انتقل إلى المحتوى

رصاص: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
تم ملئ 1 مراجع عارية عن طريق reFill ()
سطر 445: سطر 445:
يسمى الرصاص في اللغة العربية أيضاً باسم '''الصَرَفان'''.<ref>لسان العرب، باب صرف</ref> وأما '''الآنك''' هو: '''الأُسْرُبُّ'''. وهو: الرصاص القلعيُّ، أو '''القزدير'''، أو الرصاص الأبيض، وقيل: الأسود، وقيل هو: الخالص منه. <ref>[http://fatwa.islamweb.net/fatwa/index.php?page=showfatwa&Option=FatwaId&Id=26695 إسلام ويب] {{Webarchive|url=http://web.archive.org/web/20180324155020/http://fatwa.islamweb.net:80/fatwa/index.php?page=showfatwa&Option=FatwaId&Id=26695 |date=24 مارس 2018}}</ref>
يسمى الرصاص في اللغة العربية أيضاً باسم '''الصَرَفان'''.<ref>لسان العرب، باب صرف</ref> وأما '''الآنك''' هو: '''الأُسْرُبُّ'''. وهو: الرصاص القلعيُّ، أو '''القزدير'''، أو الرصاص الأبيض، وقيل: الأسود، وقيل هو: الخالص منه. <ref>[http://fatwa.islamweb.net/fatwa/index.php?page=showfatwa&Option=FatwaId&Id=26695 إسلام ويب] {{Webarchive|url=http://web.archive.org/web/20180324155020/http://fatwa.islamweb.net:80/fatwa/index.php?page=showfatwa&Option=FatwaId&Id=26695 |date=24 مارس 2018}}</ref>


== المراجع ==
== مراجع ==
<div class="reflist4" style="height: 350px; overflow: auto; padding: 3px" >
<div class="reflist4" style="height: 350px; overflow: auto; padding: 3px" >
{{مراجع|2|محاذاة=نعم}}
{{مراجع|2|محاذاة=نعم}}
</div>
</div>

== مصادر ==
{{Refbegin |30em}}
* {{cite book |editor-last=Acton |editor-first=Q. A. |title=Issues in Global Environment—Pollution and Waste Management: 2012 Edition |url=https://books.google.com/books?id=3n0yqmPRwh8C |date=2013 |publisher=ScholarlyEditions |isbn=978-1-4816-4665-9 |ref=harv}}
* {{cite web |title=Information for the Community: Lead Toxicity |url=http://www.atsdr.cdc.gov/csem/lead/community/index.html |author=Agency for Toxic Substances and Disease Registry |type=MP4 webcast, 82 MB |accessdate=11 February 2017 |ref=CITEREFAgency for Toxic Substances and Disease Registry}}
* {{cite web |title=Lead Toxicity. What Are U.S. Standards for Lead Levels? |url=https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8 |author=Agency for Toxic Substances and Disease Registry |year=2017 |accessdate=12 June 2018 |ref=harv}}
* {{cite book |last=Alsfasser |first=R. |title=Moderne anorganische Chemie |year=2007 |url=https://books.google.com/?id=HwY4be5bH_sC&dq=%5BPb4%5D4-+zintl#v=onepage&q&f=false |trans-title=Modern inorganic chemistry |publisher=Walter de Gruyter |isbn=978-3-11-019060-1 |language=German |ref=harv}}
* {{cite web |url=https://eos.org/scientific-press/human-activity-has-polluted-european-air-for-2000-years |author=American Geophysical Union |title=Human Activity Has Polluted European Air for 2000 Years |publisher=Eos Science News |year=2017 |ref=harv}}
* {{cite book |last=Amstock |first=J. S. |title=Handbook of Glass in Construction |date=1997 |isbn=978-0-07-001619-4 |publisher=McGraw-Hill Professional |url=https://books.google.com/?id=apWvKnKKrvsC |ref=harv}}
* {{cite journal |last=Anderson |first=J. |title=Malleability and ductility of metals |year=1869 |pages=341–43 |url=http://www.scientificamerican.com/article/malleability-and-ductility-of-metal/ |journal=Scientific American |volume=21 |issue=22 |doi=10.1038/scientificamerican11271869-341 |ref=harv}}
* {{cite journal |last1=Ashikari |first1=M. |title=The memory of the women's white faces: Japaneseness and the ideal image of women |date=2003 |pages=55–79 |doi=10.1080/0955580032000077739 |journal=Japan Forum |volume=15 |issue=1 |ref=harv}}
* {{cite journal|last1=Assi|first1=M. A.|last2=Hezmee|first2=M. N. M.|last3=Haron|first3=A. W.|last4=Sabri|first4=M. Yu.|last5=Rajion|first5=M. A.|displayauthors=3|title=The detrimental effects of lead on human and animal health|journal=Veterinary World|volume=9|issue=6|year=2016|pages=660–671|issn=0972-8988|doi=10.14202/vetworld.2016.660-671|pmid=27397992|pmc=4937060|ref=harv}}
* {{cite report |first1=Charles M. |last1=Auer | first2=Frank D. | last2=Kover |first3=James V. | last3=Aidala | first4=Mark | last4=Greenwood | publisher = EPA Alumni Association | title = Toxic Substances: A Half Century of Progress | date =1 March 2016 | ref=harv | url= http://www.epaalumni.org/hcp/toxics.pdf | accessdate=1 January 2019}}
* {{cite book |last=Audsley |first=G. A. |authorlink=George Ashdown Audsley |title=The Art of Organ Building |year=1965 |url=https://books.google.com/?id=I0h525OVoTgC |isbn=978-0-486-21315-6 |volume=2 |publisher=Courier |ref=harv}}
* {{cite book |last1=Baird |first1=C. |last2=Cann |first2=N. |title=Environmental Chemistry |date=2012 |publisher=W. H. Freeman and Company |isbn=978-1-4292-7704-4 |edition=5th |ref=harv}}
* {{cite journal |last1=Becker |first1=M. |last2=Förster |first2=C. |last3=Franzen |first3=C. |last4=Hartrath |first4=J. |last5=Kirsten |first5=E. |last6=Knuth |first6=J. |last7=Klinkhammer |first7=K. W. |last8=Sharma |first8=A. |last9=H. |first9=D. |title=Persistent radicals of trivalent tin and lead |year=2008 |pages=9965–78 |doi=10.1021/ic801198p |pmid=18823115 |journal=Inorganic Chemistry |volume=47 |issue=21 |display-authors=3 |ref=harv}}
* {{cite journal |last1=Beeman |first1=J. W. |last2=Bellini |first2=F. |last3=Cardani |first3=L. |last4=Casali |first4=N. |title=New experimental limits on the ''α'' decays of lead isotopes |year=2013 |journal=European Physical Journal A |volume=49 |issue=50 |pages=50 |display-authors=3 |ref=harv|doi=10.1140/epja/i2013-13050-7|arxiv=1212.2422 |bibcode=2013EPJA...49...50B }}
* {{cite journal |last1=Beiner |first1=G. G. |last2=Lavi |first2=M. |last3=Seri |first3=H. |display-authors=3 |last4=Rossin |first4=Anna |last5=Lev |first5=Ovadia |last6=Gun |first6=Jenny |last7=Rabinovich |first7=Rivka |title=Oddy Tests: Adding the Analytical Dimension |journal=Collection Forum |volume=29 |issue=1–2 |year=2015 |pages=22–36 |issn=0831-4985 |doi=10.14351/0831-4985-29.1.22 |ref=harv}}
* {{Cite book|last1=Bharara|first1=M. S.|last2=Atwood|first2=D. A.|title=Lead: Inorganic Chemistry|year=2006|doi=10.1002/0470862106.ia118|ref=harv|chapter=Lead: Inorganic ChemistryBased in part on the article Lead: Inorganic Chemistry by Philip G. Harrison which appeared in theEncyclopedia of Inorganic Chemistry, First Edition|isbn=978-0470860786}}
* {{cite book |last1=Bisel |first1=S. C. |authorlink1=Sara C. Bisel |last2=Bisel |first2=J. F. |chapter=Health and nutrition at Herculaneum |title=The Natural History of Pompeii |year=2002 |pages=451–75 |publisher=Cambridge University Press |isbn=978-0-521-80054-9 |editor-first1=W. F. |editor-last1=Jashemski |editor-first2=F. G. |editor-last2=Meyer |chapter-url=https://books.google.com/books?redir_esc=y&id=3xfjyTqqR7IC |ref=harv}}
* {{cite book |last1=Bisson |first1=M. S. |last2=Vogel |first2=J. O. |title=Ancient African Metallurgy: The Sociocultural Context |year=2000 |isbn=978-0-7425-0261-1 |publisher=Rowman & Littlefield |url=https://books.google.com/?id=oMgkHFiBTMEC&printsec=frontcover&dq=ancient+african+metallurgy#v=onepage&q=lead&f=false |ref=harv}}
* {{cite book |last=Blakemore |first=J. S. |title=Solid State Physics |year=1985 |url=https://books.google.com/books?id=yLwIYiWo0VYC |publisher=Cambridge University Press |isbn=978-0-521-31391-9 |ref=harv}}
* {{cite book |first=M. |last=Burleson |publisher=Sterling Publishing |location=New York, NY |title=The Ceramic Glaze Handbook: Materials, Techniques, Formulas |year=2001 |ref=harv |url=https://books.google.com/books?id=PiJEAhMxLQgC&printsec=frontcover#v=onepage&q&f=false|isbn=9781579904395 }}
* {{cite book |last=Bremner |first=H. A. |title=Safety and Quality Issues in Fish Processing |url=https://books.google.com/books?id=7pKkAgAAQBAJ |year=2002 |publisher=Elsevier |isbn=978-1-85573-678-8 |ref=harv}}
* {{cite book |last1=Brenner |first1=G. A. |title=Webster's New World American Idioms Handbook |date=2003 |publisher=John Wiley & Sons |isbn=978-0-7645-2477-6 |ref=harv}}
* {{cite book|last=Brescia|first=F.|title=Fundamentals of Chemistry: A Modern Introduction|url=https://books.google.com/books?id=fjqeMl-xSg4C&pg=PA234|year=2012|publisher=Elsevier|isbn=978-0-323-14231-1|ref=harv}}
* {{cite book |last=Bretherick |first=L. |title=Bretherick's Handbook of Reactive Chemical Hazards |url=https://books.google.com/books?id=4_PJCgAAQBAJ |year=2016 |publisher=Elsevier |isbn=978-1-4831-6250-8 |ref=harv}}
* {{cite book |last1=Bunker |first1=B. C. |last2=Casey |first2=W. H. |title=The Aqueous Chemistry of Oxides |date=2016 |publisher=Oxford University Press |isbn=978-0-19-938425-9 |url=https://books.google.com/books?id=BfhGCwAAQBAJ&pg=PA89 |ref=harv}}
* {{cite journal |last1=Burbidge |first1=E. M. |last2=Burbidge |first2=G. R. |last3=Fowler |first3=W. A. |last4=Hoyle |first4=F. |title=Synthesis of the Elements in Stars |year=1957 |pages=547–654 |display-authors=3 |journal=Reviews of Modern Physics |volume=29 |issue=4 |bibcode=1957RvMP...29..547B |doi=10.1103/RevModPhys.29.547 |url=https://www.pmf.unizg.hr/_download/repository/burbidge_RMP_29_547_1957.pdf |ref=harv |format=PDF}}
* {{cite web |url=https://www.wildlife.ca.gov/hunting/nonlead-ammunition |title=Nonlead Ammunition in California |website=www.wildlife.ca.gov |author=California Department of Fish and Wildlife |accessdate=17 May 2017 |ref=harv}}
* {{cite journal |last=de Callataÿ |first=F. |title=The Graeco-Roman economy in the super long-run: Lead, copper, and shipwrecks |date=2005 |pages=361–72 |journal=Journal of Roman Archaeology |volume=18 |doi=10.1017/S104775940000742X |ref=harv}}
