فلور

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
نيونفلورأكسجين
-

F

Cl
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: أرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونشيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بالاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: نيهونيوم (Nh)
Element 114: فليروفيوم (Uuq)
Element 115: موسكوفيوم (Mc)
Element 116: ليفرموريوم (Lv)
Element 117: تينيسين (Ts)
Element 118: أوغانيسون (Og)
9F
المظهر
غاز أصفر شاحب اللون

الفلور السائل عند درجات حرارة منخفضة جداً.
الخواص العامة
الاسم، العدد، الرمز فلور، 9، F
تصنيف العنصر هالوجين
المجموعة، الدورة، المستوى الفرعي 17، 2، p
الكتلة الذرية 18.9984032 غ·مول−1
توزيع إلكتروني 1s2 2s2 2p5
توزيع الإلكترونات لكل غلاف تكافؤ 2, 7 (صورة)
الخواص الفيزيائية
الطور غاز
الكثافة (0 °س، 101.325 كيلوباسكال)
1.7 غ/ل
كثافة السائل عند نقطة الغليان 1.505 [1] غ·سم−3
نقطة الانصهار 53.53 ك، −219.62 [2] °س
نقطة الغليان 85.03 ك، −188.12 [2] °س
نقطة ثلاثية 53.48 كلفن (-220°س)، 
90 [2] كيلوباسكال
النقطة الحرجة 144.13 [2] ك، 5.172 [2] ميغاباسكال
حرارة الانصهار F2) 0.510) كيلوجول·مول−1
حرارة التبخر F2) 6.51) [3] كيلوجول·مول−1
السعة الحرارية (عند 25 °س) (F2)
31.304 [1] جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 38 44 50 58 69 85
الخواص الذرية
أرقام الأكسدة −1
(يؤكسد الأكسجين)
الكهرسلبية 3.98 [4] (مقياس باولنغ)
طاقات التأين الأول: 1681.0 [5] كيلوجول·مول−1
الثاني: 3374.2 [5] كيلوجول·مول−1
الثالث: 6050.4 [5] كيلوجول·مول−1
نصف قطر تساهمي 64 [6] بيكومتر
نصف قطر فان دير فالس 135 [7] بيكومتر
خواص أخرى
البنية البلورية نظام بلوري مكعب
المغناطيسية مغناطيسية معاكسة [8][9]
الناقلية الحرارية 25.9 [10] ميلي واط·متر−1·كلفن−1 (300 كلفن)
رقم الكاس 7782-41-4 [4]
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر الفلور
النظائر الوفرة الطبيعية عمر النصف نمط الاضمحلال طاقة الاضمحلال MeV ناتج الاضمحلال
18F مصطنع 109.77 دقيقة β+ 97% 0.64 18O
ε 3% 1.656 18O
19F 100% 19F هو نظير مستقر وله 10 نيوترون

الفلور هو عنصر كيميائي رمزه F وعدده الذرّي 9، ويكون على هيئة غاز ثنائي الذرة F2 له لون أصفر شاحب في الظروف القياسيّة من الضغط ودرجة الحرارة، وهو غاز سام ذو تأثير سلبي على الكائنات الحيّة. يقع عنصر الفلور على رأس مجموعة الهالوجينات في الجدول الدوري، وهو ذو نشاط كيميائي كبير، إذ أنّه أكثر عناصر الجدول الدوري كهرسلبية، ويشكّل مركّبات كيميائية مع أغلبها، حتى مع بعض الغازات النبيلة؛ وتسمّى أملاح عنصر الفلور باسم الفلوريدات.

يقع عنصر الفلور ضمن المرتبة 13 بالنسبة لباقي العناصر من حيث وفرته في كوكب الأرض، وفي المرتبة 24 بالنسبة لوفرته في الكون. يعدّ معدن الفلوريت مصدر التعدين الأساسي للفلور، إذ يستحصل عليه من خلال عملية التحليل الكهربائي؛ ومن المعادن الحاوية على عنصر الفلور أيضاً معدن الكريوليت النادر، والذي يستخدم في علم الفلزات كصهيرة من أجل تخفيض نقطة انصهار الفلزّات أثناء التعدين. يستطيع الفلور تشكيل عدد كبير من الفلوريدات اللاعضوية والعضوية، والتي لها العديد من التطبيقات الصناعية المهمّة.

تعتبر الفلوريدات العضوية من المواد الثابتة ضد التحلّل الحيوي لذلك تصنّف ضمن الغازات الدفيئة التي تسبّب الاحتباس الحراري. بالمقابل يفيد أيون الفلوريد في مقاومة نخر الأسنان، لذلك يضاف بكمّيّات قليلة إلى تركيب معاجين الأسنان بالإضافة إلى ملح الطعام وماء الشرب في بعض البلدان.

التاريخ وأصل التسمية[عدل]

صورة من كتاب De re metallica تمثّل صناعة الفولاذ.

الاكتشافات الأولية[عدل]

في سنة 1529 وصف عالم التعدين غيورغيوس أغريكولا معدن الفلوريت كمادّة مضافة ملائمة أثناء صهر الفلزّات، إذ تعمل على تخفيض نقطة انصهارها أثناء المعالجة.[11][12]. ولتمييز تلك الخاصّية أطلق أغريكولا الكلمة اللاتينية فلوريس fluorés (والتي تعني الجريان) على صخور الفلوريت. تطوّر الاسم لاحقاً إلى فلورسبار fluorspar وبعد ذلك إلى فلوريت fluorite.[13][14][15] عُرف فيما بعد أنّ تركيب الفلوريت هو من فلوريد الكالسيوم CaF2.[16]

استُخدم حمض الهيدروفلوريك منذ أواسط القرن السابع عشر في تنميش الزجاج (معالجته بالحمض)،[16][17] وكان أندرياس سيغيسموند مارغراف أوّل من وصف تلك العملية بشكل مفصّل سنة 1764 عندما قام بتسخين الفلوريت مع حمض الكبريتيك ممّا أدّى إلى تخريش الإناء الزجاجي الحاوي على المزيج.[18][19] كرّر العالم كارل فلهلم شيله التجربة سنة 1771 وقام بتسميّة الناتج الحمضي باسم fluss-spats-syran (حمض الفلورسبار).[19][20]. وفي سنة 1810 اقترح الفيزيائي أندريه ماري أمبير ارتباط الهيدروجين مع عنصر مشابه للكلور في تركيب حمض الهيدروفلوريك،[21] أمّا همفري ديفي فاقترح تسميّة ذلك العنصر - غير المعروف آنذاك - باسم fluorine وذلك من حمض الفلوريك. وبذلك استعملت كلمة فلور لوصف هذا العنصر في العديد من اللغات الأوروبيّة مع بعض التحويرات البسيطة، في حين أنّ اللغة اليونانية والروسية وبعض اللغات الأخرى تستعمل اسم فتور وتحويرات لها، وذلك من الإغريقية φθόριος فثوريوس بمعنى مدمّر أو مخرّش.[22][23] كرمز موحّد للعنصر استخدم حرف F لذلك، مع العلم أن الرمز Fl استعمل في النشرات العلمية الأولى في الماضي.[24]

عزل العنصر[عدل]

كانت التجارب الأولية على الفلور ومركّباته خطيرة إلى درجة أنّ العديد من علماء القرن التاسع عشر الذين أجروا تجاربهم على ذلك العنصر أُطلق عليهم اسم ضحايا الفلور، وذلك بعد التجارب غير الناجحة وغير الموفّقة باستخدام حمض الهيدروفلوريك، ومن بين هؤلاء العلماء كل من ديفي وغي ـ لوساك وتينار ومواسان.[16][25] تمحورت تجارب الفصل على التحليل الكهربائي للفلوريدات، ولكن ما أعاق عزل عنصر الفلور هو كونه عالي التخريش إلى حدّ كبير، وذلك لكلّ من العنصر بحدّ ذاته أو فلوريد الهيدروجين، بالإضافة إلى عدم وجود كهرل مناسب لإجراء عمليّة العزل.[16][25] اقترح إدموند فريمي أنّ التحليل الكهربائي لحمض هيدروفلوريك النقي وسيلة مناسبة للحصول على الفلور، وقام بتصميم طريقة لإنتاج عيّنات خاليّة من الماء (لامائيّة) من بيفلوريد البوتاسيوم؛ لكنّه وجد أنّ فلوريد الهيدروجين الجافّ لا ينقل التيّار الكهربائي.[16][25][26]

تابع هنري مواسان، والذي كان طالباً سابقاً لفيرمي، التجارب في هذا السياق، واكتشف بعد محاولات كثيرة والعديد من التجارب المضنية أنّ مزيجاً من بيفلوريد البوتاسيوم وفلوريد الهيدروجين الجاف يكون ناقلاً للتيّار، ممّا يمكّن من إجراء التحليل الكهربائي. من أجل تجنّب حدوث عمليّة تآكل سريعة لقطب البلاتين في خليته الكهركيميائية قام مواسان بتبريدها إلى درجات حرارة منخفضة، كما قام باستعمال أقطاب من الإريديوم،[25][27] ممّا مكّنه سنة 1886 من عزل الفلور لأول مرة.[26][28] قبل شهرين من وفاته استلم مواسان جائزة نوبل في الكيمياء سنة 1906 كتقدير لأبحاثه عن هذا العنصر.[29]

استخدامات لاحقة[عدل]

حنجور زجاجي يحوي على سداسي فلوريد اليورانيوم.

أجرت شركة فرجدير، والتي كانت تابعة لشركة جنرال موتورز (GM)، تجاربها على استخدام مركّبات كلوروفلوروكربون كمثلِّجات وذلك في أواخر عقد 1920، وكنتيجة لذلك قام مشروع مشترك بين GM ودو بونت سنة 1930 من أجل تسويق تلك المركّبات التي عرفت باسم فريون، وخاصة فريون-12. مع تزايد الطلب على هذه المركّبات قامت شركة دو بونت بشراء حقوق الإنتاج وطوّرت العديد من مركّبات الفريون الأخرى.[19][30][31][32] اكتشف بولي رباعي فلورو الإيثيلين مصادفةً سنة 1938 عندما كان روي بلنكيت يعمل على تطوير مواد التثليج في مختبرات دو بونت. بسبب خواصها الممتازة في العزل الكيميائي والحراري أصبح لهذه المادة شهرة كبيرة، وأنتج منها كمّيّات كبيرة سنة 1941 وسوّقت تحت اسم تيفلون Teflon.[19][30][31]

أنتج كمّيّات كبيرة من عنصر الفلور أثناء الحرب العالميّة الثانيّة، سواء من قبل ألمانيا النازية، أو الولايات المتّحدة الأمريكية وذلك لأغراض مختلفة. استخدم الألمان التحليل الكهربائي عند درجات حرارة مرتفعة للحصول على أطنان من ثلاثي فلوريد الكلور،[33] وذلك في معامل شركة إي.غة. فاربن I.G. Farben من أجل تحضير القنابل الحارقة؛[34] وكذلك من قبل الولايات المتّحدة الأمريكية من أجل مشروع مانهاتن لصنع القنبلة النووية، وذلك لإنتاج سداسي فلوريد اليورانيوم والذي استخدم من أجل تخصيب اليورانيوم. أدّى الاستمرار في الأبحاث النووية بعد الحرب إلى تطوير كيمياء الفلور لاحقاً.[35]

الوفرة الطبيعية[عدل]

في الكون[عدل]

وفرة بعض العناصر الكيميائية في النظام الشمسي بالنسبة للفلور[36]
العدد
الذرّي
العنصر الكمّية
النسبية
6 كربون 4,800
7 نتروجين 1,500
8 أكسجين 8,800
9 فلور 1
10 نيون 1,400
11 صوديوم 24
12 مغنسيوم 430

يوجد عنصر الفلور في الكون بنسبة 400 جزء في البليون (ppb)، وهو بذلك يقع في المرتبة 24 من حيث الوفرة بالنسبة لباقي العناصر الكيميائية. ومع ذلك، فإنّ هذه النسبة قليلة بالنسبة لباقي العناصر الخفيفة، إذ أنّ العناصر من الكربون إلى المغنسيوم ذات وفرة أكبر في الكون لمرتبة تصل إلى عشرين ضعف أو أكثر.[37] يعود هذا الأمر إلى أنّ تفاعلات الانصهار النجمي تتجاوز الفلور، إذ أنّ ذرّات هذا العنصر في حال تخليقها تكون ذات مقطع نووي كبير، ممّا يسمح بالاندماج النووي مع ذرّة هيدروجين أو هيليوم لتشكّل الأكسجين أو النيون على الترتيب.[37][38]

أمّا النسبة المتبقية من الفلور في الكون فهي تتشكّل حسب أحد ثلاثة تفسيرات:[37][39]

على الأرض[عدل]

يقع الفلور في المرتبة 13 من حيث الوفرة بالنسبة لباقي العناصر الكيميائية في القشرة الأرضية، إذ يتراوح تركيزه فيها بين 600 - 700 جزء في المليون (ppm) كتلةً.[40] في حال وجود غاز الفلور في غلاف الأرض الجوّي فإنه سيتفاعل بسهولة كبيرة مع بخار الماء في الجوّ، ممّا يمنع من وجوده بالتالي على شكل عنصر حر.[41][42] بسبب النشاط الكيميائي الكبير للفلور فهو يوجد فقط بشكل مرتبط مع عناصر أخرى في أشكال معدنيّة مثل فلوريت وفلورأباتيت وكريوليت، وهي معادن ذات أهميّة صناعيّة كبيرة.[40][43] كما تحوي بعض المعادن الأخرى مثل التوباز على عنصر الفلور في تركيبها.

لمعدن الفلوريت الصيغة الكيميائية CaF2، وهو عبارة عن فلوريد الكالسيوم، ويكون على شكل معدن ملوّن له وفرة طبيعيّة كبيرة، ولذلك يعتبر مصدر التعدين الأساسي للفلور. تعدّ الصين والمكسيك من أكبر الدول المنتجة لهذه الخامة (بيانات 2006). كانت الولايات المتّحدة الأمريكية الرائدة في إنتاج الفلوريت في أوائل القرن العشرين، لكنّها توقّفت عن تعدينه منذ سنة 1995.[43][13][44][45][46]

ما يعيق استخدام فلورأباتيت (Ca5(PO4)3F) في تعدين الفلور هو انخفاض الكسر الكتلي (3.5%)، لذلك يستخدم في إنتاج الفوسفات. تنتج كمّيّات قليلة من مركّبات الفلور في الولايات المتّحدة من حمض سداسي فلوروسيليسيك (H2SiF6)، وهو ناتج ثانوي من صناعة الفوسفات.[43]

أمّا الكريوليت Na3AlF6 فهو معدن يستعمل بشكل أساسي في إنتاج الألومنيوم، لكنّه أكثر معادن الفلور ندرةً، ويتركّز في مناطق جغرافيّة محدّدة. كان المصدر الرئيسي لتعدين الكريوليت في منجم يقع غربي اليونان، والذي أغلق سنة 1987، وأغلب الكريوليت الموجود حالياً يحصل عليه بشكل صناعي.[43]

معادن الفلور الأساسية
Pink globular mass with crystal facets Long prism-like crystal, without luster, at an angle coming out of aggregate-like rock A parallelogram-shaped outline with space-filling diatomic molecules (joined circles) arranged in two layers
فلوريت فلورأباتيت كريوليت

على العكس من باقي الهاليدات فإنّ الفلوريدات غير منحلّة في الماء، لذلك لا توجد بتراكيز تمكّن من استخراجها اقتصاديّاً من مياه البحر المالحة.[43] عثر على كمّيّات نزرة وشحيحة من فلوريدات عضوية ذات مصدر غير معلوم في الثورات البركانية والينابيع الجيوحرارية.[47] إنّ وجود غاز الفلور في البلّورات، وذلك كتفسير للرائحة الناتجة عن تهشيم معدن أنتوزونيت antozonite، وهو شكل من أشكال الفلوريت، أمرٌ مشكوك بصحته.[48][49] على الرغم من ذلك، أظهرت دراسة سنة 2012 وجود ما نسبته 0.04% وزناً من غاز F2 في عيّنة أنتوزونيت، وعزي وجود تلك المتضمّنات إلى الإشعاع الصادر عن وجود كمّيّات ضئيلة من عنصر اليورانيوم في الخامة.[49]

الإنتاج والتحضير[عدل]

بلغ تعدين الفلوريت، وهو المصدر الرئيسي للفلور في العالم، ذروته سنة 1989 عندما استُخرج 5.6 مليون طن متري من هذه الخامة. أدّت التقييدات على إنتاج مركّبات كلوروفلوروكربون (CFCs) إلى تخفيض الإنتاج إلى 3.6 مليون طن سنة 1994، ثم زاد الإنتاج من حينها مجدّداً. في سنة 2003 سُجّل إنتاج حوالي 4.5 مليون طن مع عائدات بلغت 550 مليون دولار أمريكي؛ وقدّرت تقارير لاحقة المبيعات العالمية من صناعات الفلور الكيميائية سنة 2011 بحوالي 15 بليون دولار أمريكي، وتنبّأت أن يقفز الإنتاج للفترة ما بين 2016–2018 إلى قيمة تتراوح بين 3.5 إلى 5.9 مليون طن، وعائدات لا تقلّ عن 20 بليون دولار.[19][50][51][52][53]

الإنتاج الصناعي[عدل]

خلايا إنتاج الفلور صناعياً في منشأة في بريطانيا.

