 16 August 2016.
  • Baird C. & Cann M. 2012, Environmental Chemistry, 5th ed., W. H. Freeman and Company, New York, (ردمك 978-1-4292-7704-4).
  • Baldwin D. R. & Marshall W. J. 1999, "Heavy metal poisoning and its laboratory investigation", Annals of Clinical Biochemistry, vol. 36, no. 3, pp. 267–300, doi:10.1177/000456329903600301.
  • Ball J. L., Moore A. D. & Turner S. 2008, Ball and Moore's Essential Physics for Radiographers, 4th ed., Blackwell Publishing, Chichester, (ردمك 978-1-4051-6101-5).
  • Bánfalvi G. 2011, "Heavy metals, trace elements and their cellular effects", in G. Bánfalvi (ed.), Cellular Effects of Heavy Metals, شركة أكسل شبرينقر, Dordrecht, pp.  3–28, (ردمك 978-94-007-0427-5).
  • Baranoff E. 2015, "First-row transition metal complexes for the conversion of light into electricity and electricity into light", in W-Y Wong (ed.), Organometallics and Related Molecules for Energy Conversion, Springer, Heidelberg, pp. 61–90, (ردمك 978-3-662-46053-5).
  • Berea E., Rodriguez-lbelo M. & Navarro J. A. R. 2016, "Platinum Group Metal—Organic frameworks" in S. Kaskel (ed.), The Chemistry of Metal-Organic Frameworks: Synthesis, Characterisation, and Applications, vol. 2, Wiley-VCH Weinheim, pp. 203–230, (ردمك 978-3-527-33874-0).
  • Berger A. J. & Bruning N. 1979, Lady Luck's Companion: How to Play ... How to Enjoy ... How to Bet ... How to Win, Harper & Row, New York, (ردمك 978-0-06-014696-2).
  • Berry L. G. & Mason B. 1959, Mineralogy: Concepts, Descriptions, Determinations, W. H. Freeman and Company, San Francisco.
  • Biddle H. C. & Bush G. L 1949, Chemistry Today, Rand McNally, Chicago.
  • Bonchev D. & Kamenska V. 1981, "Predicting the properties of the 113–120 transactinide elements", The Journal of Physical Chemistry, vo. 85, no. 9, pp. 1177–1186, doi:10.1021/j150609a021.
  • Bonetti A., Leone R., Muggia F. & Howell S. B. (eds) 2009, Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy: Molecular Mechanisms and Clinical Applications, Humana Press, New York, (ردمك 978-1-60327-458-6).
  • Booth H. S. 1957, Inorganic Syntheses, vol. 5, McGraw-Hill, New York.
  • Bradl H. E. 2005, "Sources and origins of heavy metals", in Bradl H. E. (ed.), Heavy Metals in the Environment: Origin, Interaction and Remediation, Elsevier, Amsterdam, (ردمك 978-0-12-088381-3).
  • Brady J. E. & Holum J. R. 1995, Chemistry: The Study of Matter and its Changes, 2nd ed., جون وايلي وأولاده  (لغات أخرى), New York, (ردمك 978-0-471-10042-3).
  • Brephohl E. & McCreight T. (ed) 2001, The Theory and Practice of Goldsmithing, C. Lewton-Brain trans., Brynmorgen Press, Portland, Maine, (ردمك 978-0-9615984-9-5).
  • Brown I. 1987, "Astatine: Its organonuclear chemistry and biomedical applications," in H. J. Emeléus & A. G. Sharpe (eds), Advances in Inorganic Chemistry, vol. 31, Academic Press, Orlando, pp. 43–88, (ردمك 978-0-12-023631-2).
  • Bryson R. M. & Hammond C. 2005, "Generic methodologies for nanotechnology: Characterisation"', in R. Kelsall, I. W. Hamley & M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, Chichester, pp. 56–129, (ردمك 978-0-470-85086-2).
  • Burkett B. 2010, Sport Mechanics for Coaches, 3rd ed., Human Kinetics, Champaign, Illinois, (ردمك 978-0-7360-8359-1).
  • Casey C. 1993, "Restructuring work: New work and new workers in post-industrial production", in R. P. Coulter & I. F. Goodson (eds), Rethinking Vocationalism: Whose Work/life is it?, Our Schools/Our Selves Education Foundation, Toronto, (ردمك 978-0-921908-15-9).