* {{cite news |last=Cama |first=T. |date=2017 |title=Interior secretary repeals ban on lead bullets |url=http://thehill.com/policy/energy-environment/322058-interior-secretary-repeals-ban-on-lead-ammunition |website=The Hill |accessdate=30 May 2018 |ref=harv}}
* {{cite book|last1=Cangelosi|first1=V. M.|last2=Pecoraro|first2=V. L.|editor-last=Roduner|editor-first=E.|title=Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles|chapter=Lead|chapter-url=https://books.google.com/books?id=kGsoDwAAQBAJ&pg=PA875|year=2015|publisher=Royal Society of Chemistry|isbn=978-1-78262-494-3|pages=843–875|ref=harv}}
* {{cite news |last=Casciani |first=D. |title=Did removing lead from petrol spark a decline in crime? |date=2014 |url=https://www.bbc.com/news/magazine-27067615 |newspaper=BBC News |accessdate=30 January 2017 |ref=harv}}
* {{cite book|last=Ceccarelli|first=P.|title=Ancient Greek Letter Writing: A Cultural History (600 BC- 150 BC)|url=https://books.google.com/books?id=Vm5BAQAAQBAJ&pg=PA35|year=2013|publisher=OUP Oxford|isbn=978-0-19-967559-3|ref=harv}}
* {{cite journal |author=Centers for Disease Control and Prevention |year=1997 |title=Update: blood lead levels--United States, 1991-1994 |journal=Morbidity and Mortality Weekly Report |volume=46 |issue=7 |pages=141–146 |issn=0149-2195 |pmid=9072671 |ref=CITEREFCenters for Disease Control and Prevention1997}}
* {{cite web |title=Radiation and Your Health |year=2015 |url=https://www.cdc.gov/nceh/radiation/smoking.htm |author=Centers for Disease Control and Prevention |accessdate=28 February 2017 |ref=CITEREFCenters for Disease Control and Prevention2015}}
* {{cite book |last=Christensen |first=N. E. |chapter=Relativistic Solid State Theory |title=Relativistic Electronic Structure Theory&nbsp;— Fundamentals |volume=11 |year=2002 |pages=867–68 |chapter-url=https://books.google.com/books?id=9tO_9Tf6dZgC |editor-last=Schwerdtfeger |editor-first=P. |publisher=Elsevier |isbn=978-0-08-054046-7 |ref=harv|doi=10.1016/s1380-7323(02)80041-3|series=Theoretical and Computational Chemistry }}
* {{cite journal |last1=Cohen |first1=A. R. |last2=Trotzky |first2=M. S. |last3=Pincus |first3=D. |title=Reassessment of the Microcytic Anemia of Lead Poisoning |date=1981 |pages=904–906 |url=http://pediatrics.aappublications.org/content/67/6/904.abstract |journal=Pediatrics |volume=67 |issue=6 |pmid=7232054 |ref=harv}}
* {{cite book|author1=Committee on Evaluation of EPA Guidelines for Exposure to Naturally Occurring Radioactive Materials|author2=Commission on Life Sciences|author3=Division on Earth and Life Studies|author4=National Research Council|title=Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials|url=https://books.google.com/books?id=8uhuAgAAQBAJ&pg=PA26|date=1999|publisher=National Academies Press|isbn=978-0-309-58070-0|pages=26, 30–32|ref=harv}}
* {{cite book|last1=Considine|first1=D. M.|last2=Considine|first2=G. D.|title=Van Nostrand's Scientific Encyclopedia|url=https://books.google.com/books?id=t4jjBwAAQBAJ&pg=PA2970|date=2013|publisher=Springer Science & Business Media|isbn=978-1-4757-6918-0|ref=harv}}
* {{cite web |author=Copper Development Association |title=Leaded Coppers |url=http://www.copper.org/resources/properties/microstructure/cu_leaded.html |website=copper.org |accessdate=10 July 2016 |ref=harv}}
* {{cite book |last=Cotnoir |first1=B. |title=The Weiser Concise Guide to Alchemy |date=2006 |publisher=Weiser Books |isbn=978-1-57863-379-1 |ref=harv |url=https://books.google.com/books?id=BPWDrnEJ7UsC&printsec=frontcover}}
* {{cite book |last=Cox |first=P. A. |date=1997 |title=The Elements: Their Origin, Abundance and Distribution |publisher=Oxford University Press |isbn=978-0-19-855298-7 |ref=harv}}
* {{cite news |last=Crow |first=J. M. |title=Why use lead in paint? |year=2007 |url=https://www.chemistryworld.com/news/why-use-lead-in-paint/1015354.article |newspaper=Chemistry World |accessdate=22 February 2017 |publisher=Royal Society of Chemistry |ref=harv}}
* {{cite book |last1=Dart |first1=R. C. |last2=Hurlbut |first2=K. M. |last3=Boyer-Hassen |first3=L. V. |chapter=Lead |title=Medical Toxicology |year=2004 |page=1426 |editor-last=Dart |editor-first=R. C. |edition=3rd |publisher=Lippincott Williams & Wilkins |isbn=978-0-7817-2845-4 |ref=harv}}
* {{cite book |first1=A. |last1=Davidson |first2=J. |last2=Ryman |first3=C. A. |last3=Sutherland |first4=E. F. |last4=Milner |first5=R. C. |last5=Kerby |first6=H. |last6=Teindl |first7=A. |last7=Melin |first8=H. M. |last8=Bolt |chapter=Lead |title=Ullmann's Encyclopedia of Industrial Chemistry |year=2014 |doi=10.1002/14356007.a15_193.pub3 |display-authors=3 |isbn=978-3-527-30673-2 |ref=harv}}
* {{cite journal |last=Delile |first=H. |last2=Blichert-Toft |first2=J. |last3=Goiran |first3=J.-P. |last4=Keay |first4=Simon |last5=Albarede |first5=Francis |title=Lead in ancient Rome's city waters |date=2014 |pages=6594–99 |display-authors=3 |url=http://www.pnas.org/content/111/18/6594 |journal=Proceedings of the National Academy of Sciences |volume=111 |issue=18 |doi=10.1073/pnas.1400097111 |issn=0027-8424 |pmc=4020092 |pmid=24753588 |ref=harv|bibcode=2014PNAS..111.6594D }}
* {{cite report |author1=Deltares |author2=Netherlands Organisation for Applied Scientific Research |title=Lood en zinkemissies door jacht |year=2016 |url=http://www.emissieregistratie.nl/ERPUBLIEK/documenten/Water/Factsheets/Nederlands/Lood-%20en%20zinkemissies%20door%20jacht.pdf |language=Dutch |format=PDF |trans-title=Lead and zinc emissions from hunting |accessdate=18 February 2017 |ref=harv}}
* {{cite book |last1=Dieter |first1=R. K. |last2=Watson |first2=R. T. |chapter=Transmetalation reactions producing organocopper compounds |pages=443–526 |editor-last1=Rappoport |editor-first1=Z. |editor-last2=Marek |editor-first2=I. |title=The Chemistry of Organocopper Compounds |volume=1 |year=2009 |publisher=John Wiley & Sons |isbn=978-0-470-77296-6 |chapter-url=https://books.google.com/?id=263AXB0Q6tAC |ref=harv}}
* {{cite book |last=Donnelly |first=J. |title=Deep Blue |url=https://books.google.com/books?id=SKtbAwAAQBAJ |year=2014 |publisher=Hachette Children's Group |isbn=978-1-4449-2119-9 |ref=harv}}
* {{cite book|last1=Downs|first1=A. J.|last2=Adams|first2=C. J.|title=The Chemistry of Chlorine, Bromine, Iodine and Astatine: Pergamon Texts in Inorganic Chemistry|url=https://books.google.com/books?id=jQNPDAAAQBAJ&pg=PA1128|year=2017|publisher=Elsevier|isbn=978-1-4831-5832-7|ref=harv}}
* {{cite book |last=Duda |first1=M. B. |title=Traditional Chinese Toggles: Counterweights and Charms |date=1996 |publisher=Editions Didier Millet |isbn=978-981-4260-61-9 |ref=harv}}
* {{cite book |last1=Ede |first1=A. |last2=Cormack |first2=L. B. |title=A History of Science in Society, Volume I: From the Ancient Greeks to the Scientific Revolution, Third Edition |url=https://books.google.com/books?id=gFZrDQAAQBAJ |year=2016 |publisher=University of Toronto Press|isbn=978-1-4426-3503-6 |ref=harv}}
* {{cite book |last=Emsley |first=J. |authorlink=John Emsley |title=Nature's Building Blocks: An A-Z Guide to the Elements |year=2011 |publisher=Oxford University Press |isbn=978-0-19-960563-7 |ref=harv}}
*{{Cite web|url=https://www.jewishvirtuallibrary.org/ossuaries-and-sarcophagi|title=Encyclopedia Judaica: Ossuaries and Sarcophagi|website=www.jewishvirtuallibrary.org|access-date=14 July 2018|ref=CITEREFOssuaries and Sarcophagi}}
* {{cite book |last1=Eschnauer |first1=H. R. |last2=Stoeppler |first2=M. |chapter=Wine—An enological specimen bank |title=Hazardous Materials in the Environment |year=1992 |pages=49–72 (58) |publisher=Elsevier Science |isbn=978-0-444-89078-8 |editor-last=Stoeppler |editor-first=M. |ref=harv|doi=10.1016/s0167-9244(08)70103-3}}
* {{cite journal |last1=Evans |first1=J. W. |authorlink=John William Evans (geologist) |title=V.— The meanings and synonyms of plumbago |date=1908 |pages=133–79 |doi=10.1111/j.1467-968X.1908.tb00513.x |journal=Transactions of the Philological Society |volume=26 |issue=2 |ref=harv}}
* {{cite book |last=Finger |first=S. |title=Doctor Franklin's Medicine |url=https://books.google.com/books?id=DOzaAAAAMAAJ |year=2006 |publisher=University of Pennsylvania Press |isbn=978-0-8122-3913-3 |ref=harv}}
* {{cite journal |last=Fiorini |first=E. |title=2.000 years-old Roman Lead for physics |date=2010 |pages=7–8 |url=http://www.aspera-eu.org/images/stories/news/PAPER_VERSIONS/asperanewsletter0610.pdf |publisher=Aspera European Astroparticle network |accessdate=29 October 2016 |ref=harv |format=PDF}}
* {{cite book |last=Frankenburg |first=F. R. |title=Brain-Robbers: How Alcohol, Cocaine, Nicotine, and Opiates Have Changed Human History |year=2014 |url=https://books.google.com/books?id=9cqUAwAAQBAJ |publisher=ABC-CLIO |isbn=978-1-4408-2932-1 |ref=harv}}
* {{cite book |last=Frebel |first=A. |authorlink=Anna Frebel |title=Searching for the Oldest Stars: Ancient Relics from the Early Universe |year=2015 |publisher=Princeton University |isbn=978-0-691-16506-6 |ref=harv}}
* {{cite journal |last=Freeman |first=K. S. |title=Remediating soil lead with fishbones |date=2012 |pages=a20–a21 |journal=Environmental Health Perspectives |pmc=3261960 |volume=120 |issue=1 |doi=10.1289/ehp.120-a20a |pmid=22214821 |ref=harv}}
* {{cite journal |last1=Funke |first1=K. |title=Solid State Ionics: from Michael Faraday to green energy—the European dimension |journal=Science and Technology of Advanced Materials |volume=14 |issue=4 |year=2013 |pages=1–50 |doi=10.1088/1468-6996/14/4/043502 |pmid=27877585 |pmc=5090311 |ref=harv|bibcode=2013STAdM..14d3502F }}