تستخدم طريقة مواسان في إنتاج كمّيات صناعية من الفلور عن طريق إجراء تحليل كهربائي لمصهور مزيج من فلوريد البوتاسيوم/فلوريد الهيدروجين بفرق جهد بين 8 - 12 فولت. أثناء العملية تختزل أيونات الهيدروجين على مهبط من الفولاذ لينتج غاز الهيدروجين، بالمقابل، تتأكسد أيونات الفلوريد على مصعد مصنوع من الكربون لينتج غاز الفلور.[44][54] :

يتم رفع درجات الحرارة أثناء العملية إلى درجة تتراوح بين 70 - 130 °س، إذ أنّ KF•2HF ينصهر عند 70 °س، ووجوده ضروري لأنّ HF النقي لا يمكن تحليله كهربائياً.[19][55][56] يمكن تخزين الفلور في خزّانات أسطوانيّة من الفولاذ تكون مبطّنة من الداخل لحمايتها من التآكل، وذلك عند درجات حرارة أقل من 200 °س، وإلاّ فإنّ استخدام النيكل في صناعتها سيكون ضرورياً.[19][57] تُصنع الصمّامات والأنابيب في منشأة إنتاج الفلور عادةً من النيكل، ويمكن استخدام سبيكة مونيل من أجل تمديدات الأنابيب أيضاً.[58] يجب الحذر أثناء إنتاج الفلور ونقله من عدم وجود أيّ رطوبة أو مواد دهنية، لذلك يتم العزل عادةً باستخدام التيفلون.[59]

التحضير المخبري[عدل]

تمكّن العالم كارل كريستي Karl O. Christe في سنة 1986 من تصميم طريقة مخبرية لإنتاج غاز الفلور بمردود مرتفع وتحت الضغط الجوي:[60]

إنّ المواد المستخدمة في التفاعلات أعلاه معروفة منذ أكثر من 100 سنة، لكنّ مواسان استخدم طريقة التحليل الكهربائي بدل التفاعل المباشر.[61] غاز الفلور الناتج صناعياً أو مخبرياً نشيط جداً بحيث لا يمكن عزله كيميائياً.[62]

النظائر[عدل]

يوجد هناك نظير واحد فقط للفلور في الطبيعة وبشكل وفير، وهو النظير فلور-19 19F.[63] لهذا النظير نسبة مغناطيسية دورانية مرتفعة،[64] وحساسية استثنائية للحقول المغناطيسية، ونظراً لأنّه النظير الوحيد المستقر فإنّه يستخدم في التصوير بالرنين المغناطيسي.[65]

للفلور 17 نويدة مشعّة لها عدد كتلي يتراوح بين 14 و 31، وجميعها مصطنعة ولا توجد في الطبيعة، وأطولها عمراً هو النظير فلور-18 18F، والذي يبلغ عمر النصف له 109.77 دقيقة. أمّا باقي النظائر المشعّة فلها قيم عمر نصف أقلّ من 70 ثانية، ومعظمها يضمحلّ في أقلّ من نصف ثانية.[66] يخضع النظيران فلور-17 وفلور-18 أثناء الاضمحلال إلى عمليّة إصدار بوزيتروني β+، أمّا النظائر الأخفّ فتضمحلّ بعملية اصطياد إلكترون، في حين أنّ النظائر الأثقل من فلور-19 تخضع إلى اضمحلال بيتا أو إصدار نيوتروني.[66] هناك مصاوغ نووي واحد للفلور وهو 18mF، وله عمر نصف يبلغ 234 نانوثانية.[67]

الخواص الفيزيائية[عدل]

البنية البلّوريّة للفلور الصلب من النمط β. تشير الكرات إلى جزيئات F2.

يكون الفلور في الشروط العادية من الضغط ودرجة الحرارة على شكل غاز ذي لون أصفر شاحب،[68] وله رائحة واخزة قابلة للكشف عند تراكيز تصل إلى 20 جزء في البليون (ppb).[69] يختلف مدى لون الغاز حسب سماكة الطبقات الموجودة في الإناء الحاوي له، أي حسب التركيز، إذ أنّه يكون عديم اللون في التراكيز الضئيلة، وفي التراكيز المرتفعة يصبح ذا لون أصفر. عند درجات حرارة أقل من −188 °س يكون الفلور على شكل سائل له لون أصفر يشبه لون الكناري المميّز.[70][71] للفلور كثافة مقدارها 1.6959 كغ/م³ عند الدرجة 0 °س وضغط 1013 هيكتوباسكال، بالتالي فهو أكثف من الهواء. تقع النقطة الحرجة للفلور عند ضغط 52.5 بار ودرجة حرارة مقدارها 144.2 كلفن (−129 °س).

تبلغ نقطة انصهار الفلور −219.52 °س؛[72] وهناك شكلان معروفان من الفلور الصلب، أحدهما يكون عند درجات حرارة تقع بين −227.6 °س ونقطة انصهار الفلور، ويكون على شكل نظام بلّوري مكعّب تبلغ قيمة ثابت الشبكة البلّورية له a = 667 بيكومتر، ويعرف هذا الشكل بالنمط بيتّا β.[73] يكون الشكل بيتّا شفّافاً وغير صلد، وله بنية بلّورية مكعّبة غير منتظمة،[74][75] وشبيهة بالتي عند الأكسجين الصلب المتبلور حديثاً،[70] وذلك على العكس من بنية النظام البلّوري المعيني القائم الموجودة عند باقي الهالوجينات الصلبة.[76][77] أمّا عند درجات حرارة دون −227.6 °س فيكون شكل الفلور الصلب من النمط ألفا α، وهو نمط شاف وصلد،[78] يتبلور حسب نظام بلوري أحادي الميل، تكون ثوابت الشبكة البلورية له حسب ما يلي: a = 550 بيكومتر، و b = 328 بيكومتر، و c = 728 بيكومتر، والزاوية β = 102.17°.[79] يكون هذا التحوّل الطوري من النمط بيتّا β إلى ألفا α في الفلور الصلب ناشراً للحرارة بشكل أكبر من تكاثف الفلور، ويمكن أن يكون عنيفاً.[76][77]

البنية الجزيئية[عدل]

مخطّط المدارات الجزيئية لجزيء الفلور

يوجد الفلور في حالته العنصريّة على شكل جزيء ثنائي الذرّة F2،[3] مثله كمثل باقي عناصر مجموعة الهالوجينات. يبلغ طول الرابطة F-F في جزيء الفلور 144 بيكومتر، وهي بذلك أقصر من الرابطة التساهمية البسيطة كربون-كربون (154 بيكومتر). على الرغم من قصر هذه الرابطة الكيميائية إلّا أنّ طاقة تفكّك الرابطة F-F ضئيلة (158 كيلوجول/مول) بالمقارنة مع الروابط الأخرى، وهي تقارب طاقة تفكك جزيء اليود، والذي له طول رابطة يبلغ 266 بيكومتر. يعود ذلك إلى أنّ الأزواج غير الرابطة في ذرّات الفلور تتقارب عند تشكيل الجزيء ممّا يؤدّي إلى تنافرها، وهذا يقود في النهاية إلى سهولة انفصام الرابطة، والذي يفسّر بالتالي النشاط الكيميائي الكبير للفلور.

حسب نظرية المدارات الجزيئية فإنّ المدارات الذرّية s و p للذرّات المنفردة تتقارب لتشكل مدارات جزيئيّة رابطة وأخرى مضادّة للترابط. خلال الارتباط تتحوّل المدارات الذرّيّة 1s و 2s إلى المدارات الجزيئيّة σs و σs*. بما أنّ هذه المدارات الجزيئية تكون ممتلئةً بالكامل بالالكترونات، لذلك لا يكون لها دور في عملية الارتباط. بالمقابل، فإنّ المدارات الذرّيّة 2p في ذرّات الفلور المنفردة تتقارب لتشكّل ستّة مدارات جزيئية ذات مستويات طاقية متباينة، وهي: المدارات الرابطة σp و πy و πz بالإضافة إلى المدارات المضادّة للترابط σp* و πy* و πz*. تمتلك المدارات π مستويات طاقة متساوية كما هو موضّح في مخطط المدارات الجزيئية. عند توزيع الإلكترونات في المدارات الجزيئية تمتلئ مدارات π الرابطة والمضادة للترابط، لذلك فإن رتبة الرابطة في جزيء الفلور هي 1 = 2/(4-6)، كما يتّصف الجزيء بأنّ له مغناطيسية معاكسة.

الخواص الكيميائية[عدل]

لذرّة الفلور تسعة إلكترونات، وهي بذلك أقلّ بإلكترون واحد من النيون، ويكون التوزيع الإلكتروني كما يلي: 1s22s22p5، بحيث يملأ إلكترونان الغلاف الداخلي وسبعة إلكترونات الغلاف الخارجي للذرّة، أي ينقصها إلكترون واحد لتكمل الغلاف الذرّي الخارجي. لا تساهم الإلكترونات الخارجية في عملية الحجب النووي، بشكل تكون فيه الشحنة النووية الفعالة 7 = 2 - 9؛ ممّا يؤثّر على خواص الذرّة بشكل عام.[4] إنّ طاقة التأيّن الأولى للفلور لها ثالث أعلى قيمة من بين كل العناصر، وذلك بعد الهيليوم والنيون،[80] ممّا يصعّب من مهمّة إزالة الإلكترونات من ذرّات الفلور المعتدلة. كما أنّ للفلور ألفة إلكترونية عالية، وهي الثانية بعد الكلور،[81] ممّا يجعلها تميل إلى التقاط إلكترون من أجل أن تصبح متساوية إلكترونيّاً مع الغاز النبيل المجاور، وهو النيون،[4]. لذلك يمكن تفسير أنّ الفلور أكثر عناصر الجدول الدوري كهرسلبية على الإطلاق.[82] يبلغ نصف القطر التساهمي للفلور حوالي 60 بيكومتر، وله أصغر قيمة بين عناصر الدورة الثانية.[83][84]

التفاعلية[عدل]

إنّ طاقة الرابطة في جزيء الفلور F2 هي أقلّ بكثير من نظيراتها في الكلور Cl2 أو Br2، وهي مماثلة من حيث الوهن لرابطة البيروكسيد سهلة الفصم. على ضوء ذلك، وبإلاضافة إلى الكهرسلبية المرتفعة لهذا العنصر، يمكن تفسير التفاعلية العالية للفلور وارتباطه الشديد بالعناصر المغايرة للفلور.[85][86] لذلك فإنّ الفلور ينتمي إلى أقوى المؤكسدات الفعّالة عند درجة حرارة الغرفة، إذ يمكن أن يتفاعل مع أغلب المواد، حتى الخامل منها مثل مسحوق الفولاذ، أو شظايا الزجاج أو ألياف الأسبست والتي تتفاعل بسرعة مع غاز الفلور على البارد؛ أمّا الخشب والماء فيشتعلان فوراً عند تعرّضهما إلى تيّار من غاز الفلور.[3][87] تؤثّر الشروط المحيطة على تفاعل الفلور مع الماء، فعند تمرير كمّيّات ضئيلة من الفلور في الماء البارد يتشكّل بيروكسيد الهيدروجين (الماء الأكسجيني) وحمض الهيدروفلوريك:[88]

بالمقابل فإنّه عند تفاعل كمّيّات فائضة من الفلور مع كمّيّات أقلّ من الماء، أو الجليد أو الهيدروكسيدات يتشكّل الأكسجين وثنائي فلوريد الأكسجين كمنتجات رئيسية.[88]

يستطيع الفلور أن يتفاعل مع جميع العناصر الكيميائية عدا الهيليوم والنيون، ممّا يعني أنّه يستطيع التفاعل مع الغازات النبيلة الأثقل، فيتفاعل الفلور مع الرادون بسهولة،[89] في حبن أنّ تفاعله مع الزينون والكريبتون يتطلب وجود شروط خاصّة.[90] يتطلّب تفاعل عنصر الفلور مع الفلزّات شروطاً متفاوتة، فالفلزّات القلوية تسبّب الانفجارات، في حين أنّ الفلزّات القلوية الترابية تبدي فعالية كيميائية عنيفة في حال وجود كمّيات منها؛ وعلى العموم من أجل تجنّب حالة التخميل الناتجة عن تشكّل طبقات من فلوريدات الفلزات، ينبغي أن تكون الفلزّات المتبقية مثل الألومنيوم والحديد على شكل مساحيق؛[85] في حين أنّ الفلزّات النبيلة تتطلّب وجود غاز الفلور بحالة نقيّة عند درجات حرارة تتراوح بين 300 - 450 °س لتشكل الفلوريدات الموافقة.[91]

تتفاعل بعض اللافلزات الصلبة مثل الكبريت والفوسفور بعنف مع الفلور المسيّل،[92] كما يتفاعل كبريتيد الهيدروجين [92] وثنائي أكسيد الكبريت [93] بشكل فوري مع الفلور، أمّا حمض الكبريتيك فيتطلّب تفاعله مع الفلور درجات حرارة مرتفعة.[94] يتفاعل أسود الكربون مع الفلور عند درجة حرارة الغرفة ليعطي فلورو الميثان، أمّا الغرافيت فيعطي مع غاز الفلور عند درجات حرارة أعلى 400 °س مركّب غير ستوكيومتري من أحادي فلوريد الكربون، أمّا عند درجات حرارة أعلى من ذلك فتتشكّل مركّبات فلوروكربون الغازية، أحياناً بشكل انفجاري.[95] يتفاعل كلّ من أحادي أكسيد الكربون وثنائي أكسيد الكربون مع الفلور عند درجة حرارة الغرفة أو أعلى بقليل،[96] في حين أنّ المركّبات العضوية مثل البرافينات وغيرها تتفاعل بعنف وشدّة أكبر،[97] بحيث أنّه حتّى مركّبات هاليد الألكيل كاملة الاستبدال مثل رباعي كلوريد الكربون يمكن لها أن تنفجر، والتي هي عادةً ما تكون غير قابلة للاشتعال.[98] بشكل عنيف وانفجاري يتفاعل غاز الهيدروجين مع الفلور،[99] ليشكل فلوريد الهيدروجين؛ بالمقابل فإنّ غاز النتروجين يتطلّب وجود تفريغ كهربائي عند درجات حرارة مرتفعة لحدوث التفاعل، ويعود ذلك إلى الرابطة الثلاثية القويّة في جزيء النتروجين،[100] أمّا الأمونياك فيتفاعل بشكل انفجاري.[101][102] لا يرتبط الأكسجين مع الفلور عند درجات حرارة معتدلة، ولا يحدث التفاعل إلاّ بشروط قاسية بوجود تفريغ كهربائي عند درجات حرارة وضغوط منخفضة، ليعطي منتجات غير مستقرّة، والتي سرعان ما تتفكّك إلى عناصرها المكوّنة عند التسخين.[103][104][105] أمّا الهالوجينات الأثقل من الفلور فتتفاعل بشكل فوري معه.[106]

المركّبات الكيميائية[عدل]

للفلور كيمياء غنية وطيف واسع من المركّبات الكيميائية سواء اللاعضوية أو العضوية منها. يستطيع الفلور تشكيل مركّبات مع جميع العناصر عدا الهيليوم والنيون، وذلك سواء أكانت فلزّات أو لافلزّات أو أشباه الفلزّات.[107] تكون حالة الأكسدة للفلور (−1) في أغلب هذه المركّبات، والتي غالباً ما تكون مركّبات أيونية بسبب الألفة الإلكترونية المرتفعة للفلور. عندما يشكّل الفلور روابط تساهمية فإنّها تكون مستقطبة وأحادية.[108][109]

مخطّط يظهر نقاط الغليان لبعض المركّبات وأثر وجود الروابط الهيدروجينية على ارتفاع نقطة الغليان في كلّ من الماء وفلوريد الهيدروجين

مع الهيدروجين[عدل]

يتحدّ الفلور مع الهيدروجين ليعطي فلوريد الهيدروجين، وهو غاز سام أكّال، تترابط جزيئاته مع بعضها على شكل تجمّعات عنقودية بسبب وجود الروابط الهيدروجينية بين الجزيئات، ممّا يجعل فلوريد الهيدروجين بهذه النقطة أشبه بالماء من كلوريد الهيدروجين.[110][111][112] ينتمي فلويد الهيدروجين المسيّل والخالي من الماء إلى الأحماض الفائقة. يغلي فلوريد الهيدروجين عند درجة حرارة أعلى من هاليدات الهيدروجين الأثقل منه، وعلى العكس منها فإنّه يمتزج مع الماء بشكل كامل.[113] عند التماس مع الماء يتميّه فلوريد الهيدروجين ليشكّل فلوريد الهيدروجين المائي المعروف باسم حمض الهيدروفلوريك. على العكس من باقي الأحماض الهيدروهاليدية والتي هي أحماض قوية، فإنّ حمض الهيدروفلوريك هو حمض ضعيف عند تراكيز منخفضة،[114][115] إلّا أنّه مع ذلك مادّة أكّالة تخرّش الزجاج، وهي ظاهرة لا تستطيع الأحماض المتبقيّة أن تفعله.[116] يعدّ فلوريد الهيدروجين المركّب الكيميائي الأساسي للفلور، والذي منه يتم استحصال الفلور العنصري بالإضافة إلى باقي المركّبات الأخرى.