  • Chakhmouradian A.R., Smith M. P. & Kynicky J. 2015, "From "strategic" tungsten to "green" neodymium: A century of critical metals at a glance", Ore Geology Reviews, vol. 64, January, pp. 455–458, doi:10.1016/j.oregeorev.2014.06.008.
  • Chambers E. 1743, "Metal", in Cyclopedia: Or an Universal Dictionary of Arts and Sciences (etc.), vol. 2, D. Midwinter, London.
  • Chandler D. E. & Roberson R. W. 2009, Bioimaging: Current Concepts in Light & Electron Microscopy, Jones & Bartlett Publishers, Boston, (ردمك 978-0-7637-3874-7).
  • Chawla N. & Chawla K. K. 2013, Metal matrix composites, 2nd ed., سبرنجر, New York, (ردمك 978-1-4614-9547-5).
  • Chen J. & Huang K. 2006, "A new technique for extraction of platinum group metals by pressure cyanidation", Hydrometallurgy, vol. 82, nos. 3–4, pp. 164–171, doi:10.1016/j.hydromet.2006.03.041.
  • Choptuik M. W., Lehner L. & Pretorias F. 2015, "Probing strong-field gravity through numerical simulation", in A. Ashtekar, B. K. Berger, J. Isenberg & M. MacCallum (eds), General Relativity and Gravitation: A Centennial Perspective, Cambridge University Press, Cambridge, (ردمك 978-1-107-03731-1).
  • Clegg B 2014, "Osmium tetroxide", Chemistry World, accessed 2 September 2016.
  • Close F. 2015, Nuclear Physics: A Very Short Introduction, دار نشر جامعة أكسفورد, Oxford, (ردمك 978-0-19-871863-5).
  • Clugston M & Flemming R 2000, Advanced Chemistry, Oxford University, Oxford, (ردمك 978-0-19-914633-8).
  • Cole M., Lindeque P., Halsband C. & Galloway T. S. 2011, "Microplastics as contaminants in the marine environment: A review", Marine Pollution Bulletin, vol. 62, no. 12, pp. 2588–2597, doi:10.1016/j.marpolbul.2011.09.025.
  • Cole S. E. & Stuart K. R. 2000, "Nuclear and cortical histology for brightfield microscopy", in D. J. Asai & J. D. Forney (eds), Methods in Cell Biology, vol. 62, Academic Press, San Diego, pp. 313–322, (ردمك 978-0-12-544164-3).
  • Cotton S. A. 1997, Chemistry of Precious Metals, Blackie Academic & Professional, London, (ردمك 978-94-010-7154-3).
  • Cotton S. 2006, Lanthanide and Actinide Chemistry, reprinted with corrections 2007, جون وايلي وأولاده  (لغات أخرى), Chichester, (ردمك 978-0-470-01005-1).
  • Cox P. A. 1997, The elements: Their Origin, Abundance and Distribution, دار نشر جامعة أكسفورد, Oxford, (ردمك 978-0-19-855298-7).
  • Crundwell F. K., Moats M. S., Ramachandran V., Robinson T. G. & Davenport W. G. 2011, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier, Kidlington, Oxford, (ردمك 978-0-08-096809-4).
  • Cui X-Y., Li S-W., Zhang S-J., Fan Y-Y., Ma L. Q. 2015, "Toxic metals in children's toys and jewelry: Coupling bioaccessibility with risk assessment", Environmental Pollution, vol. 200, pp. 77–84, doi:10.1016/j.envpol.2015.01.035.
  • Dapena J. & Teves M. A. 1982, "Influence of the diameter of the hammer head on the distance of a hammer throw", Research Quarterly for Exercise and Sport, vol. 53, no. 1, pp. 78–81, doi:10.1080/02701367.1982.10605229.
  • De Zuane J. 1997, Handbook of Drinking Water Quality, 2nd ed., John Wiley & Sons, New York, (ردمك 978-0-471-28789-6).
  • Department of the Navy 2009, Gulf of Alaska Navy Training Activities: Draft Environmental Impact Statement/Overseas Environmental Impact Statement, U.S. Government, accessed 21 August 2016.
  • Deschlag J. O. 2011, "Nuclear fission", in A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, F. Rösch (eds), Handbook of Nuclear Chemistry, 2nd ed., سبرنجر, Dordrecht, pp. 223–280, (ردمك 978-1-4419-0719-6).
  • Desoize B. 2004, "Metals and metal compounds in cancer treatment", Anticancer Research, vol. 24, no. 3a, pp. 1529–1544, PMID 15274320 (ببمد 15274320)
    Citation will be completed automatically in a few minutes.