* {{cite book |last=Gale |first=W. F. |last2=Totemeier |first2=T. C. |title=Smithells Metals Reference Book |year=2003 |url=https://books.google.com/books?id=zweHvqOdcs0C |publisher=Butterworth-Heinemann |isbn=978-0-08-048096-1 |ref=harv}}
* {{cite journal |last=Gilfillan |first=S. C. |title=Lead poisoning and the fall of Rome |date=1965 |pages=53–60 |journal=Journal of Occupational Medicine |volume=7 |number=2 |issn=0096-1736 |pmid=14261844 |ref=harv}}
* {{cite book |last1=Gill |first1=T. |author2=Libraries Board of South Australia |title=The history and topography of Glen Osmond, with map and illustrations |url=https://books.google.com/books?id=oSMQAAAAYAAJ |year=1974 |publisher=Libraries Board of South Australia |ref=harv}}
* {{cite report |last1=Graedel |first1=T. E. |title=Metal stocks in Society&nbsp;– Scientific Synthesis |year=2010 |url=http://www.unep.fr/shared/publications/pdf/DTIx1264xPA-Metal%20stocks%20in%20society.pdf |isbn=978-92-807-3082-1 |publisher=International Resource Panel |accessdate=18 April 2017 |page=17 |author2=etal |display-authors=1<!--only mentions the lead author; others are not named--> |ref=harv |format=PDF}}
* {{cite journal |last1=Grandjean |first1=P. |authorlink=Philippe Grandjean (professor) |title=Widening perspectives of lead toxicity |year=1978 |pages=303–21 |journal=Environmental Research |volume=17 |issue=2 |doi=10.1016/0013-9351(78)90033-6 |pmid=400972 |ref=harv|bibcode=1978ER.....17..303G }}
* {{cite book |last1=Greenwood |first1=N. N. |authorlink1=Norman Greenwood |last2=Earnshaw |first2=A. |title=Chemistry of the Elements |year=1998 |edition=2nd |publisher=Butterworth-Heinemann |isbn=978-0-7506-3365-9 |ref=harv |url=https://books.google.com/?id=EvTI-ouH3SsC&printsec=frontcover&dq=chemistry+of+the+elements#v=onepage&q=chemistry%20of%20the%20elements&f=false}}
* {{cite web |last=Grout |first=J. |title=Lead poisoning and Rome |date=2017 |url=http://penelope.uchicago.edu/~grout/encyclopaedia_romana/wine/leadpoisoning.html |website=Encyclopaedia Romana |accessdate=15 February 2017 |ref=harv}}
* {{cite report |last=Guberman |first=D. E. |chapter=Lead |title=2014 Minerals Yearbook |year=2016 |url=https://minerals.usgs.gov/minerals/pubs/commodity/lead/myb1-2014-lead.pdf |publisher=United States Geological Survey |accessdate=8 May 2017 |ref=harv |format=PDF}}
* {{cite book |last=Gulbinska |first=M. K. |title=Lithium-ion Battery Materials and Engineering: Current Topics and Problems from the Manufacturing Perspective |url=https://books.google.com/books?id=ZDRxBAAAQBAJ |year=2014 |publisher=Springer Science+Business Media |isbn=978-1-4471-6548-4 |page=96 |ref=harv}}
* {{cite book |last=Guruswamy |first=S. |title=Engineering properties and applications of lead alloys |date=2000 |url=https://books.google.com/?id=TtGmjOv9CUAC |isbn=978-0-8247-8247-4 |publisher=Marcel Dekker |ref=harv}}
* {{cite book |last=Hadlington |first=T. J. |title=On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes |url=https://books.google.com/books?id=KQshDgAAQBAJ |year=2017 |publisher=Springer |isbn=978-3-319-51807-7 |ref=harv}}
* {{cite book |last1=Harbison |first1=R. D. |last2=Bourgeois |first2=M. M. |last3=Johnson |first3=G. T. |title=Hamilton and Hardy's Industrial Toxicology |date=2015 |publisher=John Wiley & Sons |isbn=978-0-470-92973-5 |ref=harv}}
* {{cite book |last1=Hauser |first1=P. C. |chapter=Analytical Methods for the Determination of Lead in the Environment |publisher=de Gruyter|date=2017 |series=Metal Ions in Life Sciences |volume=17 |title=Lead: Its Effects on Environment and Health |editor1-last=Astrid |editor1-first=S. |editor2-last=Helmut |editor2-first=S. |editor3-last=Sigel |editor3-first=R. K. O. |doi=10.1515/9783110434330-003 |pmid=28731296 |ref=harv|isbn=9783110434330 }}
* {{cite journal |last=Hernberg |first=S. |title=Lead Poisoning in a Historical Perspective |date=2000 |pages=244–54 |url=http://rachel.org/files/document/Lead_Poisoning_in_Historical_Perspective.pdf |journal=American Journal of Industrial Medicine |volume=38 |issue=3 |doi=10.1002/1097-0274(200009)38:3<244::AID-AJIM3>3.0.CO;2-F |accessdate=1 March 2017 |ref=harv |pmid=10940962 |format=PDF}}
* {{cite web |title=A History of Cosmetics from Ancient Times |url=http://www.cosmeticsinfo.org/Ancient-history-cosmetics |website=Cosmetics Info |accessdate=18 July 2016 |ref=CITEREFHistory of Cosmetics}}
* {{cite journal |last=Hodge |first=T. A. |title=Vitruvius, lead pipes and lead poisoning |year=1981 |pages=486–91 |volume=85 |issue=4 |jstor=504874 |journal=American Journal of Archaeology |doi=10.2307/504874 |ref=harv}}
* {{cite journal |last1=Hong |first1=S. |last2=Candelone |first2=J.-P. |last3=Patterson |first3=C. C. |last4=Boutron |first4=C. F. |title=Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations |date=1994 |pages=1841–43 |doi=10.1126/science.265.5180.1841 |url=http://www.precaution.org/lib/greenland_ice_evidence_of_ancient_lead_pollution.19940923.pdf |display-authors=3 |journal=Science |volume=265 |issue=5180 |pmid=17797222 |bibcode=1994Sci...265.1841H |ref=harv |format=PDF}}
* {{cite book |last=Hunt |first=A. |title=Dictionary of Chemistry |url=https://books.google.com/books?id=P_lRAwAAQBAJ |year=2014 |publisher=Routledge|isbn=978-1-135-94178-9 |ref=harv}}
* {{cite web |author=IAEA - Nuclear Data Section |url=https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html |title=Livechart - Table of Nuclides - Nuclear structure and decay data |year=2017 |website=www-nds.iaea.org |publisher=International Atomic Energy Agency |accessdate=31 March 2017 |ref=harv}}
* {{cite report |author1=Insight Explorer |author2=IPEN |url=http://www.ipen.org/sites/default/files/documents/PR_New_Study_Finds_Lead_Levels_in_a_Majority_of_Paints_Exceed_Chinese_Regulation_and_Should_Not_be_on_Store_Shelves_EN_27_Jan._2016.pdf |date=2016 |title=New Study Finds Lead Levels in a Majority of Paints Exceed Chinese Regulation and Should Not be on Store Shelves |accessdate=3 May 2018 |ref=harv}}
* {{cite report |first1=Yuyun|last1=Ismawati|first2=Andita|last2=Primanti|first3=Sara|last3=Brosché|first4=Clark|last4=Clark|first5=Jack|last5=Weinberg|first6=Valerie|last6=Denney |url=https://ipen.org/pdfs/ina_bf_final_report_rev_2_2013_08-v2-id.pdf |date=2013 |title=Timbal dalam Cat Enamel Rumah Tangga di Indonesia |accessdate=26 December 2018 |publisher=BaliFokus & IPEN | ref=harv | language=id}}
* {{cite book |last=Jensen |first=C. F. |title=Online Location of Faults on AC Cables in Underground Transmission |year=2013 |publisher=Springer |isbn=978-3-319-05397-4 |ref=harv}}
* {{cite book |last1=Jones |first1=P. A. |title=Jedburgh Justice and Kentish Fire: The Origins of English in Ten Phrases and Expressions |url=https://books.google.com/books?id=rfqzBAAAQBAJ |date=2014 |publisher=Constable & Robinson |isbn=978-1-47211-389-4 |ref=harv}}
* {{cite book |last=Kaupp |first=M. |chapter=Chemical bonding of main-group elements |title=The Chemical Bond: Chemical Bonding Across the Periodic Table |pages=1–24 |year=2014 |publisher=John Wiley & Sons |doi=10.1002/9783527664658.ch1 |editor-last=Frenking |editor-first=G. |editor-last2=Shaik |editor-first2=S. |chapter-url=https://application.wiley-vch.de/books/sample/3527333150_c01.pdf |ref=harv |chapter-format=PDF|isbn=9783527664658 }}
* {{cite book |last=Kellett |first=C. |title=Poison and Poisoning: A Compendium of Cases, Catastrophes and Crimes |year=2012 |url=https://books.google.com/books?id=Wa0hBgAAQBAJ |publisher=Accent Press |isbn=978-1-909335-05-9 |ref=harv}}
* {{cite book |last=King |first=R. B. |title=Inorganic Chemistry of Main Group Elements |date=1995 |publisher=VCH Publishers |isbn=978-1-56081-679-9 |ref=harv}}
* {{cite book |last1=Konu |first1=J. |last2=Chivers |first2=T. |chapter=Stable Radicals of the Heavy p-Block Elements |editor-last=Hicks |editor-first=R. G. |title=Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds |chapter-url=https://books.google.com/books?id=WuwW8QDuCKIC |year=2011 |publisher=John Wiley & Sons |isbn=978-0-470-77083-2 |ref=harv|doi=10.1002/9780470666975.ch10}}
* {{cite book |last=Kosnett |first=M. J. |chapter=Lead |title=Poisoning and Drug Overdose |year=2006 |editor-last=Olson |editor-first=K. R. |edition=5th |publisher=McGraw-Hill Professional |page=238 |isbn=978-0-07-144333-3 |ref=harv}}
* {{cite book |last=Krestovnikoff |first=M. |last2=Halls |first2=M. |title=Scuba Diving |year=2006 |url=https://books.google.com/books?id=6KXAAVOx4VwC |publisher=Dorling Kindersley |isbn=978-0-7566-4063-7 |ref=harv}}
* {{cite book |last=Kroonen |first=G. |title=Etymological Dictionary of Proto-Germanic |year=2013 |publisher=Brill Publishers |series=Leiden Indo-European Etymological Dictionary Series |volume=11 |isbn=978-90-04-18340-7 |ref=harv}}
* {{cite book |last1=Langmuir |first1=C. H. |last2=Broecker |first2=W. S. |title=How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind |url=https://books.google.com/books?id=EnlnHlmRsqAC |year=2012 |publisher=Princeton University Press |isbn=978-0-691-14006-3 |ref=harv}}
* {{cite book|last1=Lauwerys|first1=R. R.|last2=Hoet|first2=P.|title=Industrial Chemical Exposure: Guidelines for Biological Monitoring, Third Edition|url=https://books.google.com/books?id=WUxZDwAAQBAJ&pg=PT147|year=2001|publisher=CRC Press|isbn=978-1-4822-9383-8|ref=harv}}