مع الفلزّات[عدل]

تعدّ الفلوريدات أملاح حمض الهيدروفلوريك، وهي تتشكّل من أثره على الفلزّات المختلفة. تكون فلوريدات الفلزّات القلوية مركّبات أيونية بلّورية ذات انحلالية عالية ولها نظام بلّوري مكعّب مشابه للكلوريدات الموافقة.[117][118] تتميّز فلوريدات الفلزّات القلوية الترابية أنّها مركّبات أيونية قوية، لكنّها غير منحلة (ذوّابة) في الماء،[24] باستثناء فلوريد البيريليوم، والذي له بعض الصفات التساهمية وبنية مشابهة لبنية ثنائي أكسيد السيليكون.[119] تكون فلوريدات الفلزّات القلوية حاوية على ذرّة فلور واحدة (أحادية الفلور)، في حبن أنّ فلوريدات الفلزّات القلوية الترابية ثنائية الفلور. أمّا فلوريدات العناصر الأرضية النادرة وباقي الفلزّات الأخرى فهي غالباً ما تكون فلوريدات أيونية ثلاثية (حاوية على ثلاث ذرّات فلور).[120][121][122]

تظهر الصفة التساهمية في الفلوريدات غالباً عندما تكون على شكل فلوريدات رباعية؛ ففي حين أنّ فلوريدات عناصر مثل الزركونيوم والهافنيوم،[123][124] والعديد من الأكتينيدات،[125] هي فلوريدات أيونية ذات نقطة انصهار مرتفعة،[126][127][124][128] إلّا أنّه بالمقابل تكون فلوريدات عناصر مثل التيتانيوم،[129] والفاناديوم،[130] ذات صفة بوليميرية،[131] تنصهر أو تتفكّك عند درجات حرارة أقل من 350 °س.[132] وعلى هذه الشاكلة تكون أيضاً الفلوريدات الخماسية والتي تتميّز بكونها على شكل بوليمرات خطّية أو معقّدات قليلة الوحدات.[133][134][135] هناك ستّة عشر عنصراً لهم فلوريدات سداسية، وجميعها لها بنية جزيئية ثمانية السطوح، وتكون صلبة ما عدا سداسي فلوريد الموليبدنوم MoF6 وسداسي فلوريد الرينيوم ReF6 السائلَين، بالإضافة إلى سداسي فلوريد التنغستن WF6 الغازي.[136][137][138] هناك فلوريد سباعي واحد فقط اكتشف لحد الآن وهو سباعي فلوريد الرينيوم ReF7، وهو عبارة عن صلب له نقطة انصهار منخفضة وله بنية جزيئية هرمية مزدوجة خماسية السطوح.[139] على العموم تتميّز الفلوريدات الحاوية على أكثر من ذرّة فلور بأنّها نشيطة كيميائياً.[140]

بنى مختلفة لفلوريدات الفلزات
البنية المكعّبة لفلوريد الصوديوم سلسلة بوليميرية من خماسي فلوريد البزموت البنية الجزيئية لسباعي فلوريد الرينيوم
البنية المكعّبة للمركب الأيوني فلوريد الصوديوم سلسلة بوليميرية من خماسي فلوريد البزموت البنية الجزيئية لسباعي فلوريد الرينيوم

مع اللافلزّات وأشباه الفلزّات[عدل]

تكون الفلوريدات الثنائية لأشباه الفلزّات واللافلزّات عبارة عن مركّبات تساهمية وذات تطايرية عالية، وتفاعلية كيميائية متفاوتة. تستطيع عناصر الدورة الثالثة واللافلزّات الثقيلة أن تشكّل فلوريدات مفرطة في التكافؤ.[141] لمركّب ثلاثي فلوريد البورون بنية مستوية ثلاثية، ولا تحقّق فيه ذرة البورون المركزية قاعدة الثمانية الإلكترونية، لذلك فإنّه يعدّ من أحماض لويس القادرة على الاتحاد مع قاعدة لويس مثل الأمونياك ليشكّل ناتج إضافة.[142] من جهة أخرى، يكون رباعي فلورو الميثان على شكل رباعي سطوح وخامل كيميائياً، في حين أنّ باقي فلوريدات مجموعة الكربون مثل رباعي فلوريد السيليكون ورباعي فلوريد الجرمانيوم تكون أيضاً ذات بنية رباعية السطوح،[143] لكنّها تتصرّف كأحماض لويس.[144][145] أمّا مجموعة النتروجين فلها فلوريدات ثلاثية تتزايد تفاعليتها الكيميائية وقاعديتها مع ارتفاع الكتلة الجزيئية، مع العلم أنّ ثلاثي فلوريد النتروجين يقاوم الحلمهة وليس قاعدياً.[146] تكون الفلوريدات الخماسية لكلّ من عناصر الفوسفور والزرنيخ والأنتيموان أكثر نشاطاً كيميائياً من نظيراتها الثلاثية، وخاصّة خماسي فلوريد الأنتيموان، والذي يعدّ أقوى أحماض لويس المعتدلة المعروفة.[133][147][148]

لمجموعة عناصر الكالكوجين فلوريدات متنوّعة، فهناك فلوريدات ثنائية غير مستقرّة لكلّ من الأكسجين والكبريت والسيلينيوم، بالإضافة إلى الفلوريدات الرباعية والسداسية للكبريت والسيلينيوم والتيلوريوم. لمركّب سداسي فلوريد الكبريت ثباتية كبيرة وهو غاز خامل.[149][150] على العكس من باقي الهالوجينات الأثقل فإنّه يوجد حمض أكسجيني واحد فقط للفلور، وهو حمض هيبوفلوروز HOF. تستطيع عناصر الهالوجينات الأخرى من الكلور والبروم واليود أن تشكّل فلوريدات أحادية وثلاثية وخماسية، ووحده اليود يكون قادراً على تشكيل مركّب بين هالوجيني مع الفلور أعلى من ذلك، وهو سباعي فلوريد اليود.[151] إنّ الكثير من هذه الفلوريدات المذكورة هي مصدر غني لذرّات الفلور في التفاعلات الكيميائية، مع الإشارة إلى أنّ العمليّات الصناعية التي تستخدم ثلاثي فلوريد الكلور تتطلّب أخذ الحيطة والوقاية كما هو الحال مع غاز الفلور.[152][153]

صورة مأخوذة سنة 1962 لبلورات من رباعي فلوريد الزينون.[154]

مع الغازات النبيلة[عدل]

للغازات النبيلة عددٌ مكتمل من الإلكترونات في الغلاف الخارجي، بالتالي فهي لا تتفاعل مع باقي العناصر ولا تشكّل مركّبات كيميائية. بقيت هذه المعلومة صحيحة على الإطلاق إلى سنة 1962 عندما قام نيل بارتلت بتحضير سداسي فلوروبلاتينات الزينون لأوّل مرة سنة 1962.[155] تلا ذلك تحضير سلسلة من فلوريدات الغازات النبيلة مثل ثنائي فلوريد ورباعي فلوريد وسداسي فلوريد الزينون، بالإضافة إلى العديد من أوكسي الفلوريدات المتعدّدة والتي عزلت منذئذ.[156] يستطيع غاز الكريبتون أن يشكّل مركّب ثنائي فلوريد؛[157] وكذلك الأمر بالنسبة لغاز الرادون الذي يشكّل ثنائي فلوريد أيضاً.[158][159] تكون الفلوريدات الثنائية للغازات النبيلة الأخفّ غير مستقرّة للغاية، إذ يتّحد فلوريد الهيدروجين مع الأرغون تحت شروط قاسية جدّاً ليعطي فلوروهيدريد الأرغون.[90] بالمقابل، لا يمكن تشكيل مركّبات فلوريد من الهيليوم أو النيون.[160][161]

كيمياء الفلور العضوية[عدل]

إنّ الرابطة الكيميائية فلور-كربون هي الأقوى بين الروابط في الكيمياء العضوية،[162] ممّا يعطي ثباتية فائقة لمركّبات فلوروكربون العضوية.[163] لا توجد مركّبات فلور عضوية في الطبيعة، وهي تصطنع كيميائياً فقط، حيث أدّت الأبحاث في هذا المجال إلى العديد من التطبيقات التجارية؛[164] كما تتداخل مركّبات الفلور العضوية المتنوّعة في العديد من مجالات أبحاث الكيمياء العضوية.[30]

طبقتين غير متمازجتين من الماء الملوّن (في الأعلى) وطبقة أكثر كثافة من بيرفلوروالهيبتان C7F16 (في الأسفل) داخل إناء، يظهر فيه محاولة كل من سمكة ذهبية وسلطعون اختراق الحاجز بين الطبقتين.

يؤدّي استبدال ذرّات الهيدروجين في الألكانات بذرّات فلور إلى تغيّر في العديد من خواصّها، ويزداد هذا التغيّر مع ازدياد عدد ذرّات الفلور المستبدلة، إذ تنخفض نقطتي الانصهار والغليان، وتزداد الكثافة، وتتناقص الانحلالية في المذيبات الهيدروكربونية، وتزداد الثباتية بشكل عام. تدعى المركّبات العضوية الحاوية على ذرّات كربون وفلور فقط في البنية الجزيئية باسم مركبات فلوروكربون (والتي تسمى أحياناً بيرفلوروكربون)، وهي مركّبات غير منحلّة (ذوّابة) في أغلب المذيبات العضوية، وتتفاعل فقط مع الصوديوم في الأمونياك السائل.[165] يمكن لذرّات الفلور أن تستبدل الهيدروجين في العديد من المركّبات العضوية الأخرى غير الألكانات وذلك بوجود مجموعات وظيفية.[166][167] يكون لهذه المركّبات الفلورية العضوية صفات مشابهة لمركّبات الفلوروكربون مثل الثباتية والدفوعية للماء،[168] في حين أنّ المجموعة الوظيفية في البنية تكون مسؤولة عن التفاعلية، ممّا يمكّنها من الالتصاق بالسطوح واستخدامها كمؤثّرات سطحية (مواد فعّالة بالسطح)،[169] والتي تدعى مؤثّرات السطح الفلورية، والتي تعمل على تخفيض التوتّر السطحي بشكل أكبر من نظيراتها ذات الأساس الهيدروكربوني.

يستحصل عادةً على أيونات الفلوريد في الكيمياء العضوية باستخدام مركب فلوريد رباعي بوتيل الأمونيوم (TBAF)، والذي يتميّز بأنّه ينحلّ في المذيبات العضوية، وبذلك يكون أيون الفلوريد حرّاً وغير معاقاً بالكاتيون المرافق (حينئذ يوصف باسم الفلوريد المجرّد)، ممّا يسمح باستخدام TBAF كمصدر للفلوريد في التفاعلات العضوية، كما يستخدم في إزالة مجموعة حماية سيليل الإيثر عن الكحولات.[170]

البوليميرات
البنية الكيميائية للنافيون Nafion، وهو بوليمير فلوري يستخدم في خلايا الوقود وتطبيقات أخرى عديدة.[171]

تبدي البوليميرات الحاوية على ذرّات فلور مستبدلة في بنيتها ثباتيّة عالية بالإضافة إلى نقاط انصهار أعلى من نظيراتها الهيدروكربونية.[172] يعد متعدد رباعي فلورو الإيثيلين (PTFE) أبسط البوليميرات الفلورية وهو مناظر لبوليمير متعدد الإيثيلين (بولي إيثين) الهيدروكربوني، وله الوحدة البنائية –CF2–، وهو مقاوم للكيماويات ودرجات الحرارة، كما أنّه صعب القولبة.[173] هناك عدّة مشتقّات من PTFE ذات ثباتية أقل للحرارة وبالتالي هي سهلة القولبة، وتحضّر من إضافة مجموعات فلورية مثل مجموعات ثلاثي فلوروميثيل أو ثلاثي فلوروميثوكسي،[173] أو بإضافة مجموعة من فلور الإيثر منتهية بمجموعات حمض السلفونيك كما هو الحال في بنية نافيون.[174][175] هناك بعض البوليميرات الفلورية التي تستبقي على ذرّات هيدروجين في بنيتها مثل ثنائي فلوريد متعدد الفينيليدين (PVDF) وفلوريد متعدد الفاينيل (PVF)، والتي تشابه في خواصها البوليميرات الفلورية كاملة الاستبدال.[176]

الكشف عن الفلوريد[عدل]

هناك عدّة تفاعلات كيميائية للكشف عن أيونات الفلوريد: إحداها يتم بوضع المادة الحاوية على الفلوريد في أنبوب اختبار زجاجي حاوٍ على حمض الكبريتيك المركّز:

ينتج عن التفاعل أبخرة فلوريد الهيدروجين، والتي تخرّش الزجاج، وفي نفس الوقت وبسبب التغيّر في السطح الملامس يفقد حمض الكبريتيك المقدرة على ترطيب الزجاج، وذلك دلالة على وجود الفلوريد في العيّنة.[177]

طيف 19F NMR لمركب
1-برومو-5،4،3-ثلاثي فلورو البنزين.

يمكن الكشف عن أيونات الفلوريد بطريقة أخرى تدعى قطرة الماء، حيث تعالج المادّة الحاوية على الفلوريد مع حمض السيليسيك وحمض الكبريتيك في وعاء مصنوع من الرصاص، فينتج عن ذلك تشكّل رباعي فلوريد السيليكون. بعد ذلك يوضع على الإناء الذي أجري فيه التفاعل ماصّة حاوية على قطرة من الماء، والتي يؤدّي تفاعل رياعي فلوريد السيليكون معها في تفاعل حلمهة إلى تشكّل ثنائي أكسيد السيليكون، الذي يتبلور بشكل مميّز على شكل إطار أبيض حول القطرة.[177]

حالياً وباستخدام وسائل تحليلية حديثة مثل مطيافية الرنين المغناطيسي النووي (NMR) يمكن الكشف عن الفلور بواسطة 19F NMR بسهولة، إذ يتميّز بأنه عنصر أحادي النويدة.

الدور الحيوي[عدل]

في الإنسان[عدل]

علاج موضعي بالفلوريد لطفل أثناء حملة إغائة في إحدى الدول الاستوائية.

لا يعد الفلور من المغذّيات الأساسية للإنسان وللثديّيات الأخرى، إذ تكفي كمّيّات ضئيلة من أجل قوّة العظام، على الرغم من الشكوك التي تحوم حول تلك النقطة.[178] تؤدّي حاجة الجسم الضئيلة من الفلور وتوفّر العديد من المصادر الطبيعية للفلور إلى قلّة احتمال الإصابة بمرض عوز الفلور، ولا يمكن أن تقع إلا لمن يتّبع حمية غذائية غير طبيعية المصدر.[179][180] يوجد في جسم إنسان (70 كغ وسطياً) حوالي 5 غ من أيون الفلوريد،[181] وهو غير متجانس التوزيع، إذ يتركّز في العظام والأسنان. يقي الفلوريد من تسوس الأسنان، كما يعمل على تقسية مينا الأسنان، حيث تتمّ هذه العملية وفق الأبحاث من خلال إقحام الفلوريد بدل أيونات الهيدروكسيد في هيدروكسيل أباتيت ليتشكّل فلورأباتيت، والذي يتميّز بضعف انحلاليته، بالتالي يكون ثابتاً تجاه اللعاب، فيلعب دوراً في تدعيم الأسنان، وخاصّة أنّ الأباتيت المنحلّ سيترسّب مرّة أخرى بوجود الفلور؛ إلّا أنّ بعض الأبحاث الأخرى دحضت هذه النظرية؛ ولكن مع التأكيد على دور الفلوريد في دعم نمو المينا.[182] بالإضافة إلى ذلك فإنّ الفلوريد يلعب دوراً حاجباً لنوعية معيّنة من الإنزيمات، ممّا يسهم في إعاقة تحلل السكر الذي تسهم فيه أنواع البكتريا.[183] يمكن الحصول على الفلوريد من مصادر طبيعية عادةً إمّا عن طريق ماء الشرب (في بعض البلدان) أو من مصادر غذائية.

بالمقابل فإنّه عندما يتعرّض الأطفال في مرحلة نمو الأسنان إلى كمّيّات فائضة من الفلوريد يمكن حدوث حالة من تسمم الأسنان بالفلور. في هذه الإصابة تظهر نقط أو بقع ملوّنة على سطح الأسنان، كما يصبح السنّ أكثر هشاشةً وأقلّ مقاومة. يتفاوت الحدّ الأعظمي من الفلوريد الموصى به للإنسان يومياً حسب العمر؛ فبالنسبة للرضّع إلى عمر ستة أشهر يبلغ 0.7 مغ؛ ومن 7-17 شهر 0.9 مغ؛ وللأطفال حتى عمر 3 سنوات 1.3 مغ؛ أمّا الأطفال من أربع إلى ثمان سنوات فيكون الحد الأعظمي لهم هو 2.2 مغ؛ وبعد تمام نمو الأسنان تكون حاجة الإنسان الأعظمية من الفلوريد 10 مغ في اليوم.[184]

يعدّ نبات الجفبلار السنمي أو ورق السم السنمي (الاسم العلمي:Dichapetalum cymosum) من الكائنات الحيّة القليلة التي تستطيع اصطناع الفلور العضوي.