Jump the queue or expand by hand.

لمزيد من القراءة[عدل]

التعريفات والاستخدامات

  • Ali H. & Khan E. 2017, "What are heavy metals? long-standing controversy over the scientific use of the term 'heavy metals'—proposal of a comprehensive definition", Toxicological & Environmental Chemistry, pp. 1–25, doi:10.1080/02772248.2017.1413652. Suggests defining heavy metals as "naturally occurring metals having atomic number (Z) greater than 20 and an elemental density greater than 5 g cm−3".
  • Duffus J. H. 2002, "'Heavy metals'—A meaningless term?", Pure and Applied Chemistry, vol. 74, no. 5, pp. 793–807, doi:10.1351/pac200274050793. Includes a survey of the term's various meanings.
  • Hawkes S. J. 1997, "What is a "heavy metal"?", Journal of Chemical Education, vol. 74, no. 11, p. 1374, doi:10.1021/ed074p1374. A chemist's perspective.
  • Hübner R., Astin K. B. & Herbert R. J. H. 2010, " 'Heavy metal'—time to move on from semantics to pragmatics?", Journal of Environmental Monitoring, vol. 12, pp. 1511–1514, doi:10.1039/C0EM00056F. Finds that, despite its lack of specificity, the term appears to have become part of the language of science.

السميّة والدور الحيويل

  • Baird C. & Cann M. 2012, Environmental Chemistry, 5th ed., chapter 12, "Toxic heavy metals", W. H. Freeman and Company, New York, (ردمك 1-4292-7704-1). Discusses the use, toxicity, and distribution of Hg, Pb, Cd, As, and Cr.
  • Nieboer E. & Richardson D. H. S. 1980, "The replacement of the nondescript term 'heavy metals' by a biologically and chemically significant classification of metal ions", Environmental Pollution Series B, Chemical and Physical, vol. 1, no. 1, pp. 3–26, doi:10.1016/0143-148X(80)90017-8. A widely cited paper, focusing on the biological role of heavy metals.

التكوين

الاستخدامات

  • Koehler C. S. W. 2001, "Heavy metal medicine", Chemistry Chronicles, American Chemical Society, accessed 11 July 2016
  • Morowitz N. 2006, "The heavy metals," Modern Marvels, season 12, episode 14, قناة التاريخ التلفزيونية
  • Öhrström L. 2014, "Tantalum oxide", Chemistry World, 24 September, accessed 4 October 2016. The author explains how tantalum(V) oxide banished brick-sized mobile phones. Also available as a podcast.

وصلات خارجية[عدل]

  • [httpwww.niehs.nih.govhealth المعهد القومي للصحة والعلوم البيئية NIEHS ]
  • [httpwww.iupac.org الاتحاد الدولي للكمياءالبحتة والتطبيقية IUPAC ]


تصنيف:كومنزHeavy metals
وسوم <ref> موجودة لمجموعة اسمها "n"، ولكن لم يتم العثور على وسم <references group="n"/> أو هناك وسم </ref> ناقص