* {{cite web |last=Layton |first=M. |date=2017 |title=Lead faces threat of new Euro ban |url=http://www.shootinguk.co.uk/news/lead-shot-faces-threat-of-new-euro-ban-93819 |publisher=shootinguk.co.uk |accessdate=30 May 2018 |ref=harv}}
* {{cite web |url=http://www.britishmuseum.org/research/search_the_collection_database/search_object_details.aspx?objectid=399876&partid=1&output=Terms%2F!!%2FOR%2F!!%2F1204%2F!%2F%2F!%2FClassical+Greek%2F!%2F%2F!!%2F%2F!!!%2F&orig=%2Fresearch%2Fsearch_the_collection_database%2Fadvanced_search.aspx&currentPage=7&numpages=10 |publisher=The British Museum |title=Lead sling bullet; almond shape; a winged thunderbolt on one side and on the other, in high relief, the inscription DEXAI "Catch!" |accessdate=30 April 2012 |ref=CITEREFLead sling bullet}}
* {{cite web |author=<!--Not stated--> |title=Lead garden ornaments |date=2016 |url=http://www.hcrowther.co.uk/ |website=H. Crowther Ltd |accessdate=20 February 2017 |ref=CITEREFLead garden ornaments2016}}
* {{cite web |author=<!--Not stated--> |title=Lead in Waste Disposal |date=2016 |url=https://www.epa.gov/lead/lead-regulations |publisher=United States Environmental Protection Agency |accessdate=28 February 2017 |ref=CITEREFLead in Waste2016}}
* {{cite web |title=Lead mining |url=http://www.thenorthernecho.co.uk/history/mining/lead/ |publisher=The Northern Echo |accessdate=16 February 2016 |ref=CITEREFLead mining}}
* {{cite book |last=Levin |first=H. L. |title=The Earth Through Time |url=https://books.google.com/books?id=D0yl7Cqsu78C |year=2009 |publisher=John Wiley & Sons |isbn=978-0-470-38774-0 |ref=harv}}
* {{cite journal |last1=Levin |first1=R. |last2=Brown |first2=M. J. |last3=Kashtock |first3=M. E. |last4=Jacobs |first4=D. E. |last5=Whelan |first5=E. A. |last6=Rodman |first6=J. |last7=Schock |first7=M. R. |last8=Padilla |first8=A. |last9=Sinks |first9=T. |title=Lead exposures in U.S. children, 2008: Implications for prevention |year=2008 |pages=1285–93 |display-authors=3 |journal=Environmental Health Perspectives |volume=116 |issue=10 |doi=10.1289/ehp.11241 |pmc=2569084 |pmid=18941567 |ref=harv}}
* {{cite journal |last=Lewis |first1=J. |year=1985 |title=Lead Poisoning: A Historical Perspective |url=https://archive.epa.gov/epa/aboutepa/lead-poisoning-historical-perspective.html |accessdate=31 January 2017 |journal=EPA Journal |volume=11 |issue=4 |pp=15–18 |ref=harv}}
* {{cite book |title=CRC Handbook of Chemistry and Physics |date=2005 |editor-last=Lide |editor-first=D. R. |edition=85th |publisher=CRC Press |isbn=978-0-8493-0484-2 |ref=harv}}
* {{cite journal |last1=Liu |first1=J. |last2=Liu |first2=X. |last3=Pak |first3=V. |last4=Wang |first4=Y. |last5=Yan |first5=C. |last6=Pinto-Martin |first6=J. |last7=Dinges |first7=D. |display-authors=3 |title=Early blood lead levels and sleep disturbance in preadolescence |year=2015 |pages=1869–74 |pmid=26194570 |pmc=4667382 |doi=10.5665/sleep.5230 |journal=Sleep |volume=38 |issue=12 |ref=harv}}
* {{cite web |last1=Lochner |first1=J. C. |last2=Rohrbach |first2=G. |last3=Cochrane |first3=K. |year=2005 |title=What is Your Cosmic Connection to the Elements? |publisher=Goddard Space Flight Center |url=https://imagine.gsfc.nasa.gov/educators/elements/imagine/Cosmic.pdf |archiveurl=https://web.archive.org/web/20161229105038/https://imagine.gsfc.nasa.gov/educators/elements/imagine/Cosmic.pdf |archivedate=29 December 2016 |accessdate=2 July 2017 |ref=harv |format=PDF}}
* {{cite journal |last1=Lodders |first1=K. |title=Solar System abundances and condensation temperatures of the elements |url=http://solarsystem.wustl.edu/wp-content/uploads/reprints/2003/Lodders%202003%20ApJ%20Elemental%20abundances.pdf |year=2003 |pages=1220–47 |journal=The Astrophysical Journal |volume=591 |issue=2 |issn=0004-637X |doi=10.1086/375492 |ref=harv |bibcode=2003ApJ...591.1220L |format=PDF}}
* {{cite book |last1=Luckey |first1=T. D. |last2=Venugopal |first2=B. |title=Physiologic and Chemical Basis for Metal Toxicity |year=1979 |publisher=Plenum Press |isbn=978-1-4684-2952-7 |url=https://books.google.com/books?id=7mxyBgAAQBAJ |ref=harv}}
* {{cite book |last=Macintyre |first=J. E. |title=Dictionary of Inorganic Compounds |url=https://books.google.com/books?id=9eJvoNCSCRMC |year=1992 |publisher=CRC Press |isbn=978-0-412-30120-9 |ref=harv}}
* {{cite journal |last=Marcillac |first=P. de |last2=Coron |first2=N. |last3=Dambier |first3=G. |last4=Leblanc |first4=J. |last5=Moalic |first5=J.-P. |title=Experimental detection of ?-particles from the radioactive decay of natural bismuth |date=2003 |pages=876–78 |display-authors=3 |journal=Nature |volume=422 |pmid=12712201 |doi=10.1038/nature01541 |issue=6934 |bibcode=2003Natur.422..876D |ref=harv}}
* {{cite journal |last1=Marino |first1=P. E. |last2=Landrigan |first2=P. J. |last3=Graef |first3=J. |last4=Nussbaum |first4=A. |last5=Bayan |first5=G. |last6=Boch |first6=K. |last7=Boch |first7=S. |title=A case report of lead paint poisoning during renovation of a Victorian farmhouse |year=1990 |pages=1183–85 |display-authors=3 |journal=American Journal of Public Health |volume=80 |issue=10 |doi=10.2105/AJPH.80.10.1183 |pmc=1404824 |pmid=2119148 |ref=harv}}
* {{cite journal |last1=Markowitz |first1=G. |authorlink1=Gerald Markowitz |last2=Rosner |first2=D. |title="Cater to the children": the role of the lead industry in a public health tragedy, 1900–55 |year=2000 |pages=36–46 |pmc=1446124 |pmid=10630135 |volume=90 |issue=1 |journal=American Journal of Public Health |doi=10.2105/ajph.90.1.36 |ref=harv}}
* {{cite book |last1=Masters |first1=S. B. |last2=Trevor |first2=A. J. |last3=Katzung |first3=B. G. |title=Katzung & Trevor's Pharmacology: Examination & Board Review |year=2008 |publisher=McGraw-Hill Medical |edition=8th |isbn=978-0-07-148869-3 |ref=harv}}
* {{cite news |last=McCoy |first=S. |date=2017 |title=The End of Lead? Federal Gov’t Order Bans Sinkers, Ammo |url=https://gearjunkie.com/lead-ban-ammunition-fishing-sinkers |website=GearJunkie |accessdate=30 May 2018 |ref=harv}}
* {{cite journal |last1=Meija |first1=J. |last2=Coplen |first2=T. B. |last3=Berglund |first3=M. |last4=Brand |first4=W. A. |last5=De Bievre |first5=P. |last6=Groning |first6=M. |last7=Holden |first7=N. E. |last8=Irrgeher |first8=J. |last9=Loss |first9=R. D. |last10=Walczyk |first10=T. |last11=Prohaska |first11=T. |display-authors=3 |year=2016 |title=Atomic weights of the elements 2013 (IUPAC Technical Report) |journal=Pure and Applied Chemistry |volume=88 |number=3 |pages=265–291 |url=http://www.ciaaw.org/atomic-weights.htm |ref=harv |doi=10.1515/pac-2015-0305}}
* {{cite web |author=Merriam-Webster |title=Definition of LEAD |url=http://www.merriam-webster.com/dictionary/lead |website=www.merriam-webster.com |accessdate=12 August 2016 |ref=harv}}
* {{cite journal |last1=Moore |first1=M. R. |title=Lead in drinking water in soft water areas—health hazards |date=1977 |pages=109–15 |journal=Science of the Total Environment |volume=7 |issue=2 |doi=10.1016/0048-9697(77)90002-X |pmid=841299 |ref=harv|bibcode=1977ScTEn...7..109M }}
* {{cite journal |last1=More |first1=A. F. |last2=Spaulding |first2=N. E. |last3=Bohleber |first3=P. |last4=Handley |first4=M. J. |last5=Hoffmann |first5=H. |last6=Korotkikh |first6=E. V. |last7=Kurbatov |first7=A. V. |last8=Loveluck |first8=C. P. |last9=Sneed |first9=S. B. |last10=McCormick |first10=M. |last11=Mayewski |first11=P. A. |display-authors=3 |title=Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death |journal=GeoHealth |year=2017 |issn=2471-1403 |doi=10.1002/2017GH000064 |ref=harv|volume=1|issue=4|pages=211–219}}
* {{cite journal |last1=Mosseri |first1=S. |last2=Henglein |first2=A. |last3=Janata |first3=E. |title=Trivalent lead as an intermediate in the oxidation of lead(II) and the reduction of lead(IV) species |year=1990 |pages=2722–26 |doi=10.1021/j100369a089 |journal=Journal of Physical Chemistry |volume=94 |issue=6 |ref=harv}}
* {{cite book |last1=Mycyk |first1=M. |last2=Hryhorczuk |first2=D. |last3=Amitai |first3=Y. |author4=etal |display-authors=3 |chapter=Lead |title=Pediatric Toxicology: Diagnosis and Management of the Poisoned Child |year=2005 |editor-last1=Erickson |editor-first1=T. B. |editor-last2=Ahrens |editor-first2=W. R. |editor-last3=Aks |editor-first3=S. |publisher=McGraw-Hill Professional |isbn=978-0-07-141736-5 |ref=harv}}
* {{cite journal |last1=Nakashima |first1=T. |last2=Hayashi |first2=H. |last3=Tashiro |first3=H. |last4=Matsushita |first4=T. |title=Gender and hierarchical differences in lead-contaminated Japanese bone from the Edo period |year=1998 |pages=55–60 |doi=10.1539/joh.40.55 |display-authors=3 |journal=Journal of Occupational Health |volume=40 |issue=1 |ref=harv}}
* {{cite book |author=National Council on Radiation Protection and Measurements |title=Structural Shielding Design for Medical X-ray Imaging Facilities |date=2004 |url=https://books.google.com/?id=DKu4YDjEluoC |isbn=978-0-929600-83-3 |ref=harv}}
* {{cite web |author=National Institute for Occupational Safety and Health |title=NIOSH Pocket Guide to Chemical Hazards&nbsp;— Lead |url=https://www.cdc.gov/niosh/npg/npgd0368.html |website=www.cdc.gov |accessdate=18 November 2016 |ref=harv}}
* {{cite journal|last1=Navas-Acien|first1=A.|title=Lead Exposure and Cardiovascular Disease—A Systematic Review|journal=Environmental Health Perspectives|date=2007|volume=115|issue=3|pages=472–482|doi=10.1289/ehp.9785|pmid=17431501|pmc=1849948|ref=harv}}