تعمد بعض الدول إلى إضافة أيون الفلوريد إلى ماء الشرب من أجل مكافحة تسوّس الأسنان،[185] كما هو الحال في الأمريكيتين،[186][187] بالمقابل فإنّ ألمانيا لا تسمح بفلورة الماء، أمّا في سويسرا فكانت مدينة بازل سنة 2000 آخر مدينة هناك تقوم بإضافة الفلوريد إلى مياه الشرب.[188] لا يوجد تأكيدات إلى الآن حول ضرورة إضافة الفلوريد إلى ماء الشرب، ولا يزال محطّ خلاف بين جهات داعمة ورافضة للفكرة. فالجهات الداعمة تشير إلى أن فلورة الماء ساهمت في تقليص نخر الأسنان عند الأطفال،[189] [190] وأن الأثر السلبي الظاهر هو تسمم الأسنان بالفلور،[191] إلّا أنّ أطراف أخرى تعارض الفكرة من دوافع مادّية كالسلامة وأخرى معنوية أخلاقية.[187][192] خاصّة أنّ الفائدة من فلورة الماء تقلّصت مع انتشار مستحضرات العناية بالأسنان من معاجين وغسول فم ورغوات تنظيف حاوية على مصدر فلوري مثل أحادي فلوروفوسفات الصوديوم في تركيبها.[190][193]

في الكائنات الأخرى[عدل]

عثر على آثار من الفلور العضوي الطبيعي في بعض النباتات،[47] ولكن ليس في الحيوانات.[194] أكثر مركّبات الفلور العضوية الطبيعية انتشاراً هو فلوروأسيتات الصوديوم، والذي يستخدم كأسلوب دفاع ضد العواشب من قبل ما لا يقل عن 40 نبتة في أفريقيا وأستراليا والبرازيل.[195] تشكّل الأحماض الدهنية ذات النهايات المفلورة، ومركّبات مثل فلورو أسيتون و 2-فلورو سيترات نماذج أخرى عن مركبات فلور عضوية طبيعية.[194] كما عثر على إنزيم مهمته ربط الفلور بالكربون - أدينوسيل-فلوريد سينثاز- وذلك في أحد أنواع البكتريا سنة 2002.[196]

الأثر البيئي[عدل]

حمض بيرفلوروأوكتان السلفونيك: هي مادّة كانت تستخدم كمكوّن لمستحضرات الوقاية من البقع الدهنية حتى سنة 2000 عندما منع من الاستخدام.[197]

تتميّز مركّبات الفلور العضوية بأنّها مقاومة للتحلّل الحيوي بسبب قوّة الرابطة الكيميائية بين الكربون والفلور، لذلك تعدّ مركبات الفلوروكربون المختلفة، مثل أحماض بيرفلوروالألكيل (PFAAs) ذات الانحلالية الضئيلة في الماء بسبب المجموعات الوظيفية الحمضية، من الملوّثات المستدامة للبيئة.[198] على هذا الأساس شرعت الأبحاث باستقصاء المركّبات العضوية الفلورية المختلفة مثل حمض بيرفلوروأوكتان السلفونيك (PFOS) وحمض بيرفلورو الأوكتانويك (PFOA).[199][200][201] أفادت دراسة أجريت سنة 2013 بوجود علاقة بين مستويات PFAA في المياه الجوفية والتربة والنشاط البشري، كما وجدت علاقة بين المستويات المرتفعة لكل من PFOS و PFOA في تلك الدراسة.[199][200][202] ترتبط مركبات PFAAs في جسم الإنسان بالبروتينات مثل الألبومين في المصل، وتتركز في الكبد والدم قبل أن تطرح عبر الكلى خارج الجسم، ولكن مدّة المكث تتفاوت حسب الأجسام، ويمكن أن تصل إلى سنوات عند البشر.[199][200][203] يؤدّي التعرّض إلى مستويات مرتفعة من PFOS و PFOA إلى السرطان وحدوث وفيات عند فئران التجارب الوليدة حديثاً، ولا تزال الأبحاث مستمرّة لمعرفة المستويات الحرجة بالنسبة للبشر، خاصّة أن مستويات التعرّض الحالية لم تُبدِ أثراً لحد الآن.[199][200][203]

إسقاط مستمر لصور من ناسا يتنبّأ بمصير طبقة الأوزون فوق أمريكا الشمالية في حال عدم التوقيع على اتفاقية مونتريال.[204]

وضعت اتفاقية مونتريال الموقّعة سنة 1987 ضوابط صارمة تجاه استخدام مركبات كلوروفلوروكربون (CFCs) نظراً لأثرها المخرّب الذي يسبّب نضوب الأوزون. تعدّ هذه المركّبات ثابتة ومقاومة للتحلّل حتّى تصل إلى ارتفاعات عالية في طبقات الجوّ، ثمّ تتفكّك حينها لتعطي جذور حرة من ذرّات الكلور والتي تهاجم جزيئات الأوزون.[205] تشير بعض الآراء إلى أنّه حتّى بعد الحظر سيتطلّب الأمر عدّة أجيال حتى تعود طبقة الأوزون إلى الوضع السابق قبل التلوّث الحاصل بسبب مركّبات كلوروفلوروكربون،[206][207] التي تستخدم مركبات هيدروكلوروفلوروكربون كبديل عنها حالياً(HCFCs)،[208] والتي بدورها ستستبدل مستقبلاً (2030–2040) بشكل كامل بمركّبات هيدروفلوروكربون (HFCs) الخالية من الكلور وعديمة الضرر بالنسبة للأوزون.[209] بالمقابل فإنّ غازات فلوروكربون هي غازات دفيئة ذات احتمالية حدوث احترار عالمي (GWPs) تتراوح بين 100 و 10,000، مع العلم أنّ سداسي فلوريد الكبريت له قيمة GWP حوالي 20,000.[210] من هذه المركّبات 3،3،3،2-رباعي فلورو البروبين (HFO-1234yf)، والذي له قيمة GWP تبلغ 4 بالمقارنة مع 1430 لمركّب 2،1،1،1-رباعي فلورو الإيثان (HFC-134a)، وهي مادّة قياسية لمواد التثليج حاليّاً.[211]

الاستخدامات[عدل]

تقوم عملية التعويم الزبدي بفصل الفلوريت الجاري تعدينه بنسبة متساوية تقريباً إلى صنفين رئيسيين لهما درجات تعدينية متفاوتة: الأول يدعى ميتسبار metspar وهو ذو نقاوة تتراوح بين 60-85 %، ويستخدم تقريباً بالكامل في صهر الحديد وإنتاج الصلب؛ أمّا الثاني فهو أسيدبار acidspar والذي له نقاوة تزيد عن 97%، والذي يحوّل بشكل رئيسي إلى فلوريد الهيدروجين كمركّب وسطي صناعي.

فلوريت فلورأباتيت فلوريد الهيدروجين صهر المعادن سداسي فلوروألومينات صوديوم تنظيف بالحمض حمض فلورو السيليسيك تكسير (كيمياء) كلوروفلوروكربون تيفلون فلورة الماء تخصيب اليورانيوم سداسي فلوريد الكبريت فلوريد التنغستن السداسي
استخدامات الفلور الصناعية.

التطبيقات الصناعية[عدل]

ينتج ما لا يقل عن 17000 طن متري من الفلور سنوياً، وهو يكلّف 5-8 دولار أمريكي لكل كيلوغرام عند إنتاجه على شكل سداسي فلوريد اليورانيوم أو الكبريت، ولكن السعر يتضاعف عند الحصول عليه بشكل عنصري نظراً للتحدّيات المرافقة أثناء التعامل معه نظراً لنشاطه الكيميائي الكبير، والكثير من العمليّات التي تتطلّب وجود الفلور العنصري تقوم بتوليده في الموقع حسب مبدأ التكامل الرأسي.[212]

غاز الفلور[عدل]

محولات SF6 في محطّة قطار روسية.

إنّ التطبيق الأساسي لغاز الفلور هو استخدامه من أجل تحضير سداسي فلوريد اليورانيوم UF6 المستخدم في دورة الوقود النووي، باستهلاك يصل إلى 7000 طن سنوياً. يستخدم الفلور العنصري في فلورة رباعي فلوريد اليورانيوم UF4، والذي يستحصل بدوره من ثنائي أكسيد اليورانيوم UO2 وحمض هيدروفلوريك.[212] بما أنّ الفلور عنصر أحادي النظير، بالتالي أيّ فرق في الكتلة بين جزيئات UF6 الغازية هو نتيجة لوجود 235U أو 238U؛ ممّا يمكّن من تخصيب اليورانيوم عن طريق الانتشار الغازي أو باستخدام طاردة مركزية غازية.[3][44] يستهلك حوالي 6000 طن متري سنوياً من غاز الفلور في إنتاج سداسي فلوريد الكبريت SF6 الخامل والعازل كهربائياً والمستخدم في المحوّلات عالية الجهد وفي قواطع التيار، ممّا يجنّب الحاجة إلى مركبات ثنائي الفينيل متعدد الكلور الخطرة والتي يترافق تطبيقها مع وجود أجهزة مليئة بالوقود.[213] تستخدم النسبة المتبقية من غاز الفلور في إنتاج بعض الفلوريدات العضوية التي لها تطبيقات مختلفة، ولكنّ تمنع الفعالية العالية له دون استخدامه بشكل مباشر، لذلك يحوّل في البداية إلى مركّبات بين هالوجينية مثل ClF3 أو BrF3 أو IF5، أمّا المستحضرات الصيدلانية الفلورية فيستخدم فيها رباعي فلوريد الكبريت كبديل.[44]

الفلوريدات اللاعضوية[عدل]

تستخدم أملاح الفلوريد بشكل أساسي في صهر المعادن وصناعة الصلب والفولاذ، حيث يضاف حوالي 3 كغ من ميتسبار إلى كلّ طن متري من الفولاذ (الصلب)، حيث تعمل أيونات الفلوريد على تخفيض نقطة الانصهار واللزوجة.[44][214] كما يلعب الفلور دوراً آخر في هذه الصناعة، إذ يؤخذ الشكل النقي وهو أسيدبار ويفاعل مع حمض الكبريتيك لتحضير حمض هيدروفلوريك، والذي يستخدم من أجل المعالجة الحمضية لتنظيف سطوح الفولاذ، كما يستخدم هذا الحمض أيضاً من أجل تنميش الزجاج وله استخدام في عمليات تكسير الألكانات.[44] يستهلك حوالي الثلث من فلوريد الهيدروجين في تحضير مركبي الكريوليت وثلاثي فلوريد الألومنيوم واللذان يستخدمان كصهيرة في عملية هول-هيرو لاستخراج الألومنيوم، والتي يحتاج فيها لإنتاج طن واحد من الألومنيوم إلى حوالي 23 كغ من تلك المواد.[44][215] يستخدم فلوريد الهيدروجين أيضاً من أجل تحضير أملاح فلوروسيليكات، مثل سداسي فلوروسيليكات الصوديوم Na2SiF6، والمستخدم في فلورة المياه، وكذلك كمركّب وسطي أثناء تحضير الكريوليت ورباعي فلوريد السيليكون.[216]

من الفلوريدات اللاعضوية المهمّة أيضاً التي لها تطبيقات صناعية كل من فلوريدات الكوبالت والنيكل والأمونيوم.[44][118][217] كذلك الأمر بالنسبة لفلوريدات الرينيوم والتنغستن التي تستخدم في الترسيب الكيميائي للبخار؛[218] وثلاثي فلوريد النتروجين المستخدم في تنظيف الأجهزة.[44]

مركبات الفلور العضوية[عدل]

تستهلك الفلوريدات العضوية أكثر من 20% من خامة الفلوريت وأكثر من 40% من حمض هيدروفلوريك حيث يذهب الاستهلاك الأكبر على مواد التثليج، بالإضافة إلى الطلب المتزايد من البوليميرات الفلورية.[44][219] تعدّ المواد الفعّالة بالسطح الفلورية من المنتجات الثانوية لصناعة الفلور الكيمائية، إلّا أنّها تعطي ما مقداره بليون دولار أمريكي كعائدات سنوية.[220] هناك استخدامات أخرى متفرّقة، إذ يستخدم رباعي فلورو الميثان في التنميش بواسطة البلازما،[221][222] أمّا بيرفلورو البوتان (C4F10) فيستخدم كمادّة في إطفاء الحرائق.[223]

نظراً للخطر المرافق لتفاعلات فلور-هيدروكربون المباشرة فوق -150 °س، فإنّ إنتاج مركّبات فلوروكربون الصناعية يتمّ بشكل غير مباشر عن طريق تفاعلات تبادل هالوجينية، أو باستخدام الفلورة الكهروكيميائية، التي تخضع فيها الهيدروكربونات إلى التحليل الكهربائي في فلوريد الهيدروجين، ومن ثمّ المعالجة عن طريق عملية فاولر بمادّة فلورية صلبة مثل فلوريد الكوبالت الثلاثي.[30][224]

مواد التثليج

تدعى مواد التثليج الهالوجينية باسم فريونات Freons، وهي تميّز بحرف R يوضع بعده أرقام تشير إلى عدد ذرّات الفلور والكلور والكربون والهيدروجين الموجودة في البنية.[44][225] كانت مركبات كلوروفلوروكربون (CFCs) مثل ثلاثي كلورو فلورو الميثان (R-11) وثنائي كلورو ثنائي فلورو الميثان (R-12) و 2،1-ثنائي كلورو رباعي فلورو الإيثان (R-114) مسيطرة على صناعة الفلور الكيميائية للطلب الكبير عليها في صناعة البرّادات وأجهزة التكييف وكمواد ترذيذ، وبلغت هذه الصناعة ذروتها في ثمانينات القرن العشرين، قبل أن تضمحلّ بسبب الحظر العالمي المطبّق بعد اتفاقية مونتريال.[44] كبديل أكثر أماناً يستخدم حالياً مركبات هيدروكلوروفلوروكربون (HCFCs) وهيدروفلوروكربون (HFCs)، والتي يتطلّب اصطناعها استهلاك حوالي 90% من الفلور في الصناعات الكيميائية العضوية. من مركبات HCFCs المهمّة مركب كلورو ثنائي فلورو الميثان (R-22) و 1،1-ثنائي كلورو-1-فلورو الإيثان (R-141b). أما بالنسبة لمركّبات HFC فأشهرها 2،1،1،1-رباعي فلورو الإيثان (R-134a)،[44] بالإضافة إلى 3،3،3،2-رباعي فلورو البروبين (HFO-1234yf) الذي له خواص بيئية جيّدة نسبياً.[211]

البوليميرات
قطعة من قماش معالجة بمواد فلورية فعالة بالسطح والتي تكون كارهة للماء عادةً.

أنتج حوالي 180 ألف طن متري من البوليميرات الفلورية بين عامي 2006 و 2007، والتي جلبت عائدات فاقت 3.5 بليون دولار سنوياً.[226] قُدّرت عائدات السوق العالمي بحوالي 6 بليون دولار سنة 2011، ويتوقّع لها أن تنمو بنسبة 6.5% سنوياً حتى سنة 2016.[227]

لا يمكن الحصول على البوليميرات الفلورية إلّا عن طريق بلمرة الجذور الحرة.[172] يمثّل متعدد رباعي فلورو الإيثيلين (PTFE)، أو كما يعرف بالاسم التجاري تيفلون Teflon التابع لشركة دوبونت،[228] ما قيمته حوالي 60–80% وزناً من الإنتاج العالمي للبوليميرات الفلورية.[226] إن أكبر تطبيق للتيفلون هو في العزل الكهربائي، كما يستخدم كمادة تبطين خاملة في الصناعات الكيميائية عندما يتطلّب الأمر مقاومة للتآكل وذلك للمفاعلات أو تمديدات الأنابيب. من التطبيقات الأخرى استخدامه كطبقة مانعة للالتصاق في أواني الطبخ،[228] وكمادّة دافعة للماء في أقمشة غور-تكس Gore-Tex المستخدمة في صناعة الواقيات المطرية ومعدات الوقاية الشخصية، بالإضافة إلى تطبيقات ميكانيكية أخرى.[228] أجريت تحويرات عديدة على هذا البوليمير بحيث أصبح من الممكن الحصول على ميّزات جديدة، فمثلاً استخدمت طبقتين رقيقتين من اثنين من البوليميرات الفلورية محل الزجاج في بعض الخلايا الشمسية.[228][229]

تستخدم الوحدات الأيونية (أيونومير) المفلورة والثابتة كيميائياً في صناعة أغشية الخلايا الكهركيميائية وأشهرها مادة النافيون Nafion، والتي طوّرت في ستّينات القرن العشرين، واستعملت بادئ الأمر في صناعة خلايا الوقود في المركّبات الفضائية، ومن ثم حلّت محلّ خلايا عملية الكلور القلوي ذات الأساس المبني على الزئبق. تدخل مركّبات الفلور العضوية أيضاً في صناعة المطاط الاصطناعي والبوليميرات المرنة مثل منتجات Viton، والتي هي مزيج من بوليميرات فلورية متشابكة تستخدم في صناعة الحلقات المستديرة.[228]

معالجة السطوح

المواد الفلورية الفعّالة بالسطح هي مواد عضوية فلورية صغيرة ذات فدرة على دفع الماء والبقع، ومن أشهر من سوّقها شركة ثري إم الأمريكية باسم المنتج Scotchgard، والذي حقّق مبيعات فاقت 300 مليون دولار سنة 2000.[220][230][231] بالإضافة إلى ذلك، يمكن معالجة سطوح اللدائن بالفلور ممّا يعطيها طاقة سطح أعلى، وخصوصاً بالنسبة اللدائن المدعّمة بألياف والتي يعطيها تماسكاً أكبر، ويقلّل من الاحتكاك؛ كما تزيد فلورة السطوح من الانتقائية في تقنية الأغشية.[232]

الكيماويات الزراعية

إنّ حوالي 30% من الكيماويات الزراعية تحوي على عنصر الفلور في تركيبها،[233] وأغلبها مبيدات للأعشاب وللفطريات، مع وجود قلّة من الهرمونات النباتية. إنّ إقحام مجموعات الفلور العضوية في هذه الكيماويات يؤدّي إلى إطالة مدة المكث الحيوي، كما أنّها تتميّز بقدرتها على اختراق الأغشية وعلى تغيير التعرّف الجزيئي.[234] من الأمثلة الشهيرة عليها مستحضر تريفلورالين المبيد للأعشاب الضارّة،[234][235] والذي ينتشر استخدامه في الولايات المتّحدة، ولكنّه محظور في عدّة دول أوروبية، إذ يشكّ بأنّه مادّة مسرطنة.[236] يعدّ فلوروأسيتات الصوديوم (1080) مادّة سامّة للثدييات، حيث يعمل على الإخلال باستقلاب الخلايا بدخوله محلّ الأسيتات في دورة حمض الستريك. اصطنع هذا المركب لأوّل مرّة في أواخر القرن التاسع عشر، واستخدم كمبيد حشري في أوائل القرن العشرين، لكنّه ممنوع من الاستخدام في كل من الولايات المتّحدة وأوروبا،[195][237]. وتعد نيوزيلندا أكبر مستهلك حالي لهذه المادّة، إذ تستخدمه لحماية طيور الكيوي من حيوانات بوسوم كث الذيل الأسترالية.[238]

التطبيقات الطبية[عدل]

العقاقير الصيدلانية[عدل]

كبسولات دوائية لعقار فلوكسيتين.