* {{cite book |title=Indo-European Etymology |year=2012 |url=http://starling.rinet.ru/cgi-bin/response.cgi?root=config&morpho=0&basename=%5Cdata%5Cie%5Cpiet&first=1&off=&text_proto=lAudh&method_proto=substring&ic_proto=on&text_meaning=&method_meaning=substring&ic_meaning=on&text_hitt=&method_hitt=substring&ic_hitt=on&text_tokh=&method_tokh=substring&ic_tokh=on&text_ind=&method_ind=substring&ic_ind=on&text_avest=&method_avest=substring&ic_avest=on&text_iran=&method_iran=substring&ic_iran=on&text_arm=&method_arm=substring&ic_arm=on&text_greek=&method_greek=substring&ic_greek=on&text_slav=&method_slav=substring&ic_slav=on&text_balt=&method_balt=substring&ic_balt=on&text_germ=&method_germ=substring&ic_germ=on&text_lat=&method_lat=substring&ic_lat=on&text_ital=&method_ital=substring&ic_ital=on&text_celt=&method_celt=substring&ic_celt=on&text_alb=&method_alb=substring&ic_alb=on&text_rusmean=&method_rusmean=substring&ic_rusmean=on&text_refer=&method_refer=substring&ic_refer=on&text_comment=&method_comment=substring&ic_comment=on&text_any=&method_any=substring&sort=proto&ic_any=on |entry=*lAudh- |editor-first=S. |editor-last=Nikolayev |website=starling.rinet.ru |accessdate=21 August 2016 |ref=CITEREFNikolayev2012}}
* {{cite book |last=Norman |first=N. C. |title=Periodicity and the s- and p-Block Elements |date=1996 |publisher=Oxford University Press |isbn=978-0-19-855961-0 |ref=harv}}
* {{cite journal |last=Nriagu |first=J. O. |title=Saturnine gout among Roman aristocrats — Did lead poisoning contribute to the fall of the Empire? |year=1983 |pages=660–63 |journal=The New England Journal of Medicine |volume=308 |issue=11 |doi=10.1056/NEJM198303173081123 |pmid=6338384 |ref=harv}}
* {{cite journal |last=Nriagu |first=J. O. |last2=Kim |first2=M-J. |title=Emissions of lead and zinc from candles with metal-core wicks |date=2000 |pages=37–41 |doi=10.1016/S0048-9697(00)00359-4 |journal=Science of the Total Environment |volume=250 |pmid=10811249 |issue=1–3 |ref=harv|bibcode=2000ScTEn.250...37N }}
* {{cite web |author=Occupational Safety and Health Administration |title=Substance data sheet for occupational exposure to lead |url=https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10031 |archiveurl=https://web.archive.org/web/20180316131738/https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10031 |archivedate= 16 March 2018 |website=www.osha.gov |accessdate=1 July 2017 |ref=harv}}
* {{cite web |last=Olinsky-Paul |year=2013 |first=T. |title=East Penn and Ecoult battery installation case study webinar |url=http://www.cesa.org/assets/Uploads/ESTAP-Ecoult-Battery-Installation-Case-Study-Presentation.pdf |website=Clean Energy States Alliance |accessdate=28 February 2017 |ref=harv |format=PDF}}
* {{cite book |title=The Organ |date=2006 |url=https://books.google.com/?id=cgDJaeFFUPoC |isbn=978-0-415-94174-7 |editor-last=Palmieri |editor-first=R. |publisher=Psychology Press |ref=CITEREFPalmieri2006}}
* {{cite encyclopedia |title=surma |encyclopedia=Oxford English Dictionary |edition=2nd |year=2009 |publisher=Oxford University Press |ref=CITEREFOxford English Dictionary}}
* {{cite journal |last1=Park |first1=J. H. |last2=Bolan |first2=N. |last3=Meghara |first3=M. |last4=Naidu |first4=R. |last5=Chung |first5=J. W. |title=Bacterial-assisted immobilization of lead in soils: Implications for remediation |date=2011 |pages=162–74 |url=http://pedology.ac.affrc.go.jp/specialI/SI54_3/sepPDF/03_Jinhee%20Park.pdf |display-authors=3 |journal=Pedologist |archive-url=https://web.archive.org/web/20151126050549/http://pedology.ac.affrc.go.jp/specialI/SI54_3/sepPDF/03_Jinhee%20Park.pdf |archive-date=26 November 2015 |ref=harv |deadurl=yes |df= |format=PDF}}
* {{cite book |last=Parker |first=R. B. |title=The New Cold-Molded Boatbuilding: From Lofting to Launching |year=2005 |url=https://books.google.com/books?id=VnoW5YpDN7sC |publisher=WoodenBoat Books |isbn=978-0-937822-89-0 |ref=harv}}
* {{cite book |title=Crystal Chemistry of Tetrahedral Structures |url=https://books.google.com/books?id=bwQgvsxftTgC |date=1964 |last=Parthé |first=E. |publisher=CRC Press |ref=harv |isbn=978-0-677-00700-7}}
* {{cite book |last=Pauling |first=L. |title=General Chemistry |date=1947 |authorlink=Linus Pauling |publisher=W. H. Freeman and Company |isbn=978-0-486-65622-9 |ref=harv}}
* {{cite journal|last1=Peneva|first1=S. K.|last2=Djuneva|first2=K. D.|last3=Tsukeva|first3=E. A.|title=RHEED study of the initial stages of crystallization and oxidation of lead and tin|journal=Journal of Crystal Growth|volume=53|issue=2|year=1981|pages=382–396|issn=0022-0248|doi=10.1016/0022-0248(81)90088-9|ref=harv|bibcode=1981JCrGr..53..382P}}
* {{cite book|editor-last1=Puttlitz|editor-first1=K. J.|editor-last2=Stalter|editor-first2=K. A.|last=Petzel|first=S.|last2=Juuti|first2=M.|last3=Sugimoto|first3=Yu.|chapter=Environmental Stewardship with Regional Perspectives and Drivers of the Lead-free Issue|title=Handbook of Lead-Free Solder Technology for Microelectronic Assemblies|chapter-url=https://books.google.com/books?id=7FX5LkxfRpwC&pg=PA122|year=2004|publisher=CRC Press|isbn=978-0-8247-5249-1|ref=harv}}
* {{cite book |last=Polyanskiy |first=N. G. |date=1986 |script-title=ru:Аналитическая химия элементов: Свинец |trans-title=Analytical Chemistry of the Elements: Lead |editor=Fillipova, N. A |publisher=Nauka |language=Russian |ref=harv}}
* {{cite book |last=Prasad |first=P. J. |title=Conceptual Pharmacology |date=2010 |url=https://books.google.com/books?id=s0e_FlM8LKYC |publisher=Universities Press |isbn=978-81-7371-679-9 |accessdate=21 June 2012 |ref=harv}}
* {{cite web |title=Primary Lead Refining Technical Notes |url=http://www.ldaint.org/technotes2.htm |publisher=LDA International |accessdate=7 April 2007 |archiveurl=https://web.archive.org/web/20070322191856/http://www.ldaint.org/technotes2.htm |archivedate=22 March 2007 |ref=CITEREFPrimary Lead Refining}}
* {{cite web |author=Progressive Dynamics, Inc. |title=How Lead Acid Batteries Work: Battery Basics |url=http://www.progressivedyn.com/battery_basics.html |website=progressivedyn.com |accessdate=3 July 2016 |archive-url=https://web.archive.org/web/20181119073137/https://www.progressivedyn.com/service/battery-basics/| archive-date=19 November 2018 |ref=harv}}
* {{cite book |last=Putnam |first1=B. |title=The Sculptor's Way: A Guide to Modelling and Sculpture |url=https://books.google.com/books?id=-DC3UDjjPvgC |date=2003 |publisher=Dover Publications |isbn=978-0-486-42313-5 |ref=harv}}
* {{cite journal |last=Pyykkö |first=P. |title=Relativistic effects in structural chemistry |year=1988 |pages=563–94 |authorlink=Pekka Pyykkö |journal=Chemical Reviews |volume=88 |doi=10.1021/cr00085a006 |issue=3 |ref=harv}}
* {{cite book |last=Rabinowitz |first=M. B. |chapter=Imputing lead sources from blood lead isotope ratios |editor-last1=Beard |editor-first1=M. E. |editor-last2=Allen Iske |editor-first2=S. D. |title=Lead in Paint, Soil, and Dust: Health Risks, Exposure Studies, Control Measures, Measurement Methods, and Quality Assurance |year=1995 |publisher=ASTM |isbn=978-0-8031-1884-3 |pages=63–75 |chapter-url=https://books.google.com/?id=-wt0AXfjiUIC |ref=harv|doi=10.1520/stp12967s }}
* {{cite web |url= https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-744-marine-isotope-chemistry-fall-2012/nuclear-systematics/MIT12_744F12_Lec4.pdf|title=Radioactive Decay Series |series= Nuclear Systematics |publisher=MIT OpenCourseWare|date=2012 |accessdate= 28 April 2018 |ref=CITEREFRadioactive Decay Series2012}}
* {{cite book |editor-last=Ramage |editor-first=C. K. |title=Lyman Cast Bullet Handbook |year=1980 |edition=3rd |publisher=Lyman Products Corporation |ref=harv}}
* {{cite journal |last=Randerson |first=J. |title=Candle pollution |url=https://www.newscientist.com/article/mg17423481.900-candle-pollution.html |journal=New Scientist |accessdate=7 April 2007 |issue=2348 |date=2002 |ref=harv}}
* {{cite journal |last=Reddy |first=A. |last2=Braun |first2=C. L. |title=Lead and the Romans |year=2010 |journal=Journal of Chemical Education |volume=87 |issue=10 |doi=10.1021/ed100631y |ref=harv |pages=1052–55|bibcode=2010JChEd..87.1052R }}
* {{cite journal |last1=Retief |first1=F. |last2=Cilliers |first2=L. P. |title=Lead poisoning in ancient Rome |year=2006 |pages=147–64 (149–51) |journal=Acta Theologica |volume=26 |issue=2 |doi=10.4314/actat.v26i2.52570 |ref=harv}}
* {{cite book |last=Rich |first=V. |title=The International Lead Trade |year=1994 |publisher=Woodhead Publishing |isbn=978-0-85709-994-5 |url=https://books.google.com/books?id=mfPJCgAAQBAJ |ref=harv}}
* {{cite book |last=Rieuwerts |first1=J. |title=The Elements of Environmental Pollution |date=2015 |publisher=Routledge |isbn=978-0-415-85919-6 |ref=harv}}
* {{cite journal |last1=Riva |first1=M. A. |last2=Lafranconi |first2=A. |last3=d'Orso |first3=M. I. |last4=Cesana |first4=G. |title=Lead poisoning: Historical aspects of a paradigmatic "occupational and environmental disease" |year=2012 |pages=11–16 |doi=10.5491/SHAW.2012.3.1.11 |pmid=22953225 |pmc=3430923 |journal=Safety and Health at Work |volume=3 |issue=1 |display-authors=3 |ref=harv}}
* {{cite journal |last=Roederer |first=I. U. |last2=Kratz |first2=K.-L. |last3=Frebel |first3=A. |last4=Christlieb |first4=N. |last5=Pfeiffer |first5=B. |last6=Cowan |first6=J. J. |last7=Sneden |first7=C. |title=The end of nucleosynthesis: Production of lead and thorium in the early galaxy |year=2009 |pages=1963–80 |display-authors=3 |journal=The Astrophysical Journal |volume=698 |issue=2 |doi=10.1088/0004-637X/698/2/1963 |bibcode=2009ApJ...698.1963R |ref=harv|arxiv=0904.3105 }}
* {{cite book |last=Rogalski |first=A. |title=Infrared Detectors |edition=2nd |year=2010 |url=https://books.google.com/books?id=0VUJSafhaK0C |accessdate=19 November 2016 |publisher=CRC Press |isbn=978-1-4200-7671-4 |ref=harv}}
* {{cite book |last=Röhr |first=C. |chapter=Binare Zintl-Phasen |trans-chapter=Binary Zintl Phases |title=Intermetallische Phasen |trans-title=Intermettallic Phases |publisher=Universitat Freiburg |language=German |chapter-url=http://ruby.chemie.uni-freiburg.de/Vorlesung/intermetallische_6_2.html |accessdate=18 February 2017 |year=2017 |ref=harv}}
* {{cite book |last1=Rudolph |first1=A. M. |last2=Rudolph |first2=C. D. |last3=Hostetter |first3=M. K. |last4=Lister |first4=George E. |last5=Siegel |first5=Norman J. |display-authors=3 |chapter=Lead |title=Rudolph's Pediatrics |year=2003 |page=369 |edition=21st |publisher=McGraw-Hill Professional |isbn=978-0-8385-8285-5 |ref=harv}}
* {{cite book |last=Samson |first=G. W. |title=The divine law as to wines |date=1885 |publisher=J. B. Lippincott & Co. |ref=harv}}
* {{cite journal |last=Scarborough |first=J. |title=The myth of lead poisoning among the Romans: An essay review |date=1984 |pages=469–475 |journal=Journal of the History of Medicine and Allied Sciences |volume=39 |issue=4 |doi=10.1093/jhmas/39.4.469 |ref=harv |pmid=6389691}}
* {{cite book |last=Schoch |first=R. M. |authorlink=Robert M. Schoch |title=Case Studies in Environmental Science |date=1996 |publisher=West Publishing |isbn=978-0-314-20397-7 |ref=harv}}
* {{cite journal |last1=Schoeters |first1=G. |last2=Den Hond |first2=E. |last3=Dhooge |first3=W. |last4=Van Larebeke |first4=N. |last5=Leijs |first5=M. |title=Endocrine disruptors and abnormalities of pubertal development |date=2008 |pages=168–175 |display-authors=3 |journal=Basic & Clinical Pharmacology & Toxicology |volume=102 |issue=2 |doi=10.1111/j.1742-7843.2007.00180.x |pmid=18226071 |ref=harv|hdl=1854/LU-391408 }}
* {{cite journal |first1=H. R. |last1=Sharma |first2=K. |last2=Nozawa |last3=Smerdon |first3=J. A. |last4=Nugent |first4=P. J. |last5=McLeod |first5=I. |last6=Dhanak |first6=V. R. |last7=Shimoda |first7=M. |last8=Ishii |first8=Y. |last9=Tsai |first9=A. P. |title=Templated three-dimensional growth of quasicrystalline lead |year=2013 |first10=R. |last10=McGrath |journal=Nature Communications |volume=4 |page= 2715|doi=10.1038/ncomms3715 |pmid=24185350 |display-authors=3 |ref=harv|bibcode=2013NatCo...4E2715S }}
* {{cite journal |last1=Sharma |first1=H. R. |last2=Smerdon |first2=J. A. |last3=Nugent |first3=P. J. |last4=Ribeiro |first4=A. |last5=McLeod |first5=I. |last6=Dhanak |first6=V. R. |last7=Shimoda |first7=M. |last8=Tsai |first8=A. P. |last9=McGrath |first9=R. |title=Crystalline and quasicrystalline allotropes of Pb formed on the fivefold surface of icosahedral Ag-In-Yb |year=2014 |page=174710 |journal=The Journal of Chemical Physics |volume=140 |issue=17 |doi=10.1063/1.4873596 |pmid=24811658 |display-authors=3 |ref=harv|bibcode=2014JChPh.140q4710S }}
* {{cite journal |last=Silverman |first=M. S. |title=High-pressure (70-k) synthesis of new crystalline lead dichalcogenides |date=1966 |pages=2067–69 |journal=Inorganic Chemistry |volume=5 |issue=11 |doi=10.1021/ic50045a056 |ref=harv}}
* {{cite news |last=Singh |first=P. |date=2017 |title=Over 73% of paints found to have excessive lead: Study |url=https://timesofindia.indiatimes.com/life-style/health-fitness/health-news/over-73-of-paints-found-to-have-excessive-lead-study/articleshow/61334283.cms |publisher=Times of India |accessdate=3 May 2018 |ref=harv}}
* {{cite journal |last1=Sinha |first1=S. P. |last2=Shelly |first2=<!--empty; same in source--> |last3=Sharma |first3=V. |last4=Meenakshi |first4=<!--empty; same in source--> |last5=Srivastava |first5=S. |last6=Srivastava |first6=M. M. |title=Neurotoxic effects of lead exposure among printing press workers |year=1993 |doi=10.1007/BF00192162 |pages=490–93|journal=Bulletin of Environmental Contamination and Toxicology |volume=51 |issue=4 |display-authors=3 |ref=harv}}
* {{cite journal|last1=Slater|first1=J. C.|title=Atomic Radii in Crystals|journal=The Journal of Chemical Physics|volume=41|issue=10|year=1964|pages=3199–3204|issn=0021-9606|doi=10.1063/1.1725697|ref=harv|bibcode=1964JChPh..41.3199S}}
* {{cite journal |last1=Smirnov |first1=A. Yu. |last2=Borisevich |first2=V. D. |last3=Sulaberidze |first3=A. |title=Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials |year=2012 |pages=373–78 |journal=Theoretical Foundations of Chemical Engineering |volume=46 |issue=4 |url=https://link.springer.com/article/10.1134%2FS0040579512040161#page-1 |doi=10.1134/s0040579512040161 |ref=harv}}
* {{cite book |last=Sokol |first=R. C. |chapter=Lead exposure and its effects on the reproductive system |title=Metals, Fertility, and Reproductive Toxicity |date=2005 |pages=117–53 |chapter-url=https://books.google.com/?id=Qt8LEB7_HyQC |publisher=CRC Press |isbn=978-0-415-70040-5 |editor-last=Golub |editor-first=M. S. |ref=harv|doi=10.1201/9781420023282.ch6 }}
* {{cite journal |last1=Stabenow |first1=F. |last2=Saak |first2=W. |last3=Weidenbruch |first3=M. |title=Tris(triphenylplumbyl)plumbate: An anion with three stretched lead–lead bonds |year=2003 |pages=2342–2343 |doi=10.1039/B305217F |journal=Chemical Communications |issue=18 |ref=harv}}
* {{cite journal |last=Stone |first=R. |year=1997 |title=An Element of Stability |journal=Science |volume=278 |issue=5338 |pages=571–572 |doi=10.1126/science.278.5338.571 |ref=harv|bibcode=1997Sci...278..571S }}
* {{cite book |ref=harv |last1=Street |first1=A. |last2=Alexander |first2=W. |title=Metals in the Service of Man|edition=11th |url=https://books.google.com/books?id=cOCTPwAACAAJ |year=1998 |publisher=Penguin Books |isbn=978-0-14-025776-2}}
* {{cite book |last=Szczepanowska |first=H. M. |title=Conservation of Cultural Heritage: Key Principles and Approaches |url=https://books.google.com/books?id=yu9_LZ1AD_gC |year=2013 |publisher=Routledge |isbn=978-0-415-67474-4 |ref=harv}}
* {{cite journal |last1=Takahashi |first1=K. |last2=Boyd |first2=R. N. |last3=Mathews |first3=G. J. |last4=Yokoi |first4=K. |title=Bound-state beta decay of highly ionized atoms |date=1987 |url=http://www.ca.infn.it/~oldeman/resneu/p1522_1.pdf |display-authors=3 |accessdate=27 August 2013 |oclc=1639677 |volume=36 |issue=4 |pages=1522 |journal=Physical Review C|archive-url=https://web.archive.org/web/20141021195204/http://www.ca.infn.it/~oldeman/resneu/p1522_1.pdf |archive-date=21 October 2014 |ref=harv |deadurl=yes |df= |format=PDF|doi=10.1103/physrevc.36.1522|bibcode=1987PhRvC..36.1522T }}
* {{cite web |last=Tarragó |first=A. |title=Case Studies in Environmental Medicine (CSEM) Lead Toxicity |date=2012 |url=https://www.atsdr.cdc.gov/csem/lead/docs/lead.pdf |publisher=Agency for Toxic Substances and Disease Registry |ref=harv |format=PDF}}
* {{cite journal |last1=Tétreault |first1=J. |last2=Sirois |first2=J. |last3=Stamatopoulou |first3=E. |title=Studies of lead corrosion in acetic acid environments |date=1998 |pages=17–32 |journal=Studies in Conservation |volume=43 |issue=1 |doi=10.2307/1506633 |jstor=1506633 |ref=harv}}
* {{cite web |author=<!--Not stated--> |title=Think Lead research summary |url=http://leadsheet.co.uk/wp-content/uploads/2016/06/lsa-research-summary.pdf |publisher=The Lead Sheet Association |accessdate=20 February 2017 |ref=CITEREFThink Lead research |format=PDF}}
* {{cite book |last=Thomson |first=T. |authorlink=Thomas Thomson (chemist) |title=The History of Chemistry |year=1830 |url=https://books.google.com/books?id=fXkJAAAAIAAJ |publisher=Henry Colburn and Richard Bentley (publishers) |ref=harv}}
* {{cite book |last1=Thornton |first1=I. |last2=Rautiu |first2=R. |last3=Brush |first3=S. M. |title=Lead: The Facts |date=2001 |url=http://www.ila-lead.org/UserFiles/File/factbook/leadTheFacts.pdf |publisher=International Lead Association |accessdate=5 February 2017 |isbn=978-0-9542496-0-1 |ref=harv |format=PDF}}
* {{cite journal |last1=Thürmer |first1=K. |last2=Williams |first2=E. |last3=Reutt-Robey |first3=J. |title=Autocatalytic oxidation of lead crystallite surfaces |date=2002 |pages=2033–35 |doi=10.1126/science.297.5589.2033 |journal=Science |volume=297 |issue=5589 |pmid=12242437 |bibcode=2002Sci...297.2033T |ref=harv}}
* {{cite web |last=Tolliday |first=B. |title=Significant growth in lead usage underlines its importance to the global economy |date=2014 |url=http://www.ila-lead.org/news/lead-in-the-news/2012-11-30/significant-growth-in-lead-usage-underlines-its--importance-to-the-global-economy- |publisher=International Lead Association |accessdate=28 February 2017 |quote=Global demand for lead has more than doubled since the early 1990s and almost 90% of use is now in lead-acid batteries |ref=harv}}
* {{cite web |title=Toronto museum explores history of contraceptives |year=2003 |url=http://www.abc.net.au/news/2003-08-13/toronto-museum-explores-history-of-contraceptives/1463884 |website=ABC News |accessdate=13 February 2016 |ref=CITEREFToronto museum explores2003}}
* {{cite web |title=Toxic Substances Portal&nbsp;– Lead |url=http://www.atsdr.cdc.gov/PHS/PHS.asp?id=92&tid=22 |publisher=Agency for Toxic Substances and Disease Registry |deadurl=yes |archiveurl=https://web.archive.org/web/20110606072913/http://www.atsdr.cdc.gov/PHS/PHS.asp?id=92&tid=22 |archivedate=6 June 2011 |ref=CITEREFToxic Substances Portal}}