يقدّر تقريباً أنّ حوالي 20% من الأدوية الصيدلانية الحديثة تحوي الفلور في تركيبها.[239] يتم فلورة العقاقير من أجل تأخير تثبيطها ومن أجل تطويل مدّة الجرعات ما أمكن، حيث أنّ رابطة كربون-فلور قويّة جدّاً ومستقرّة.[240] تزيد عملية الفلورة أيضاً من جعل العقار محبّاً للدهن، لأنّ الرابطة كارهة للماء بشكل أكبر من الرابطة بين الكربون والهيدروجين، ممّا يساعد في اختراق غشاء الخلية، وبالتالي يصبح التوافر الحيوي ممكناً.[241]

من الأمثلة على هذه الأدوية عقار أتورفاستاتين المخفّض للكوليسترول، والذي حقّق مبيعه عائدات كبيرة قبل أن تنتهي حقوق ملكية اصطناعه ويصبح بالإمكان إنتاج أدوية مكافئة له؛[242] ومن الأمثلة الأخرى أيضاً عقار فلوتيكازون،[241] وكذلك عقار فلوكسيتين المستخدم كمضاد اكتئاب والذي تميّز بخلوّه من الآثار الجانبية التي كانت تسبّبها أدوية مضادات الاكتئاب ثلاثية الحلقات في السابق. في الوقت الراهن هناك عدّة عقاقير فلورية مضادّة للاكتئاب بما فيها مثبطات استرداد السيروتونين الانتقائية: سيتالوبرام ومصاوغه إسيتالوبرام وفلوفوكسامين وباروكسيتين.[243][244] تعدّ مركّبات الكينولون من المضادّات الحيوية واسعة الطيف، والتي غالباً ما يتمّ فلورتها من أجل تحسين أثرها، ومن أمثلتها سيبروفلوكساسين وليفوفلوكساسين.[245][246][247][248]

للفلور أيضاً وجوده في الستيرويدات:[249] فعقار فلودروكورتيزون عبارة عن مينيرالوكورتيكويد رافع لضغط الدم، وتريامسينولون وديكساميتازون عبارة عن ستيرويدات غلوكوكورتيكويد.[250] إنّ أغلب المواد المخدّرة المستنشقة طبّياً تكون مفلورة بشكل كبير، ومن أمثلتها هالوثان، بالإضافة إلى الإيثرات المفلورة مثل سيفوفلوران وديسفلوران، والتي هي أفضل من الهالوثان، وهي تقريباً غير منحلّة في الدمّ، ممّا يتيح فترة إيقاظ أسرع.[251][252]

التصوير المقطعي PET[عدل]

تصوير مقطعي لإنسان وإظهار الأعضاء بواسطة 18F كمادّة اقتفاء.

يستخدم الفلور-18 في تركيب مواد الاقتفاء المشعة من أجل التصوير المقطعي بالإصدار البوزيتروني PET، إذ أنّ عمر النصف لهذا النظير يبلغ حوالي ساعتين، وهي مدّة كافية لإجراء عملية التصوير وتحضيراتها.[253] أشهر مواد الاقتفاء المشعة الفلورية هو مركب فلوروديوكسي غلوكوز،[253] والذي يعطى عبر حقنة وريدية، حيث يمتصّ من أعضاء الجسم وأنسجته المتطلّبة للسكر مثل الدماغ والخلايا في مكان وجود الأورام الخبيثة؛[254] وبعد الكشف يمكن بعد ذلك استعمال التصوير المقطعي المحوسب من أجل تصوير أكثر دقّة وتفصيلاً.[255]

حمل الأكسجين[عدل]

يمكن لمركّبات فلوروكربون السائلة أن تحمل كمّيّات كبيرة من الأكسجين أو ثنائي أكسيد الكربون بشكل أكبر من الدم، ولفتت هذه الخاصّية الانتباه إلى إمكانية استخدام نظرية في تنفس السائل.[256] بما أنّ مركّبات فلوروكريون لا تمتزج مع الماء، فينبغي لذلك إضافة مستحلبات لاستخدامها كبديل للدمّ.[257][258] كمثال على هذه المواد الحاملة للأكسجين مركّب Oxycyte،[259] إلّا أنّ هذه المواد محظورة الاستخدام في الأنشطة الرياضية إذ تعدّ ضمن المنشطات الممنوعة، وقد جرى تحقيق سنة 1998 على أحد الدرّاجين الذي قارب الوفاة بسبب تعاطي مثل هذه المواد غير المشروعة.[260][261]

من التطبيقات للمواد الفلورية حاملة الأكسجين استخدامها في الحالات الطارئة لمساعدة المصابين بحروق شديدة ولمساعدة الأطفال الخدّج الذين يعانون من مشاكل في التنفّس بسبب عجز الرئتين عن أداء وظيفتها،[262] إلاّ أنّ مثل هذه المواد لم يصل بعد إلى مرحلة التجارب السريرية لأنّ النتائج لم تكن أفضل من وسائل العلاج العادية.[263]

احتياطات الأمان[عدل]

إنّ الفلور العنصري عالي السمّية بالنسبة للكائنات الحيّة، ويبدأ تأثيره على الإنسان من تراكيز أدنى من تأثير سيانيد الهيدروجين، وهو بحدود 50 جزء في المليون (ppm)،[264] وهو قريب من التراكيز المؤثّرة لغاز الكلور السامّ أيضاً.[265] تحدث تهيّجات خطيرة للعينين وللجهاز التنفّسي بالإضافة إلى أضرار في الكبد والكليتين عند تراكيز أعلى من 25 جزء في المليون (ppm)، والتي تعدّ قيمة تركيز الفلور ذات الخطورة الفورية للحياة أو الصحة (IDLH).[266][267] تتأذّى العينان والأنف بشكل كبير عند تراكيز تصل إلى 100 ppm، أمّا استنشاق غاز الفلور عند تركيز 1000 ppm فسوف يسبب الموت خلال دقائق معدودة،[268] وذلك بالمقارنة مع 270 ppm لسيانيد الهيدروجين.[269]

حروق كيميائية خطيرة وشديدة بسبب حمض هيدروفلوريك.[270]

يؤدّي التماس مع حمض هيدروفلوريك HF إلى حروق كيميائية شديدة، وذلك بشكل أكبر من الأحماض القويّة مثل حمض الكبريتيك على الرغم من ضعفه، حيث يبقى معتدلاً في المحاليل المائية، وبالتالي يخترق الأنسجة بشكل أسرع، سواء عبر الاستنشاق أو الابتلاع أو التماس عبر الجلد، حيث يتفاعل مع المغنسيوم أو الكالسيوم في الدم مسبّباً حدوث نقص كالسيوم الدم ووفاة محتملة بسبب اضطراب النظم القلبي.[271] يؤدّي تشكّل فلوريد الكالسيوم غير المنحل إلى آلام مبرّحة،[272] ويمكن أن تسبّب الحروق الأكبر من 160 سم2 سمّيّة خطيرة للأعضاء.[273] بالإضافة إلى ذلك، يستطيع HF أن يشكّل روابط هيدروجينية قويّة، وبالتالي بإمكانه تغيير البنية الرابعية للبروتينات.[274] في حال تعرّض الجلد إلى HF فإنّه يمكن تخفيف الضرر بشطفه بتيّار من الماء لمدة 10-15 دقيقة وبالتخلّص من الملابس الملوّثة.[275] يمكن إضافة غلوكونات الكالسيوم بعد ذلك من أجل توفير أيونات الكالسيوم كي يتاح لها الارتباط مع الفلوريد، وذلك على شكل جل 2.5% أو محاليل معالجة خاصّة.[276][277][278] في أسوأ الأحوال قد يتطلّب الأمر بتر العضو المصاب.[273][279]

تعدّ الفلوريدات المنحلة متوسّطة السمّية، إذ يتراوح المجال بين 32-64 مغ أيون فلوريد لكل كيلوغرام من كتلة الجسم، وهي تمثّل الجرعة القاتلة بالنسبة للبالغين.[280] إنّ مقدار الخُمس من هذه الجرعة القاتلة يمكن أن يسبب العديد من الآثار السلبية على صحة الجسم،[281] كما أنّ التعرّض المزمن لجرعات زائدة يمكن أن يؤدّي إلى حدوث حالة تسمم هيكلي بالفلور، والتي تصيب عدداً كبيراً من الأشخاص في آسيا وأفريقيا.[281][282] توضع حدود التعرّض للفلوريد بإجراء فحص للبول وذلك لمعرفة قدرة الجسم على التخلّص من أيونات الفلوريد.[281][283] إنّ أغلب حالات التسمم بالفلوريد المسجلّة تاريخياً كانت بسبب الابتلاع غير المقصود للمبيدات الحشرية الحاوية على فلوريدات غير عضوية.[284] وقد سجّلت بعض الحوادث المتفرقة بسبب ابتلاع معاجين الأسنان الحاوية على الفلوريد،[281] أو بسبب عطل فني في أجهزة فلورة المياه مثلما حدث في ألاسكا، والذي أودى بحياة شخص وأصاب 300 آخرين.[285] تنصح مراكز مكافحة الأمراض واتقائها الأمريكية بمصاحبة الأطفال دون السادسة أثناء تنظيفهم لأسنانهم كي لا يبتلعوا معاجين الأسنان.[286] وقد سجّلت دراسة محلّية في الولايات المتحدة حدوث 87 حالة تسمّم بالفلوريد على مدار سنة كاملة، معظمها دون أعراض، و30% منها كانت مترافقة بآلام في المعدة.[284] وقد بيّنت دراسة شملت كامل الولايات أنّ 80% من الحالات كانت لأطفال دون السادسة، ولم يكن هناك إلا بضعة حالات خطيرة فقط.[287]

المراجع[عدل]