* {{cite web |title=Toxicological Profile for Lead |date=2007 |url=https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf |work=Agency for Toxic Substances and Disease Registry/Division of Toxicology and Environmental Medicine |archiveurl=https://web.archive.org/web/20170701213753/https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf |archivedate=2 July 2017 |ref=CITEREFToxicological Profile for Lead2007 |format=PDF}}
* {{cite web |author=<!--Not stated--> |title=Trace element emission from coal |date=2012 |url=https://www.iea-coal.org/trace-element-emissions-from-coal-ccc-203/ |publisher=IEA Clean Coal Centre |accessdate=1 March 2017 |ref=CITEREFTrace element emission2012}}
* {{cite journal |last=Tuček |first=K. |last2=Carlsson |first2=J. |last3=Wider |first3=H. |title=Comparison of sodium and lead-cooled fast reactors regarding reactor physics aspects, severe safety and economical issues |date=2006 |pages=1589–98 |doi=10.1016/j.nucengdes.2006.04.019 |url=http://www.ecolo.org/documents/documents_in_english/SFRvsLFR-05.pdf |journal=Nuclear Engineering and Design |volume=236 |issue=14–16 |ref=harv |format=PDF}}
* {{cite book |last=Tungate |first=M. |title=Branded Beauty: How Marketing Changed the Way We Look |url=https://books.google.com/books?id=jQA_B84aVhYC&pg=PA14 |year=2011 |publisher=Kogan Page Publishers |isbn=978-0-7494-6182-9 |ref=harv}}
* {{cite report |author=UK Marine SACs Project |year=1999 |title=Water Quality |chapter=Lead |url=http://www.ukmarinesac.org.uk/activities/water-quality/wq8_4.htm |accessdate=10 June 2018 |ref=harv}}
* {{cite book |author=United Nations Environment Programme |title=Final review of scientific information on lead |year=2010 |url=http://www.cms.int/sites/default/files/document/UNEP_GC26_INF_11_Add_1_Final_UNEP_Lead_review_and_apppendix_Dec_2010.pdf |publisher=Chemicals Branch, Division of Technology, Industry and Economics |accessdate=31 January 2017 |ref=harv |format=PDF}}
* {{cite book |author=United States Environmental Protection Agency |title=AP 42 Compilation of Air Pollutant Emission Factors |date=2010 |chapter-url=https://www.epa.gov/lead/regulatory-status-waste-generated-contractors-and-residents-lead-based-paint-activities |edition=5th |chapter=Metallurgical Industry:Secondary Lead Processing| accessdate=20 May 2018 |ref=harv}}
* {{cite web |author=United States Environmental Protection Agency |title=Regulatory Status of Waste Generated by Contractors and Residents from Lead-Based Paint Activities Conducted in Households (August 2000) |date=2000 |url=https://www.epa.gov/lead/regulatory-status-waste-generated-contractors-and-residents-lead-based-paint-activities |accessdate=28 February 2017 |ref=harv}}
* {{cite web |author=United States Environmental Protection Agency |title=Best Management Practices for Lead at Outdoor Shooting Ranges |date=2005 |url=https://www.epa.gov/sites/production/files/documents/epa_bmp.pdf |accessdate=12 June 2018 |ref=harv}}
* {{cite report |author=United States Food and Drug Administration |title=Q3D Elemental Impurities Guidance for Industry |date=2015 |page=41 |url=http://www.fda.gov/downloads/drugs/guidances/ucm371025.pdf |publisher=United States Department of Health and Human Services |accessdate=15 February 2017 |ref=harv |format=PDF}}
* {{cite book |author=United States Geological Survey |title=Geological Survey Professional Paper |url=https://books.google.com/books?id=_LdUAAAAYAAJ |year=1973 |publisher=United States Government Publishing Office |page=314 |ref=harv}}
* {{cite report |author=United States Geological Survey |title=Lead |year=2005 |url=http://minerals.usgs.gov/minerals/pubs/commodity/lead/lead_mcs05.pdf |accessdate=20 February 2016 |ref=harv |format=PDF}}
* {{cite web |author=United States Geological Survey |title=Lead |year=2017 |url=https://minerals.usgs.gov/minerals/pubs/commodity/lead/mcs-2017-lead.pdf |accessdate=8 May 2017 |series=Mineral Commodities Summaries |ref=harv |format=PDF}}
* {{cite web |author=University of California, Berkeley|University of California Nuclear Forensic Search Project |title=Decay Chains |url=http://metadata.berkeley.edu/nuclear-forensics/Decay%20Chains.html |accessdate=23 November 2015 |website=Nuclear Forensics: A Scientific Search Problem |ref=harv}}
* {{cite book |last1=Vasmer |first1=M. |author-link1=Max Vasmer |editor-last1=Trubachyov |editor-first1=O. N. |editor-link1=Oleg Trubachyov |editor-last2=Larin |editor-first2=B. O. |title=Этимологический словарь русского языка |trans-title=Russisches etymologisches Worterbuch |year=1986–1987 |orig-year=1950–1958 |publisher=Progress |edition=2nd |language=Russian |url=http://starling.rinet.ru/cgi-bin/response.cgi?root=%2Fusr%2Flocal%2Fshare%2Fstarling%2Fmorpho&morpho=1&basename=morpho%5Cvasmer%5Cvasmer&first=1&off=&text_word=%D1%81%D1%83%D1%80%D1%8C%D0%BC%D0%B0&method_word=substring&ic_word=on&text_general=&method_general=substring&ic_general=on&text_origin=&method_origin=substring&ic_origin=on&text_trubachev=&method_trubachev=substring&ic_trubachev=on&text_editorial=&method_editorial=substring&ic_editorial=on&text_pages=&method_pages=substring&ic_pages=on&text_any=&method_any=substring&sort=word&ic_any=on |accessdate=4 March 2017 |ref=CITEREFVasmer1950}}
* {{cite report |last1=Vogel |first1=N. A. |last2=Achilles |first2=R. |title=The Preservation and Repair of Historic Stained and Leaded Glass |year=2013 |url=https://www.nps.gov/tps/how-to-preserve/preservedocs/preservation-briefs/33Preserve-Brief-StainedGlass.pdf |publisher=United States Department of the Interior |accessdate=30 October 2016 |ref=harv |format=PDF}}
* {{cite journal |last=Waldron |first=H. A. |title=Lead and lead poisoning in antiquity |date=1985 |pages=107–08 |journal=Medical History |volume=29 |issue=1 |pmc=1139494 |ref=harv|doi=10.1017/S0025727300043878}}
* {{cite journal |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961898/pdf/ITX-8-055.pdf |title=Lead toxicity: A review |last1=Wani |first1=A. L. |last2=Ara |first2= A. |last3=Usman |first3=J. A. |date=2015 |volume=8 |issue=2 |pages=55–64 |doi=10.1515/intox-2015-0009 |ref=harv |journal=Interdisciplinary Toxicology |pmc=4961898 |pmid=27486361 |format=PDF}}
* {{cite book |ref=harv |last1=Weast |first1=R. C. |last2=Astle |first2=M. J. |last3=Beyer |first3=W. H. |title=CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data |url=https://books.google.com/books?id=yThsvgAACAAJ |year=1983 |publisher=CRC Press |isbn=978-0-8493-0464-4}}
* {{cite web |author=<!--Not stated--> |title=Weatherings to Parapets and Cornices |url=http://leadsheet.co.uk/home/lsa-pocket-guide/weatherings-to-parapets-and-cornices/ |publisher=The Lead Sheet Association |accessdate=20 February 2017 |ref=CITEREFWeatherings to Parapets}}
* {{cite book|last=Webb|first=G. A.|title=Nuclear Magnetic Resonance|url=https://books.google.com/books?id=ofmQCwsnAHMC&pg=PA115|year=2000|publisher=Royal Society of Chemistry|isbn=978-0-85404-327-9|ref=harv}}
* {{cite journal |last1=Webb |first1=G. W. |last2=Marsiglio |first2=F. |last3=Hirsch |first3=J. E. |title=Superconductivity in the elements, alloys and simple compounds |journal=Physica C: Superconductivity and its Applications |volume=514 |year=2015 |pages=17–27 |doi=10.1016/j.physc.2015.02.037 |ref=harv|arxiv=1502.04724 |bibcode=2015PhyC..514...17W }}
* {{cite book |last1=Whitten |first1=K. W. |last2=Gailey |first2=K. D. |last3=David |first3=R. E. |title=General chemistry with qualitative analysis |date=1996 |edition=3rd |publisher=Saunders College |isbn=978-0-03-012864-6 |ref=harv}}
* {{cite book |last1=Wiberg |first1=E. |last2=Wiberg |first2=N. |last3=Holleman |first3=A. F. |title=Inorganic Chemistry |date=2001 |publisher=Academic Press |isbn=978-0-12-352651-9 |ref=harv}}
* {{cite book |last1=Wilkes |first1=C. E. |last2=Summers |first2=J. W. |last3=Daniels |first3=C. A. |last4=Berard |first4=M. T. |title=PVC Handbook |date=2005 |url=https://books.google.com/?id=YUkJNI9QYsUC |isbn=978-1-56990-379-7 |display-authors=3 |publisher=Hanser |ref=harv}}
* {{cite journal |last=Willey |first=D. G. |authorlink=David Willey (physicist) |title=The physics behind four amazing demonstrations&nbsp;— CSI |year=1999 |journal=Skeptical Inquirer |volume=23 |issue=6 |url=http://www.csicop.org/si/show/physics_behind_four_amazing_demonstrations |accessdate=6 September 2016 |ref=harv}}
* {{Cite journal |last=Winder |first=C. |title=The history of lead&nbsp;— Part 1 |year=1993a |url=http://lead.org.au/lanv2n1/lanv2n1-11.html |accessdate=5 February 2016 |deadurl=yes |archiveurl=https://web.archive.org/web/20070831210244/http://lead.org.au/lanv2n1/lanv2n1-11.html |archivedate=31 August 2007 |journal=LEAD Action News |volume=2 |issue=1 |issn=1324-6011 |ref=harv}}
* {{cite journal |last=Winder |first=C. |title=The history of lead&nbsp;— Part 3 |year=1993b |url=http://lead.org.au/lanv2n3/lanv2n3-22.html |accessdate=12 February 2016 |deadurl=yes |archiveurl=https://web.archive.org/web/20070831200744/http://lead.org.au/lanv2n3/lanv2n3-22.html |archivedate=31 August 2007 |journal=LEAD Action News |volume=2 |issue=3 |issn=1324-6011 |ref=harv}}
* {{cite book |last=Windholz |first=M. |title=Merck Index of Chemicals and Drugs |date=1976 |id=Monograph 8393 |edition=9th |publisher=Merck & Co. |isbn=978-0-911910-26-1 |ref=harv|title-link=Merck Index }}
* {{cite report |author=World Health Organization |year=1995 |title=Environmental Health Criteria 165: Inorganic Lead |url=http://www.inchem.org/documents/ehc/ehc/ehc165.htm |accessdate=10 June 2018 |ref=harv}}