  1. ^ أ ب Compressed Gas Association, p. 365.
  2. ^ أ ب ت ث ج Haynes 2011, p. 4.121.
  3. ^ أ ب ت ث Jaccaud et al. 2000, p. 382.
  4. ^ أ ب ت ث Jaccaud et al. 2000, p. 381.
  5. ^ أ ب ت Dean 1999, p. 4.6.
  6. ^ Dean 1999, p. 4.35.
  7. ^ Matsui 2006, p. 257.
  8. ^ Mackay, Mackay & Henderson 2002, p. 72.
  9. ^ Cheng et al. 1999.
  10. ^ Yaws & Braker 2001, p. 385.
  11. ^ Greenwood & Earnshaw 1998, p. 790.
  12. ^ Senning 2007, p. 149.
  13. ^ أ ب Norwood & Fohs 1907, p. 52.
  14. ^ Greenwood & Earnshaw 1998, p. 109.
  15. ^ Agricola, Hoover & Hoover 1912, preface, pp. 380–381.
  16. ^ أ ب ت ث ج Weeks 1932.
  17. ^ Partington 1923.
  18. ^ Marggraf 1770.
  19. ^ أ ب ت ث ج ح خ Kirsch 2004, pp. 3–10.
  20. ^ Scheele 1771.
  21. ^ Ampère 1816.
  22. ^ Davy 1813, p. 278.
  23. ^ Banks 1986, p. 11.
  24. ^ أ ب Storer 1864, pp. 278–280.
  25. ^ أ ب ت ث Toon 2011.
  26. ^ أ ب Asimov 1966, p. 162.
  27. ^ Greenwood & Earnshaw 1998, pp. 789–791.
  28. ^ Moissan 1886.
  29. ^ Viel & Goldwhite 1993, p. 35.
  30. ^ أ ب ت ث Okazoe 2009.
  31. ^ أ ب Hounshell & Smith 1988, pp. 156–157.
  32. ^ DuPont 2013a.
  33. ^ Meyer 1977, p. 111.
  34. ^ E. Karr: Elemental fluorine. I. G. Farbenindustrie Leverkusen. In: FIAT final report 838, 15. Juni 1946.
  35. ^ Kirsch 2004, pp. 60–66.
  36. ^ Cameron 1973.
  37. ^ أ ب ت Croswell 2003.
  38. ^ Clayton 2003, pp. 101–104.
  39. ^ Renda et al. 2004.
  40. ^ أ ب Jaccaud et al. 2000, p. 384.
  41. ^ Schulze-Makuch & Irwin 2008, p. 121.
  42. ^ Haxel, Hedrick & Orris 2005.
  43. ^ أ ب ت ث ج Greenwood & Earnshaw 1998, p. 795.
  44. ^ أ ب ت ث ج ح خ د ذ ر ز س ش Villalba, Ayres & Schroder 2008.
  45. ^ Kelly & Miller 2005.
  46. ^ Lusty et al. 2008.
  47. ^ أ ب Gribble 2002.
  48. ^ Richter, Hahn & Fuchs 2001, p. 3.
  49. ^ أ ب Schmedt, Mangstl & Kraus 2012.
  50. ^ Miller 2003b.
  51. ^ PRWeb 2012.
  52. ^ Bombourg 2012.
  53. ^ TMR 2013.
  54. ^ Jaccaud et al. 2000, p. 386.
  55. ^ Jaccaud et al. 2000, pp. 384–285.
  56. ^ Greenwood & Earnshaw 1998, pp. 796–797.
  57. ^ Jaccaud et al. 2000, pp. 384–385.
  58. ^ Jaccaud et al. 2000, pp. 390–391.
  59. ^ Shriver & Atkins 2010, p. 427.
  60. ^ Christe 1986.
  61. ^ Christe Research Group n.d.
  62. ^ Carey 2008, p. 173.
  63. ^ National Nuclear Data Center NuDat 2.1, Fluorine-19.
  64. ^ Vigoureux 1961.
  65. ^ Meusinger, Chippendale & Fairhurst 2012, pp. 752, 754.
  66. ^ أ ب National Nuclear Data Center NuDat 2.1.
  67. ^ Audi، G.؛ Bersillon، O.؛ Blachot، J.؛ Wapstra، A. H. (2003)، "The NUBASE evaluation of nuclear and decay properties" (PDF)، Nucl. Phys. A، 729: 3–128، Bibcode:2003NuPhA.729....3A، doi:10.1016/j.nuclphysa.2003.11.001 
  68. ^ Burdon, Emson & Edwards 1987.
  69. ^ Lide 2004, p. 4.12.
  70. ^ أ ب Dean 1999, p. 523.
  71. ^ J. Burdon, B. Emson, A. J. Edwards: Is fluorine gas really yellow? in: J. Fluorine Chem 34, 1987, S. 471–474.
  72. ^ A. F. Holleman, E. Wiberg, N. Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage. de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 214.
  73. ^ T. Jordan, W. Streib, W. Lipscomb: Single Crystal X-Ray Diffraction Study of β-Fluorine. In: Journal of technical physics 41, Nr. 3, 1964, S. 760–764.
  74. ^ Bürgi 2000.
  75. ^ Müller 2009.
  76. ^ أ ب Young 1975, p. 10.
  77. ^ أ ب Barrett, Meyer & Wasserman 1967.
  78. ^ Pauling, Keaveny & Robinson 1970.
  79. ^ L. Pauling, I. Keaveny, and A. B. Robinson: The Crystal Structure of α-Fluorine. In: Journal of solid state chemistry. 2, 1970, S. 225–221.
  80. ^ Dean 1999, p. 564.
  81. ^ Lide 2004, pp. 10.137–10.138.
  82. ^ Moore, Stanitski & Jurs 2010, p. 156.
  83. ^ Cordero et al. 2008.
  84. ^ Pyykkö & Atsumi 2009.
  85. ^ أ ب Greenwood & Earnshaw 1998, p. 804.
  86. ^ Macomber 1996, p. 230
  87. ^ Nelson 1947.
  88. ^ أ ب George Hamilton Cady: Reaction of Fluorine with Water and with Hydroxides. In: Journal of the American Chemical Society. 57, 1935, S. 246–249, doi:10.1021/ja01305a006.
  89. ^ Pitzer 1975.
  90. ^ أ ب Khriachtchev et al. 2000.
  91. ^ Lidin, Molochko & Andreeva 2000, pp. 442–455.
  92. ^ أ ب Wiberg, Wiberg & Holleman 2001, p. 404.
  93. ^ Patnaik 2007, p. 472.
  94. ^ Aigueperse et al. 2000, p. 400.
  95. ^ Kuriakose & Margrave 1965.
  96. ^ Hasegawa et al. 2007.
  97. ^ Lagow 1970, pp. 64–78.
  98. ^ Navarrini et al. 2012.
  99. ^ Greenwood & Earnshaw 1998, pp. 76, 804.
  100. ^ Lidin, Molochko & Andreeva 2000, p. 252.
  101. ^ Tanner Industries 2011.
  102. ^ Morrow, Perry & Cohen 1959.
  103. ^ Emeléus & Sharpe 1974, p. 111.
  104. ^ Wiberg, Wiberg & Holleman 2001, p. 457.
  105. ^ Brantley 1949, p. 26.
  106. ^ Jaccaud et al. 2000, p. 383.
  107. ^ Riedel & Kaupp 2009.
  108. ^ Harbison 2002.
  109. ^ Edwards 1994, p. 515.
  110. ^ Pauling 1960, pp. 454–464.
  111. ^ Atkins & Jones 2007, pp. 184–185.
  112. ^ Emsley 1981.
  113. ^ Greenwood & Earnshaw 1998, pp. 812–816.
  114. ^ Wiberg, Wiberg & Holleman 2001, p. 425.
  115. ^ Clark 2002.
  116. ^ Chambers & Holliday 1975, pp. 328–329.
  117. ^ Katakuse et al. 1999, p. 267.
  118. ^ أ ب Aigueperse et al. 2000, pp. 420–422.
  119. ^ Walsh 2009, pp. 99–102, 118–119.
  120. ^ Emeléus & Sharpe 1983, pp. 89–97.
  121. ^ Babel & Tressaud 1985, pp. 91–96.
  122. ^ Einstein et al. 1967.
  123. ^ Brown et al. 2005, p. 144.
  124. ^ أ ب Perry 2011, p. 193.
  125. ^ Kern et al. 1994.
  126. ^ Lide 2004, pp. 4.60, 4.76, 4.92, 4.96.
  127. ^ Lide 2004, p. 4.96.
  128. ^ Lide 2004, p. 4.92.
  129. ^ Greenwood & Earnshaw 1998, p. 964.
  130. ^ Becker & Müller 1990.
  131. ^ Greenwood & Earnshaw 1998, p. 990.
  132. ^ Lide 2004, pp. 4.72, 4.91, 4.93.
  133. ^ أ ب Greenwood & Earnshaw 1998, pp. 561–563.
  134. ^ Emeléus & Sharpe 1983, pp. 256–277.
  135. ^ Mackay, Mackay & Henderson 2002, pp. 355–356.
  136. ^ Greenwood & Earnshaw 1998, (various pages, by metal in respective chapters).
  137. ^ Lide 2004, pp. 4.71, 4.78, 4.92.
  138. ^ Drews et al. 2006.
  139. ^ Greenwood & Earnshaw 1998, p. 819.
  140. ^ Bartlett 1962.
  141. ^ Noury, Silvi & Gillespie 2002.
  142. ^ Chang & Goldsby 2013, p. 706.
  143. ^ Ellis 2001, p. 69.
  144. ^ Aigueperse et al. 2000, p. 423.
  145. ^ Wiberg, Wiberg & Holleman 2001, p. 897.
  146. ^ Raghavan 1998, pp. 164–165.
  147. ^ Godfrey et al. 1998, p. 98.
  148. ^ Aigueperse et al. 2000, p. 432.
  149. ^ Murthy, Mehdi Ali & Ashok 1995, pp. 180–182, 206–208.
  150. ^ Greenwood & Earnshaw 1998, pp. 638–640, 683–689, 767–778.
  151. ^ Wiberg, Wiberg & Holleman 2001, pp. 435–436.
  152. ^ Greenwood & Earnshaw 1998, pp. 828–830.
  153. ^ Patnaik 2007, pp. 478–479.
  154. ^ Moeller, Bailar & Kleinberg 1980, p. 236.
  155. ^ Wiberg, Wiberg & Holleman 2001, pp. 392–393.
  156. ^ Wiberg, Wiberg & Holleman 2001, p. 395–397, 400.
  157. ^ Lewars 2008, p. 68.
  158. ^ Pitzer 1993, p. 111.
  159. ^ Lewars 2008, p. 67.
  160. ^ Bihary, Chaban & Gerber 2002.
  161. ^ Lewars 2008, p. 71.
  162. ^ O'Hagan 2008.
  163. ^ Siegemund et al. 2005, p. 444.
  164. ^ Sandford 2000, p. 455.
  165. ^ Siegemund et al. 2005, pp. 451–452.
  166. ^ Barbee, McCormack & Vartanian 2000, p. 116.
  167. ^ Posner et al. 2013, pp. 187–190.
  168. ^ Posner 2011, p. 27.
  169. ^ Salager 2002, p. 45.
  170. ^ Tetrabutylammonium-Salze. In: Römpp Online. Georg Thieme Verlag
  171. ^ Hoogers 2004, pp. 4–12.
  172. ^ أ ب Carlson & Scmiegel 2005, p. 3.
  173. ^ أ ب Carlson & Scmiegel 2005, pp. 3–4.
  174. ^ Rhoades 2008, p. 2.
  175. ^ Okada et al. 1998.
  176. ^ Carlson & Scmiegel 2005, p. 4.
  177. ^ أ ب Gerhart Jander, E. Blasius: Einführung in das anorganisch-chemische Praktikum. 15. Aufl., S. Hirzel Verlag, Stuttgart 2005, ISBN 3-7776-1364-9.
  178. ^ WHO: Fluoride in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality WHO/SDE/WSH/03.04/96, World Health Organization 2004 (pdf).
  179. ^ Nielsen 2009.
  180. ^ Olivares & Uauy 2004.
  181. ^ W. Kaim, B. Schwederski: Bioanorganische Chemie. 4. Auflage, Teubner, 2005, ISBN 3-519-33505-0.
  182. ^ Pizzo 2007.
  183. ^ L. Stösser, R. Heinrich-Weltzien: Kariesprävention mit Fluoriden, In: Oralprophylaxe und Kinderzahnheilkunde. 29, 2007.
  184. ^ Cem Ekmekcioglu, Wolfgang Marktl: Essentielle Spurenelemente: Klinik und Ernährungsmedizin. Springer, 2006, ISBN 978-3-211-20859-5, S. 142–143.
  185. ^ CDC 2001.
  186. ^ Ripa 1993.
  187. ^ أ ب Cheng, Chalmers & Sheldon 2007.
  188. ^ Gesundheitsdepartement Basel-Stadt: Umstellung von der Trinkwasser- zur Salzfluoridierung in Basel. Medienmitteilung vom 24. Juni 2003, abgerufen am 5. Dezember 2012.
  189. ^ NHMRC 2007; see Yeung 2008 for a summary.
  190. ^ أ ب Baelum, Sheiham & Burt 2008, p. 518.
  191. ^ Marya 2011, p. 343.
  192. ^ Armfield 2007.
  193. ^ Cracher 2012, p. 12.
  194. ^ أ ب Murphy, Schaffrath & O'Hagan 2003
  195. ^ أ ب Proudfoot, Bradberry & Vale 2006.
  196. ^ O'Hagan et al. 2002.
  197. ^ Schwarcz 2004, p. 37.
  198. ^ Giesy & Kannan 2002.
  199. ^ أ ب ت ث Steenland, Fletcher & Savitz 2010.
  200. ^ أ ب ت ث Betts 2007.
  201. ^ EPA 2012.
  202. ^ Zareitalabad et al. 2013.
  203. ^ أ ب Lau et al. 2007.
  204. ^ Beck et al. 2011.
  205. ^ Aucamp & Björn 2010, pp. 4–6, 41, 46–47.
  206. ^ Crow 2011.
  207. ^ Barry & Phillips 2006.
  208. ^ EPA 2013a.
  209. ^ EPA 2013b.
  210. ^ Forster et al. 2007, pp. 212–213.
  211. ^ أ ب Walter 2013.
  212. ^ أ ب Jaccaud et al. 2000, p. 392.
  213. ^ Aigueperse et al. 2000, p. 430.
  214. ^ Miller 2003a.
  215. ^ Energetics, Inc. 1997, pp. 41, 50.
  216. ^ Aigueperse et al. 2000, p. 428.
  217. ^ Willey 2007, p. 113.
  218. ^ Jaccaud et al. 2000, pp. 391–392.
  219. ^ PRWeb 2010.
  220. ^ أ ب Renner 2006.
  221. ^ El-Kareh 1994, p. 317.
  222. ^ Arana et al. 2007.
  223. ^ Slye 2012, p. 10.
  224. ^ Green et al. 1994, pp. 91–93.
  225. ^ DuPont 2013b.
  226. ^ أ ب Buznik 2009.
  227. ^ PRWeb 2013.
  228. ^ أ ب ت ث ج Martin 2007, pp. 187–194.
  229. ^ DeBergalis 2004.
  230. ^ Kissa 2001, pp. 516–551.
  231. ^ Ullmann 2008, pp. 538, 543–547.
  232. ^ [1], . Tressaud, E. Durand, C. Labrugère, A.P. Kharitonov, L.N. Kharitonova, Modification of surface properties of carbon-based and polymeric materials through fluorination routes: From fundamental research to industrial applications, Journal of Fluorine Chemistry, Volume 128, Issue 4, April 2007, Pages 378-391.
  233. ^ ICIS 2006.
  234. ^ أ ب Theodoridis 2006.
  235. ^ EPA 1996.
  236. ^ DG Environment 2007.
  237. ^ Eisler 1995
  238. ^ Beasley 2002.
  239. ^ Emsley 2011, p. 178.
  240. ^ Hagmann 2008.
  241. ^ أ ب Swinson 2005.
  242. ^ Johnson 2011.
  243. ^ Mitchell 2004, pp. 37–39.
  244. ^ Preskorn 1996, chap. 2.
  245. ^ Werner et al. 2011.
  246. ^ Brody 2012.
  247. ^ Nelson et al. 2007.
  248. ^ King, Malone & Lilley 2000.
  249. ^ Parente 2001, p. 40.
  250. ^ Raj & Erdine 2012, p. 58.
  251. ^ Filler & Saha 2009.
  252. ^ Bégué & Bonnet-Delpon 2008, pp. 335–336.
  253. ^ أ ب Schmitz et al. 2000.
  254. ^ Bustamante & Pedersen 1977.
  255. ^ Alavi & Huang 2007, p. 41.
  256. ^ Gabriel et al. 1996.
  257. ^ Sarkar 2008.
  258. ^ Schimmeyer 2002.
  259. ^ Davis 2006.
  260. ^ Gains 1998.
  261. ^ Taber 1999.
  262. ^ Shaffer, Wolfson & Clark 1992, p. 102.
  263. ^ Kacmarek et al. 2006.
  264. ^ The National Institute for Occupational Safety and Health 1994a.
  265. ^ The National Institute for Occupational Safety and Health 1994b.
  266. ^ Keplinger & Suissa 1968.
  267. ^ "CDC - NIOSH Pocket Guide to Chemical Hazards - Fluorine". www.cdc.gov. اطلع عليه بتاريخ 2015-11-03. 
  268. ^ Emsley 2011, p. 179.
  269. ^ Biller 2007, p. 939.
  270. ^ Eaton 1997.
  271. ^ Blodgett, Suruda & Crouch 2001.
  272. ^ Hoffman et al. 2007, p. 1333.
  273. ^ أ ب HSM 2006.
  274. ^ S. L. Edwards, T. L. Poulos, J. Kraut (1984). "The crystal structure of fluoride-inhibited cytochrome c peroxidase" (PDF). Journal of Biological Chemistry. 259 (21): 12984–12988. 
  275. ^ Fischman 2001, pp. 458–459.
  276. ^ El Saadi et al. 1989.
  277. ^ Roblin et al. 2006.
  278. ^ Hultén et al. 2004.
  279. ^ Zorich 1991, pp. 182–183.
  280. ^ Liteplo et al. 2002, p. 100.
  281. ^ أ ب ت ث Shin & Silverberg 2013.
  282. ^ Reddy 2009.
  283. ^ Baez, Baez & Marthaler 2000.
  284. ^ أ ب Augenstein et al. 1991.
  285. ^ Gessner et al. 1994.
  286. ^ CDC 2013.
  287. ^ Shulman & Wells 1997.


المصادر مرتبة أبجدياً[عدل]

  • Agricola، Georgius؛ Hoover، Herbert Clark؛ Hoover، Lou Henry (1912). De Re Metallica. London: The Mining Magazine. 
  • Aigueperse، J.؛ Mollard، P.؛ Devilliers، D.؛ Chemla، M.؛ Faron، R.؛ Romano، R. E.؛ Cue، J. P. (2000). "Fluorine Compounds, Inorganic". In Ullmann، Franz. Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 397–441. ISBN 3527306730. doi:10.1002/14356007. 
  • Air Products and Chemicals (2004). "Safetygram #39 Chlorine Trifluoride" (PDF). Air Products and Chemicals. تمت أرشفته من الأصل (PDF) في 18 March 2006. اطلع عليه بتاريخ 16 February 2014. 
  • Alavi، Abbas؛ Huang، Steve S. (2007). "Positron Emission Tomography in Medicine: An Overview". In Hayat، M. A. Cancer Imaging, Volume 1: Lung and Breast Carcinomas. Burlington: Academic Press. صفحات 39–44. ISBN 978-0-12-370468-9. 
  • Ampère، André-Marie (1816). "Suite d'une classification naturelle pour les corps simples". Annales de chimie et de physique (باللغة French). 2: 1–5. 
  • Arana، L. R.؛ Mas، N.؛ Schmidt، R.؛ Franz، A. J.؛ Schmidt، M. A.؛ Jensen، K. F. (2007). "Isotropic Etching of Silicon in Fluorine Gas for MEMS Micromachining". Journal of Micromechanics and Microengineering. 17 (2): 384. Bibcode:2007JMiMi..17..384A. doi:10.1088/0960-1317/17/2/026. 
  • Armfield، J. M. (2007). "When Public Action Undermines Public Health: A Critical Examination of Antifluoridationist Literature". Australia and New Zealand Health Policy. 4: 25. PMC 2222595Freely accessible. PMID 18067684. doi:10.1186/1743-8462-4-25. 
  • Asimov، Isaac (1966). The Noble Gases. New York: Basic Books. ISBN 978-0-465-05129-8. 
  • Atkins، Peter؛ Jones، Loretta (2007). Chemical Principles: The Quest for Insight (الطبعة 4th). New York: W. H. Freeman. ISBN 978-1-4292-0965-6. 
  • Aucamp، Pieter J.؛ Björn، Lars Olof (2010). "Questions and Answers about the Environmental Effects of the Ozone Layer Depletion and Climate Change: 2010 Update" (PDF). United Nations Environmental Programme. اطلع عليه بتاريخ 14 October 2013. 
  • Augenstein، W. L.؛ وآخرون. (1991). "Fluoride Ingestion in Children: A Review of 87 cases". Pediatrics. 88 (5): 907–912. PMID 1945630. 
  • Babel، Dietrich؛ Tressaud، Alain (1985). "Crystal Chemistry of Fluorides". In Hagenmuller، Paul. Inorganic Solid Fluorides: Chemistry And Physics. Orlando: Academic Press. صفحات 78–203. ISBN 978-0-12-412490-5. 
  • Baelum، Vibeke؛ Sheiham، Aubrey؛ Burt، Brian (2008). "Caries Control for Populations". In Fejerskov، Ole؛ Kidd، Edwina. Dental Caries: The Disease and Its Clinical Management (الطبعة 2nd). Oxford: Blackwell Munksgaard. صفحات 505–526. ISBN 978-1-4051-3889-5. 
  • Baez, Ramon J.؛ Baez, Martha X.؛ Marthaler, Thomas M. (2000). "Urinary Fluoride Excretion by Children 4–6 Years Old in a South Texas Community". Revista Panamericana de Salud Pública. 7 (4): 242–248. doi:10.1590/S1020-49892000000400005. 
  • Banks، R. E. (1986). "Journal of Fluorine Chemistry". Journal of Fluorine Chemistry. 33 (1–4): 3–26. doi:10.1016/S0022-1139(00)85269-0. 
  • Barbee، K.؛ McCormack، K.؛ Vartanian، V. (2000). "EHS Concerns with Ozonated Water Spray Processing". In Mendicino، L. Environmental Issues in the Electronics and Semiconductor Industries. Pennington, NJ: The Electrochemical Society. صفحات 108–121. ISBN 978-1-56677-230-3. 
  • Barrett، C. S.؛ Meyer، L.؛ Wasserman، J. (1967). "Argon—Fluorine Phase Diagram". The Journal of Chemical Physics. 47 (2): 740–743. Bibcode:1967JChPh..47..740B. doi:10.1063/1.1711946. 
  • Barry، Patrick L.؛ Phillips، Tony (26 May 2006). "Good News and a Puzzle". National Aeronautics and Space Administration. اطلع عليه بتاريخ 6 January 2012. 
  • Bartlett، N. (1962). "Xenon Hexafluoroplatinate (V) Xe+[PtF6]". Proceedings of the Chemical Society (6): 218. doi:10.1039/PS9620000197. 
  • Beasley، Michael (August 2002). "Guidelines for the safe use of sodium fluoroacetate (1080)" (PDF). Wellington: Occupational Safety & Health Service, Department of Labour (New Zealand). ISBN 0-477-03664-3. اطلع عليه بتاريخ 11 November 2013. 
  • Beck، Jefferson؛ Newman، Paul؛ Schindler، Trent L.؛ Perkins، Lori (2011). "What Would have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?". National Aeronautics and Space Administration. اطلع عليه بتاريخ 15 October 2013. 
  • Becker، S.؛ Müller، B. G. (1990). "Vanadium Tetrafluoride". Angewandte Chemie International Edition in English. 29 (4): 406. doi:10.1002/anie.199004061. 
  • Bégué، Jean-Pierre؛ Bonnet-Delpon، Danièle (2008). Bioorganic and Medicinal Chemistry of Fluorine. Hoboken: John Wiley & Sons. ISBN 978-0-470-27830-7. 
  • Betts، K. S. (2007). "Perfluoroalkyl Acids: What is the Evidence Telling Us?". Environmental Health Perspectives. 115 (5): A250–A256. PMC 1867999Freely accessible. PMID 17520044. doi:10.1289/ehp.115-a250. 
  • Bihary، Z.؛ Chaban، G. M.؛ Gerber، R. B. (2002). "Stability of a Chemically Bound Helium Compound in High-pressure Solid Helium". The Journal of Chemical Physics. 117 (11): 5105–5108. Bibcode:2002JChPh.117.5105B. doi:10.1063/1.1506150. 
  • Biller، José (2007). Interface of Neurology and Internal Medicine (الطبعة illustrated). Philadelphia: Lippincott Williams & Wilkins. ISBN 0-7817-7906-5. 
  • Blodgett، D. W.؛ Suruda، A. J.؛ Crouch، B. I. (2001). "Fatal Unintentional Occupational Poisonings by Hydrofluoric Acid in the U.S" (PDF). American Journal of Industrial Medicine. 40 (2): 215–220. PMID 11494350. doi:10.1002/ajim.1090. 
  • Bombourg، Nicolas (4 July 2012). "World Fluorochemicals Market, Freedonia". Reporterlinker. اطلع عليه بتاريخ 20 October 2013. 
  • Brantley، L. R. (1949). المحررون: Squires، Roy؛ Clarke، Arthur C. "Fluorine". Pacific Rockets: Journal of the Pacific Rocket Society. South Pasadena: Sawyer Publishing/Pacific Rocket Society Historical Library. 3 (1): 11–18. ISBN 978-0-9794418-5-1. 
  • Brody، Jane E. (10 September 2012). "Popular Antibiotics May Carry Serious Side Effects". The New York Times Well Blog. اطلع عليه بتاريخ 18 October 2013. 
  • Brown، Paul L.؛ Mompean، Federico J.؛ Perrone، Jane؛ Illemassène، Myriam (2005). Chemical Thermodynamics of Zirconium. Amsterdam: Elsevier B. V. ISBN 978-0-444-51803-3. 
  • Burdon، J.؛ Emson، B.؛ Edwards، A. J. (1987). "Is Fluorine Gas Really Yellow?". Journal of Fluorine Chemistry. 34 (3–4): 471. doi:10.1016/S0022-1139(00)85188-X. 
  • Bürgi، H. B. (2000). "Motion and Disorder in Crystal Structure Analysis: Measuring and Distinguishing them" (PDF). Annual Review of Physical Chemistry. 51: 275–296. Bibcode:2000ARPC...51..275B. PMID 11031283. doi:10.1146/annurev.physchem.51.1.275. 
  • Burney، H. (1999). "Past, Present and Future of the Chlor-Alkali Industry". In Burney، H. S.؛ Furuya، N.؛ Hine، F.؛ Ota، K.-I. Chlor-Alkali and Chlorate Technology: R. B. MacMullin Memorial Symposium. Pennington: The Electrochemical Society. صفحات 105–126. ISBN 1-56677-244-3. 
  • Bustamante، E.؛ Pedersen، P. L. (1977). "High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase". Proceedings of the National Academy of Sciences. 74 (9): 3735–3739. Bibcode:1977PNAS...74.3735B. PMC 431708Freely accessible. PMID 198801. doi:10.1073/pnas.74.9.3735. 
  • Buznik، V. M. (2009). "Fluoropolymer Chemistry in Russia: Current Situation and Prospects". Russian Journal of General Chemistry. 79 (3): 520–526. doi:10.1134/S1070363209030335. 
  • Cameron، A. G. W. (1973). "Abundance of the Elements in the Solar System" (PDF). Space Science Review. 15: 121–146. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440. 
  • Carey، Charles W. (2008). African Americans in Science. Santa Barbara: ABC-CLIO. ISBN 978-1-85109-998-6. 
  • Carlson، D. P.؛ Schmiegel، W. (2000). "Fluoropolymers, Organic". In Ullmann، Franz. Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 495–533. ISBN 3527306730. doi:10.1002/14356007.a11_393. 
  • Centers for Disease Control and Prevention (2001). "Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States". MMWR Recommendations and Reports. 50 (RR–14): 1–42. PMID 11521913. اطلع عليه بتاريخ 14 October 2013. 
  • Centers for Disease for Control and Prevention (10 July 2013). "Community Water Fluoridation". اطلع عليه بتاريخ 25 October 2013. 
  • Chambers، C.؛ Holliday، A. K. (1975). Modern Inorganic Chemistry: An Intermediate Text (PDF). London: Butterworth & Co. ISBN 978-0-408-70663-6. 
  • Chang، Raymond؛ Goldsby، Kenneth A. (2013). Chemistry (الطبعة 11th). New York: McGraw-Hill. ISBN 978-0-07-131787-0. 
  • Cheng، H.؛ Fowler، D. E.؛ Henderson، P. B.؛ Hobbs، J. P.؛ Pascolini، M. R. (1999). "On the Magnetic Susceptibility of Fluorine". The Journal of Physical Chemistry A. 103 (15): 2861–2866. doi:10.1021/jp9844720. 
  • Cheng، K. K.؛ Chalmers، I.؛ Sheldon، T. A. (2007). "Adding Fluoride to Water Supplies" (PDF). BMJ. 335 (7622): 699–702. PMC 2001050Freely accessible. PMID 17916854. doi:10.1136/bmj.39318.562951.BE. 
  • Chisté، V.؛ Bé، M. M. (2011). "F-18". In Bé, M. M.؛ Coursol, N.؛ Duchemin, B.؛ Lagoutine, F.؛ وآخرون. Table de radionucléides (PDF) (Report). CEA (Commissariat à l'énergie atomique et aux énergies alternatives), LIST, LNE-LNHB (Laboratoire National Henri Becquerel/Commissariat à l'Energie Atomique). اطلع عليه بتاريخ 15 June 2011. 
  • Christe، Karl O. (1986). "Chemical Synthesis of Elemental Fluorine". Inorganic Chemistry. 25 (21): 3721–3722. doi:10.1021/ic00241a001. 
  • Christe Research Group (n.d.). "Chemical Synthesis of Elemental Fluorine:". اطلع عليه بتاريخ 12 January 2013. 
  • Clark، Jim (2002). "The Acidity of the Hydrogen Halides". chemguide.co.uk. اطلع عليه بتاريخ 15 October 2013. 
  • Clayton، Donald (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. New York: Cambridge University Press. ISBN 978-0-521-82381-4. 
  • Compressed Gas Association (1999). Handbook of Compressed Gases (الطبعة 4th). Boston: Kluwer Academic Publishers. ISBN 978-0-412-78230-5. 
  • Cordero، B.؛ Gómez، V.؛ Platero-Prats، A. E.؛ Revés، M.؛ Echeverría، J.؛ Cremades، E.؛ Barragán، F.؛ Alvarez، S. (2008). "Covalent Radii Revisited". Dalton Transactions (21): 2832–2838. doi:10.1039/b801115j. 
  • Cracher، Connie M. (2012). "Current Concepts in Preventive Dentistry" (PDF). dentalcare.com. اطلع عليه بتاريخ 14 October 2013. 
  • Croswell، Ken (September 2003). "Fluorine: An element–ary Mystery". Sky and Telescope. اطلع عليه بتاريخ 17 October 2013. 
  • Mitchell Crow، James (2011). "First signs of ozone-hole recovery spotted". Nature. doi:10.1038/news.2011.293. 
  • Davis، Nicole. "Better than blood". Popular Science (November 2006). تمت أرشفته من الأصل في 4 June 2011. اطلع عليه بتاريخ 20 October 2013. 
  • Davy، Humphry (1813). "Some experiments and observations on the substances produced in different chemical processes on fluor spar". Philosophical Transactions of the Royal Society. 103: 263–279. doi:10.1098/rstl.1813.0034. 
  • Dean، John A. (1999). Lange's Handbook of Chemistry (الطبعة 15th). New York: McGraw-Hill. ISBN 0-07-016190-9. 
  • Debergalis، Michael (2004). "Fluoropolymer films in the photovoltaic industry". Journal of Fluorine Chemistry. 125 (8): 1255. doi:10.1016/j.jfluchem.2004.05.013. 
  • Directorate-General for the Environment (European Commission) (2007). Trifluralin (PDF) (Report). European Commission. اطلع عليه بتاريخ 14 October 2013. 
  • Drews، T.؛ Supeł، J.؛ Hagenbach، A.؛ Seppelt، K. (2006). "Solid State Molecular Structures of Transition Metal Hexafluorides". Inorganic Chemistry. 45 (9): 3782–3788. PMID 16634614. doi:10.1021/ic052029f. 
  • DuPont (2013a). "Freon". اطلع عليه بتاريخ 17 October 2013. 
  • DuPont (2013b). "Understanding the Refrigerant 'R' Nomenclature". اطلع عليه بتاريخ 17 October 2013. 
  • Eaton، Charles (1997). "Figure hfl". E-Hand.com: The Electronic Textbook of Hand Surgery. The Hand Center (former practice of Dr. Eaton). اطلع عليه بتاريخ 28 September 2013. 
  • Edwards، Philip Neil (1994). "Use of Fluorine in Chemotherapy". In Banks، R. E.؛ Smart، B. E.؛ Tatlow، J. C. Organofluorine Chemistry: Principles and Commercial Applications. New York: Plenum Press. صفحات 501–542. ISBN 978-0-306-44610-8. 
  • Einstein، F. W. B.؛ Rao، P. R.؛ Trotter، J.؛ Bartlett، N. (1967). "The Crystal Structure of Gold Trifluoride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 4: 478–482. doi:10.1039/J19670000478. 
  • Eisler، Ronald (1995). Sodium Monofluoroacetate (1080) Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review (PDF) (Report). Patuxent Environmental Science Center (U.S. National Biological Service). اطلع عليه بتاريخ 5 June 2011. 
  • Ellis، Brian (2001). Scientific Essentialism. Cambridge: Cambridge University Press. ISBN 978-0-521-80094-5. 
  • El-Kareh، Badih (1994). Fundamentals of Semiconductor Processing Technology. Norwell and Dordrecht: Kluwer Academic Publishers. ISBN 978-0-7923-9534-8. 
  • El Saadi، M. S.؛ Hall، A. H.؛ Hall، P. K.؛ Riggs، B. S.؛ Augenstein، W. L.؛ Rumack، B. H. (1989). "Hydrofluoric Acid Dermal Exposure". Veterinary and Human Toxicology. 31 (3): 243–247. PMID 2741315. 
  • Emeléus، H. J.؛ Sharpe، A. G. (1974). Advances in Inorganic Chemistry and Radiochemistry. 16. New York: Academic Press. ISBN 978-0-08-057865-1. 
  • Emeléus، H. J.؛ Sharpe، A. G. (1983). Advances in Inorganic Chemistry and Radiochemistry. 27. Academic Press. ISBN 0-12-023627-3. 
  • Emsley، John (1981). "The Hidden Strength of Hydrogen". New Scientist. 91 (1264): 291–292. 
  • Emsley، John (2011). Nature's Building Blocks: An A–Z Guide to the Elements (الطبعة 2nd). Oxford: Oxford University Press. ISBN 978-0-19-960563-7. 
  • Energetics, Inc. (1997). Energy and Environmental Profile of the U.S. Aluminum Industry (PDF) (Report). اطلع عليه بتاريخ 15 October 2013. 
  • Filler، R.؛ Saha، R. (2009). "Fluorine in Medicinal Chemistry: A Century of Progress and a 60-year Retrospective of Selected Highlights" (PDF). Future Medicinal Chemistry. 1 (5): 777–791. PMID 21426080. doi:10.4155/fmc.09.65. 
  • Fischman، Michael L. (2001). "Semiconductor Manufacturing Hazards". In Sullivan، John B.؛ Krieger، Gary R. Clinical Environmental Health and Toxic Exposures (الطبعة 2nd). Philadelphia: Lippincott Williams & Wilkins. صفحات 431–465. ISBN 978-0-683-08027-8. 
  • Forster، P.؛ Ramaswamy، V؛ Artaxo، P.؛ Berntsen، T.؛ Betts، R.؛ Fahey، D. W.؛ Haywood، J.؛ Lean، J.؛ Lowe، D. C.؛ Myhre، G.؛ Nganga، J.؛ Prinn، R.؛ Raga، G.؛ Schulz، M.؛ Van Dorland، R. (2007). "Changes in Atmospheric Constituents and in Radiative Forcing". In Solomon، S.؛ Manning، M؛ Chen، Z.؛ Marquis، M؛ Averyt، K. B.؛ Tignor، M.؛ Miller، H. L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University. صفحات 129–234. ISBN 978-0-521-70596-7. 
  • Fulton، Robert B.؛ Miller، M. Michael (2006). "Fluorspar". In Kogel، Jessica Elzea؛ Trivedi، Nikhil C.؛ Barker، James M.؛ Krukowski، Stanley T. Industrial Minerals & Rocks: Commodities, Markets, and Uses. Littleton: Society for Mining, Metallurgy, and Exploration (U.S.). صفحات 461–473. ISBN 978-0-87335-233-8. 
  • Gabriel، J. L.؛ Miller Jr، T. F.؛ Wolfson، M. R.؛ Shaffer، T. H. (1996). "Quantitative Structure-Activity Relationships of Perfluorinated Hetero-Hydrocarbons as Potential Respiratory Media". ASAIO Journal. 42 (6): 968–973. PMID 8959271. doi:10.1097/00002480-199642060-00009. 
  • Gains، Paul (18 October 1998). "A New Threat in Blood Doping". The New York Times. اطلع عليه بتاريخ 18 October 2013. 
  • Gessner، B. D.؛ Beller، M.؛ Middaugh، J. P.؛ Whitford، G. M. (1994). "Acute Fluoride Poisoning from a Public Water System". New England Journal of Medicine. 330 (2): 95–99. PMID 8259189. doi:10.1056/NEJM199401133300203. 
  • Giesy، J.P.؛ Kannan، K. (2002). "Perfluorochemical Surfactants in the Environment". Environmental Science & Technology. 36 (7): 146A–152A. PMID 11999053. doi:10.1021/es022253t. 
  • Godfrey، S. M.؛ McAuliffe، C. A.؛ Mackie، A. G.؛ Pritchard، R. G. (1998). "Inorganic Derivatives of the Elements". In Norman، Nicholas C. Chemistry of Arsenic, Antimony and Bismuth. London: Blackie Academic & Professional. صفحات 67–158. ISBN 978-0-7514-0389-3. 
  • Green، S. W.؛ Slinn، D. S. L.؛ Simpson، R. N. F.؛ Woytek، A. J. (1994). "Perfluorocarbon Fluids". In Banks، R. E.؛ Smart، B. E.؛ Tatlow، J. C. Organofluorine Chemistry: Principles and Applications. New York: Plenum Press. صفحات 89–119. ISBN 978-0-306-44610-8. 
  • Greenwood، N. N.؛ Earnshaw، A. (1998). Chemistry of the Elements (الطبعة 2nd). Oxford: Butterworth Heinemann. ISBN 0-7506-3365-4. 
  • Gribble، G. W. (2002). "Naturally Occurring Organofluorines". In Neison، A. H. Organofluorines. The Handbook of Environmental Chemistry. 3N. Berlin: Springer. صفحات 121–136. ISBN 3-540-42064-9. doi:10.1007/10721878_5. 
  • Grot، Walter (2011). Fluorinated Ionomers (الطبعة 2nd). Oxford and Waltham: Elsevier. ISBN 978-1-4377-4457-6. 
  • Hagmann، W. K. (2008). "The Many Roles for Fluorine in Medicinal Chemistry". Journal of Medicinal Chemistry. 51 (15): 4359–4369. PMID 18570365. doi:10.1021/jm800219f. 
  • Harbison، G. S. (2002). "The Electric Dipole Polarity of the Ground and Low-lying Metastable Excited States of NF". Journal of the American Chemical Society. 124 (3): 366–367. PMID 11792193. doi:10.1021/ja0159261. 
  • Hasegawa، Y.؛ Otani، R.؛ Yonezawa، S.؛ Takashima، M. (2007). "Reaction Between Carbon Dioxide and Elementary Fluorine". Journal of Fluorine Chemistry. 128 (1): 17–28. doi:10.1016/j.jfluchem.2006.09.002. 
  • Haxel، G. B.؛ Hedrick، J. B.؛ Orris، G. J. (2005). المحررون: Stauffer، P. H.؛ Hendley II، J. W. Rare Earth Elements—Critical Resources for High Technology, Fact Sheet 087-02 (Report). U.S. Geological Survey. اطلع عليه بتاريخ 31 January 2014. 
  • Haynes، William M., المحرر (2011). Handbook of Chemistry and Physics (الطبعة 92nd). Boca Raton: CRC Press. ISBN 1-4398-5511-0. 
  • Hoffman، Robert؛ Nelson، Lewis؛ Howland، Mary؛ Lewin، Neal؛ Flomenbaum، Neal؛ Goldfrank، Lewis (2007). Goldfrank's Manual of Toxicologic Emergencies. New York: McGraw-Hill Professional. ISBN 978-0-07-144310-4. 
  • Honeywell (2006). Recommended medical treatment for hydrofluoric acid exposure (PDF). Morristown: Honeywell International. اطلع عليه بتاريخ 9 January 2014. 
  • Hoogers، G. (2002). "Fuel Cell Components and Their Impact on Performance". In Hoogers، G. Fuel Cell Technology Handbook. Boca Raton: CRC Press. صفحات 4–1–4–27. ISBN 0-8493-0877-1. 
  • Hounshell، David A.؛ Smith، John Kelly (1988). Science and Corporate Strategy: DuPont R & D, 1902–1980. Cambridge: Cambridge University Press. ISBN 0-521-32767-9. 
  • Hultén، P.؛ Höjer، J.؛ Ludwigs، U.؛ Janson، A. (2004). "Hexafluorine vs. Standard Decontamination to Reduce Systemic Toxicity After Dermal Exposure to Hydrofluoric Acid". Clinical Toxicology. 42 (4): 355–361. PMID 15461243. doi:10.1081/CLT-120039541. 
  • ICIS (2 October 2006). "Fluorine's Treasure Trove". Reed Business Information. اطلع عليه بتاريخ 24 October 2013. 
  • Jaccaud، M.؛ Faron، R.؛ Devilliers، D.؛ Romano، R. (2000). "Fluorine". In Ullmann، Franz. Ullmann's Encyclopedia of Industrial Chemistry. 15. Weinheim: Wiley-VCH. صفحات 381–395. ISBN 3527306730. doi:10.1002/14356007.a11_293. 
  • Johnson، Linda A. (28 December 2011). "Against Odds, Lipitor Became World's Top Seller". The Boston Globe. اطلع عليه بتاريخ 24 October 2013. 
  • Kacmarek، Robert M.؛ Wiedemann، Herbert P.؛ Lavin، Philip T.؛ Wedel، Mark K.؛ Tütüncü، Ahmet S.؛ Slutsky، Arthur S. (2006). "Partial Liquid Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 173 (8): 882. PMID 16254269. doi:10.1164/rccm.200508-1196OC. 
  • Katakuse، Itsuo؛ Ichihara، Toshio؛ Ito، Hiroyuki؛ Sakurai، Tohru؛ Matsuo، Takekiyo (1999). "SIMS Experiment". In Arai، T؛ Mihama، K؛ Yamamoto، K؛ Sugano، S. Mesoscopic Materials and Clusters: Their Physical and Chemical Properties. Tokyo: Kodansha. صفحات 259–273. ISBN 4-06-208635-2. 
  • Kelly، T. D.؛ Miller، M. M. (2005). "Historical Fluorspar Statistics". U.S. Geological Service. اطلع عليه بتاريخ 10 February 2014. 
  • Keplinger، M. L.؛ Suissa، L. W. (1968). "Toxicity of Fluorine Short-Term Inhalation". American Industrial Hygiene Association Journal. 29 (1): 10–18. PMID 5667185. doi:10.1080/00028896809342975. 
  • Kern، S.؛ Hayward، J.؛ Roberts، S.؛ Richardson، J. W.؛ Rotella، F. J.؛ Soderholm، L.؛ Cort، B.؛ Tinkle، M.؛ West، M.؛ Hoisington، D.؛ Lander، G. A. (1994). "Temperature Variation of the Structural Parameters in Actinide Tetrafluorides". The Journal of Chemical Physics. 101 (11): 9333–9337. Bibcode:1994JChPh.101.9333K. doi:10.1063/1.467963. 
  • Khriachtchev، L.؛ Pettersson، M.؛ Runeberg، N.؛ Lundell، J.؛ Räsänen، M. (2000). "A Stable Argon Compound". Nature. 406 (6798): 874–876. PMID 10972285. doi:10.1038/35022551. 
  • King، D. E.؛ Malone، R.؛ Lilley، S. H. (2000). "New Classification and Update on the Quinolone Antibiotics". American Family Physician. 61 (9): 2741–2748. PMID 10821154. اطلع عليه بتاريخ 8 October 2013. 
  • Kirsch، Peer (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH. ISBN 978-3-527-30691-6. 
  • Kissa، Erik (2001). Fluorinated Surfactants and Repellents (الطبعة 2nd). New York: Marcel Dekker. ISBN 978-0-8247-0472-8. 
  • Kuriakose، A. K.؛ Margrave، J. L. (1965). "Kinetics of the Reactions of Elemental Fluorine. IV. Fluorination of Graphite". Journal of Physical Chemistry. 69 (8): 2772–2775. doi:10.1021/j100892a049. 
  • Lagow، R. J. (1970). The Reactions of Elemental Fluorine; A New Approach to Fluorine Chemistry (PDF) (PhD thesis, Rice University, TX). Ann Arbor: UMI. 
  • Lau، C.؛ Anitole، K.؛ Hodes، C.؛ Lai، D.؛ Pfahles-Hutchens، A.؛ Seed، J. (2007). "Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings" (PDF). Toxicological Sciences. 99 (2): 366–394. PMID 17519394. doi:10.1093/toxsci/kfm128. 
  • Lewars، Errol G. (2008). Modeling Marvels: Computational Anticipation of Novel Molecules. Dordrecht: Springer. ISBN 1-4020-6972-3. 
  • Lide، David R. (2004). Handbook of Chemistry and Physics (الطبعة 84th). Boca Raton: CRC Press. ISBN 0-8493-0566-7. 
  • Lidin، R.؛ Molochko، V.A.؛ Andreeva، L.L. (2000). Химические свойства неорганических веществ [Chemical Properties of Inorganic Substances] (باللغة Russian). Moscow: Khimiya. ISBN 5-7245-1163-0. 
  • Liteplo، R.؛ Gomes، R.؛ Howe، P.؛ Malcolm، H. (2002). Environmental Health Criteria 227 (Fluoride). Geneva: United Nations Environment Programme; International Labour Organization; World Health Organization. ISBN 92-4-157227-2. اطلع عليه بتاريخ 14 October 2013. 
  • Lusty، P. A. J.؛ Brown، T. J.؛ Ward، J.؛ Bloomfield، S. (2008). "The Need for Indigenous Fluorspar Production in England". British Geological Survey. اطلع عليه بتاريخ 13 October 2013. 
  • Mackay، Kenneth Malcolm؛ Mackay، Rosemary Ann؛ Henderson، W. (2002). Introduction to Modern Inorganic Chemistry (الطبعة 6th). Cheltenham: Nelson Thornes. ISBN 0-7487-6420-8. 
  • Macomber، Roger (1996). Organic chemistry. 1. Sausalito: University Science Books. ISBN 978-0-935702-90-3. 
  • Marggraf، Andreas Sigismun (1770). "Observation concernant une volatilisation remarquable d'une partie de l'espece de pierre, à laquelle on donne les noms de flosse, flüsse, flus-spaht, et aussi celui d'hesperos; laquelle volatilisation a été effectuée au moyen des acides" [Observation of a remarkable volatilization of part of a type of stone to which one gives the name flosse, flüsse, flus-spaht, as well as that of hesperos; which volatilization was effected by means of acids]. Mémoires de l'Académie royale des sciences et belles-lettres (باللغة French). XXIV: 3–11. 
  • Martin، John W., المحرر (2007). Concise Encyclopedia of the Structure of Materials. Oxford and Amsterdam: Elsevier. ISBN 978-0-08-045127-5. 
  • Marya، C. M. (2011). A Textbook of Public Health Dentistry. New Delhi: Jaypee Brothers Medical Publishers. ISBN 978-93-5025-216-1. 
  • Matsui، M (2006). "Fluorine-containing Dyes". In Kim، Sung-Hoon. Functional dyes. Orlando: Academic Press. صفحات 257–266. ISBN 978-0-12-412490-5. 
  • Meusinger، Reinhard؛ Chippendale، A. Margaret؛ Fairhurst، Shirley A. (2012). "Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy". In Ullmann، Franz. Ullmann's Encyclopedia of Industrial Chemistry. 24. Weinheim: Wiley-VCH. صفحات 609–660. doi:10.1002/14356007.b05_471. 
  • Meyer، Eugene (1977). Chemistry of Hazardous Materials. Englewood Cliffs: Prentice Hall. ISBN 978-0-13-129239-0. 
  • Miller، M. Michael (2003a). "Fluorspar" (PDF). U.S. Geological Survey Minerals Yearbook. U.S. Geological Survey. صفحات 27.1–27.12. 
  • Miller، M. Michael (2003b). "Mineral Resource of the Month, Fluorspar" (PDF). U.S. Geological Survey. اطلع عليه بتاريخ 24 October 2013. 
  • Mitchell، E. Siobhan (2004). Antidepressants. New York: Chelsea House Publishers. ISBN 978-1-4381-0192-7. 
  • Moeller، T.؛ Bailar، J. C.؛ Kleinberg (1980). Chemistry, with Inorganic Qualitative Analysis (الطبعة 3rd). New York: Academic Press. ISBN 0-12-503350-8. 
  • Moissan، Henri (1886). "Action d'un courant électrique sur l'acide fluorhydrique anhydre". Comptes rendus hebdomadaires des séances de l'Académie des sciences (باللغة French). 102: 1543–1544. اطلع عليه بتاريخ 9 October 2013. 
  • McCoy، M. (2007). "SURVEY Market Challenges Dim the Confidence of the World's Chemical CEOs". Chemical & Engineering News. 85 (23): 11. doi:10.1021/cen-v085n023.p011a. 
  • Moore، John W.؛ Stanitski، Conrad L.؛ Jurs، Peter C. (2010). Principles of Chemistry: The Molecular Science. Belmont: Brooks/Cole. ISBN 978-0-495-39079-4. 
  • Morrow، S. I.؛ Perry، D. D.؛ Cohen، M. S. (1959). "The Formation of Dinitrogen Tetrafluoride in the Reaction of Fluorine and Ammonia". Journal of the American Chemical Society. 81 (23): 6338–6339. doi:10.1021/ja01532a066. 
  • Müller، Peter (2009). "5.067 Crystal Structure Refinement" (PDF). Cambridge: MIT OpenCourseWare. اطلع عليه بتاريخ 13 October 2013. 
  • Murphy، C. D.؛ Schaffrath، C.؛ O'Hagan، D. (2003). "Fluorinated Natural Products: The Biosynthesis of Fluoroacetate and 4-Fluorothreonine in Streptomyces cattleya". Chemosphere. 52 (2): 455–461. PMID 12738270. doi:10.1016/S0045-6535(03)00191-7. 
  • Murthy، C. Parameshwara؛ Mehdi Ali، S. F.؛ Ashok، D. (1995). University Chemistry. I. New Delhi: New Age International. ISBN 978-81-224-0742-6. 
  • National Health and Medical Research Council (2007). "A Systematic Review of the Efficacy and Safety of Fluoridation, Part A: Review of Methodology and Results" (PDF). Canberra: Australian Government. ISBN 1-86496-421-9. اطلع عليه بتاريخ 8 October 2013. 
  • The National Institute for Occupational Safety and Health (1994). "Fluorine". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). اطلع عليه بتاريخ 15 January 2014. 
  • The National Institute for Occupational Safety and Health (1994). "Chlorine". Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs). اطلع عليه بتاريخ 13 July 2014. 
  • National Nuclear Data Center. "NuDat 2.1 Database". Brookhaven National Laboratory. اطلع عليه بتاريخ 25 October 2013. 
  • National Oceanic and Atmospheric Administration. "UN/NA 1045 (United Nations/North America Fluorine Data Sheet)". اطلع عليه بتاريخ 15 October 2013. 
  • Navarrini، Walter؛ Venturini، Francesco؛ Tortelli، Vito؛ Basak، Soubir؛ Pimparkar، Ketan P.؛ Adamo، Andrea؛ Jensen، Klavs F. (2012). "Direct fluorination of carbon monoxide in microreactors". Journal of Fluorine Chemistry. 142: 19. doi:10.1016/j.jfluchem.2012.06.006. 
  • Nelson، Eugene W. (1947). "'Bad Man' of The Elements". Popular Mechanics. 88 (2): 106–108, 260. 
  • Nelson، J. M.؛ Chiller، T. M.؛ Powers، J. H.؛ Angulo، F. J. (2007). "Food Safety: Fluoroquinolone‐ResistantCampylobacterSpecies and the Withdrawal of Fluoroquinolones from Use in Poultry: A Public Health Success Story" (PDF). Clinical Infectious Diseases. 44 (7): 977–980. PMID 17342653. doi:10.1086/512369. 
  • Nielsen، Forrest H. (2009). "Micronutrients in Parenteral Nutrition: Boron, Silicon, and Fluoride". Gastroenterology. 137 (5): S55–60. PMID 19874950. doi:10.1053/j.gastro.2009.07.072. 
  • Norwood، Charles J.؛ Fohs، F. Julius (1907). Kentucky Geological Survey, Bulletin No. 9: Fluorspar Deposits of Kentucky. Kentucky Geological Survey. 
  • Noury، S.؛ Silvi، B.؛ Gillespie، R. J. (2002). "Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant?" (PDF). Inorganic Chemistry. 41 (8): 2164–2172. PMID 11952370. doi:10.1021/ic011003v. اطلع عليه بتاريخ 23 May 2012. 
  • O'Hagan، D. (2008). "Understanding Organofluorine Chemistry. An Introduction to the C–F Bond". Chemical Society Reviews. 37 (2): 308–319. PMID 18197347. doi:10.1039/b711844a. 
  • O'Hagan، D.؛ Schaffrath، C.؛ Cobb، S. L.؛ Hamilton، J. T. G.؛ Murphy، C. D. (2002). "Biochemistry: Biosynthesis of an Organofluorine Molecule". Nature. 416 (6878): 279. Bibcode:2002Natur.416..279O. PMID 11907567. doi:10.1038/416279a. 
  • Okada، T.؛ Xie، G.؛ Gorseth، O.؛ Kjelstrup، S.؛ Nakamura، N.؛ Arimura، T. (1998). "Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes". Electrochimica Acta. 43 (24): 3741–3747. doi:10.1016/S0013-4686(98)00132-7. 
  • Okazoe، T. (2009). "Overview on the History of Organofluorine Chemistry from the Viewpoint of Material Industry". Proceedings of the Japan Academy, Series B. 85 (8): 276–289. Bibcode:2009PJAB...85..276O. doi:10.2183/pjab.85.276. 
  • Olivares، M.؛ Uauy، R. (2004). Essential Nutrients in Drinking Water (Draft) (PDF) (Report). World Health Organization (WHO). اطلع عليه بتاريخ 14 October 2013. 
  • Parente، Luca (2001). "The Development of Synthetic Glucocorticoids". In Goulding، Nicolas J.؛ Flower، Rod J. Glucocorticoids. Basel: Birkhäuser. صفحات 35–53. ISBN 978-3-7643-6059-7. 
  • Partington، J. R. (1923). "The early history of hydrofluoric acid". Memoirs and Proceedings of the Manchester Literary and Philosophical Society. 67 (6): 73–87. 
  • Patnaik، Pradyot (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances (الطبعة 3rd). Hoboken: John Wiley & Sons. ISBN 978-0-471-71458-3. 
  • Pauling، Linus (1960). The Nature of the Chemical Bond (الطبعة 3rd). Ithaca: Cornell University Press. ISBN 978-0-8014-0333-0. 
  • Pauling، L.؛ Keaveny، I.؛ Robinson، A. B. (1970). "The Crystal Structure of α-Fluorine". Journal of Solid State Chemistry. 2 (2): 225–227. Bibcode:1970JSSCh...2..225P. doi:10.1016/0022-4596(70)90074-5. 
  • Perry، Dale L. (2011). Handbook of Inorganic Compounds (الطبعة 2nd). Boca Raton: CRC Press. ISBN 978-1-4398-1461-1. 
  • Pitzer، K. S. (1975). "Fluorides of Radon and Element 118". Journal of the Chemical Society, Chemical Communications (18): 760b–761. doi:10.1039/C3975000760B. 
  • Pitzer، Kenneth S., المحرر (1993). Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer. Singapore: World Scientific Publishing. ISBN 978-981-02-1439-5.