* {{cite book |author=World Health Organization |chapter=Lead |title=Air quality guidelines for Europe |year=2000 |pages=149–53 |chapter-url=http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf |publisher=Regional Office for Europe |isbn=978-92-890-1358-1 |oclc=475274390 |ref=harv |chapter-format=PDF}}
* {{cite web |author=World Nuclear Association |title=Nuclear Radiation and Health Effects |year=2015 |url=http://www.world-nuclear.org/info/Safety-and-Security/Radiation-and-Health/Nuclear-Radiation-and-Health-Effects/ |accessdate=12 November 2015 |ref=harv}}
* {{Cite book|last1=Wrackmeyer|first1=B.|last2=Horchler|first2=K.|title=<sup>207</sup>Pb-NMR Parameters|journal=Annual Reports on NMR Spectroscopy|url=https://books.google.com/books?id=y1vs0XIgDCQC&pg=PA249|year=1990|publisher=Academic Press|isbn=978-0-08-058405-8|pages=249–303|volume=22|ref=harv}}
* {{cite journal |last=Yong |first=L. |last2=Hoffmann |first2=S. D. |last3=Fässler |first3=T. F. |title=A low-dimensional arrangement of [Pb<sub>9</sub>]<sup>4?</sup> clusters in [K(18-crown-6)]<sub>2</sub>K<sub>2</sub>Pb<sub>9</sub>·(en)<sub>1.5</sub> |year=2006 |pages=4774–78 |journal=Inorganica Chimica Acta |volume=359 |issue=15 |doi=10.1016/j.ica.2006.04.017 |ref=harv}}
* {{cite web |last=Young |first=S. |title=Battling lead contamination, one fish bone at a time |date=2012 |url=http://coastguard.dodlive.mil/2012/07/battling-lead-contamination-one-fish-bone-at-a-time/ |publisher=United States Coast Guard |work=Compass |accessdate=11 February 2017 |ref=harv}}
* {{cite book |last1=Yu |first1=L. |last2=Yu |first2=H. |title=Chinese Coins: Money in History and Society |year=2004 |url=https://books.google.com/books?id=QfWQB0peEWYC |publisher=Long River Press |isbn=978-1-59265-017-0 |ref=harv}}
* {{cite journal |last=Zhang |first=X. |last2=Yang |first2=L. |last3=Li |first3=Y. |last4=Li |first4=H. |last5=Wang |first5=W. |last6=Ye |first6=B. |title=Impacts of lead/zinc mining and smelting on the environment and human health in China |year=2012 |pages=2261–73 |display-authors=3 |journal=Environmental Monitoring and Assessment |volume=184 |issue=4 |doi=10.1007/s10661-011-2115-6 |pmid=21573711 |ref=harv}}
* {{cite book |last=Zhao |first=F. |title=Information Technology Entrepreneurship and Innovation |url=https://books.google.com/books?id=aXm9AQAAQBAJ |year=2008 |publisher=IGI Global |isbn=978-1-59904-902-1 |page=440 |ref=harv}}
* {{cite book |last1=Zuckerman |first1=J. J. |last2=Hagen |first2=A. P. |title=Inorganic Reactions and Methods, the Formation of Bonds to Halogens |date=1989 |publisher=John Wiley & Sons |isbn=978-0-471-18656-4 |ref=harv}}
* {{cite book |last=Zweifel |first=H. |title=Plastics Additives Handbook |date=2009 |url=https://books.google.com/?id=WbBH5QFXOhoC |isbn=978-3-446-40801-2 |publisher=Hanser |ref=harv}}
* {{cite journal |last=Zýka |first=J. |title=Analytical study of the basic properties of lead tetraacetate as oxidizing agent |year=1966 |pages=569–81 |journal=Pure and Applied Chemistry |volume=13 |issue=4 |doi=10.1351/pac196613040569 |url=http://www.sciencemadness.org/talk/files.php?pid=242223&aid=18041 |accessdate=2 March 2017 |ref=harv}}
{{Refend}}

{{كومنز|Lead}}
{{كومنز|Lead}}
{{الجدول الدوري المضغوط}}
{{الجدول الدوري المضغوط}}

نسخة 14:59، 10 فبراير 2019

بزموترصاصثاليوم
Sn

Pb

Fl
Element 1: هيدروجين (H), لا فلز
Element 2: هيليوم (He), غاز نبيل
Element 3: ليثيوم (Li), فلز قلوي
Element 4: بيريليوم (Be), فلز قلوي ترابي
Element 5: بورون (B), شبه فلز
Element 6: كربون (C), لا فلز
Element 7: نيتروجين (N), لا فلز
Element 8: أكسجين (O), لا فلز
Element 9: فلور (F), هالوجين
Element 10: نيون (Ne), غاز نبيل
Element 11: صوديوم (Na), فلز قلوي
Element 12: مغنيسيوم (Mg), فلز قلوي ترابي
Element 13: ألومنيوم (Al), فلز ضعيف
Element 14: سيليكون (Si), شبه فلز
Element 15: فسفور (P), لا فلز
Element 16: كبريت (S), لا فلز
Element 17: كلور (Cl), هالوجين
Element 18: آرغون (Ar), غاز نبيل
Element 19: بوتاسيوم (K), فلز قلوي
Element 20: كالسيوم (Ca), فلز قلوي ترابي
Element 21: سكانديوم (Sc), فلز انتقالي
Element 22: تيتانيوم (Ti), فلز انتقالي
Element 23: فاناديوم (V), فلز انتقالي
Element 24: كروم (Cr), فلز انتقالي
Element 25: منغنيز (Mn), فلز انتقالي
Element 26: حديد (Fe), فلز انتقالي
Element 27: كوبالت (Co), فلز انتقالي
Element 28: نيكل (Ni), فلز انتقالي
Element 29: نحاس (Cu), فلز انتقالي
Element 30: زنك (Zn), فلز انتقالي
Element 31: غاليوم (Ga), فلز ضعيف
Element 32: جرمانيوم (Ge), شبه فلز
Element 33: زرنيخ (As), شبه فلز
Element 34: سيلينيوم (Se), لا فلز
Element 35: بروم (Br), هالوجين
Element 36: كريبتون (Kr), غاز نبيل
Element 37: روبيديوم (Rb), فلز قلوي
Element 38: سترونتيوم (Sr), فلز قلوي ترابي
Element 39: إتريوم (Y), فلز انتقالي
Element 40: زركونيوم (Zr), فلز انتقالي
Element 41: نيوبيوم (Nb), فلز انتقالي
Element 42: موليبدنوم (Mo), فلز انتقالي
Element 43: تكنيشيوم (Tc), فلز انتقالي
Element 44: روثينيوم (Ru), فلز انتقالي
Element 45: روديوم (Rh), فلز انتقالي
Element 46: بلاديوم (Pd), فلز انتقالي
Element 47: فضة (Ag), فلز انتقالي
Element 48: كادميوم (Cd), فلز انتقالي
Element 49: إنديوم (In), فلز ضعيف
Element 50: قصدير (Sn), فلز ضعيف
Element 51: إثمد (Sb), شبه فلز
Element 52: تيلوريوم (Te), شبه فلز
Element 53: يود (I), هالوجين
Element 54: زينون (Xe), غاز نبيل
Element 55: سيزيوم (Cs), فلز قلوي
Element 56: باريوم (Ba), فلز قلوي ترابي
Element 57: لانثانوم (La), لانثانيدات
Element 58: سيريوم (Ce), لانثانيدات
Element 59: براسيوديميوم (Pr), لانثانيدات
Element 60: نيوديميوم (Nd), لانثانيدات
Element 61: بروميثيوم (Pm), لانثانيدات
Element 62: ساماريوم (Sm), لانثانيدات
Element 63: يوروبيوم (Eu), لانثانيدات
Element 64: غادولينيوم (Gd), لانثانيدات
Element 65: تربيوم (Tb), لانثانيدات
Element 66: ديسبروسيوم (Dy), لانثانيدات
Element 67: هولميوم (Ho), لانثانيدات
Element 68: إربيوم (Er), لانثانيدات
Element 69: ثوليوم (Tm), لانثانيدات
Element 70: إتيربيوم (Yb), لانثانيدات
Element 71: لوتيشيوم (Lu), لانثانيدات
Element 72: هافنيوم (Hf), فلز انتقالي
Element 73: تانتالوم (Ta), فلز انتقالي
Element 74: تنجستن (W), فلز انتقالي
Element 75: رينيوم (Re), فلز انتقالي
Element 76: أوزميوم (Os), فلز انتقالي
Element 77: إريديوم (Ir), فلز انتقالي
Element 78: بلاتين (Pt), فلز انتقالي
Element 79: ذهب (Au), فلز انتقالي
Element 80: زئبق (Hg), فلز انتقالي
Element 81: ثاليوم (Tl), فلز ضعيف
Element 82: رصاص (Pb), فلز ضعيف
Element 83: بزموت (Bi), فلز ضعيف
Element 84: بولونيوم (Po), شبه فلز
Element 85: أستاتين (At), هالوجين
Element 86: رادون (Rn), غاز نبيل
Element 87: فرانسيوم (Fr), فلز قلوي
Element 88: راديوم (Ra), فلز قلوي ترابي
Element 89: أكتينيوم (Ac), أكتينيدات
Element 90: ثوريوم (Th), أكتينيدات
Element 91: بروتكتينيوم (Pa), أكتينيدات
Element 92: يورانيوم (U), أكتينيدات
Element 93: نبتونيوم (Np), أكتينيدات
Element 94: بلوتونيوم (Pu), أكتينيدات
Element 95: أمريسيوم (Am), أكتينيدات
Element 96: كوريوم (Cm), أكتينيدات
Element 97: بركيليوم (Bk), أكتينيدات
Element 98: كاليفورنيوم (Cf), أكتينيدات
Element 99: أينشتاينيوم (Es), أكتينيدات
Element 100: فرميوم (Fm), أكتينيدات
Element 101: مندليفيوم (Md), أكتينيدات
Element 102: نوبليوم (No), أكتينيدات
Element 103: لورنسيوم (Lr), أكتينيدات
Element 104: رذرفورديوم (Rf), فلز انتقالي
Element 105: دوبنيوم (Db), فلز انتقالي
Element 106: سيبورغيوم (Sg), فلز انتقالي
Element 107: بوريوم (Bh), فلز انتقالي
Element 108: هاسيوم (Hs), فلز انتقالي
Element 109: مايتنريوم (Mt), فلز انتقالي
Element 110: دارمشتاتيوم (Ds), فلز انتقالي
Element 111: رونتجينيوم (Rg), فلز انتقالي
Element 112: كوبرنيسيوم (Cn), فلز انتقالي
Element 113: نيهونيوم (Nh)
Element 114: فليروفيوم (Uuq)
Element 115: موسكوفيوم (Mc)
Element 116: ليفرموريوم (Lv)
Element 117: تينيسين (Ts)
Element 118: أوغانيسون (Og)
82Pb
المظهر
رمادي فلزّي
الخواص العامة
الاسم، العدد، الرمز رصاص، 82، Pb
تصنيف العنصر فلز بعد انتقالي
المجموعة، الدورة، المستوى الفرعي 14، 6، p
الكتلة الذرية 207.2 غ·مول−1
توزيع إلكتروني Xe]; 4f14 5d10 6s2 6p2]
توزيع الإلكترونات لكل غلاف تكافؤ 2, 8, 18, 32, 18, 4 (صورة)
الخواص الفيزيائية
الطور صلب
الكثافة (عند درجة حرارة الغرفة) 11.34 غ·سم−3
كثافة السائل عند نقطة الانصهار 10.66 غ·سم−3
نقطة الانصهار 600.61 ك، 327.46 °س، 621.43 °ف
نقطة الغليان 2022 ك، 1749 °س، 3180 °ف
حرارة الانصهار 4.77 كيلوجول·مول−1
حرارة التبخر 179.5 كيلوجول·مول−1
السعة الحرارية (عند 25 °س) 26.650 جول·مول−1·كلفن−1
ضغط البخار
ض (باسكال) 1 10 100 1 كيلو 10 كيلو 100 كيلو
عند د.ح. (كلفن) 978 1088 1229 1412 1660 2027
الخواص الذرية
أرقام الأكسدة 4, 2 (أكاسيده (مذبذبة)
الكهرسلبية 2.33 (مقياس باولنغ)
طاقات التأين الأول: 715.6 كيلوجول·مول−1
الثاني: 1450.5 كيلوجول·مول−1
الثالث: 3081.5 كيلوجول·مول−1
نصف قطر ذري 175 بيكومتر
نصف قطر تساهمي 5±146 بيكومتر
نصف قطر فان دير فالس 202 بيكومتر
خواص أخرى
البنية البلورية مكعب مركزي الوجه
المغناطيسية مغناطيسية مسايرة
مقاومة كهربائية 208 نانوأوم·متر (20 °س)
الناقلية الحرارية 35.3 واط·متر−1·كلفن−1 (300 كلفن)
التمدد الحراري 28.9 ميكرومتر·متر−1·كلفن−1 (25 °س)
معامل يونغ 16 غيغاباسكال
معامل القص 5.6 غيغاباسكال
معامل الحجم 46 غيغاباسكال
نسبة بواسون 0.44
صلادة موس 1.5
صلادة برينل 38.3 ميغاباسكال
رقم CAS 7439-92-1
النظائر الأكثر ثباتاً
المقالة الرئيسية: نظائر الرصاص
النظائر الوفرة الطبيعية عمر النصف نمط الاضمحلال طاقة الاضمحلال MeV ناتج الاضمحلال
204Pb 1.4% >1.4×1017 y α 2.186 200Hg
205Pb مصطنع 1.53×107 سنة ε 0.051 205Tl
206Pb 24.1% 206Pb هو نظير مستقر وله 124 نيوترون
207Pb 22.1% 207Pb هو نظير مستقر وله 125 نيوترون
208Pb 52.4% 208Pb هو نظير مستقر وله 126 نيوترون
210Pb نادر 22.3 سنة α 3.792 206Hg
β 0.064 210Bi

الرصاص عنصر كيميائي رمزه Pb وعدده الذري 82؛ ويقع في الجدول الدوري ضمن مجموعة الكربون (المجموعة الرابعة عشرة). الرصاص فلز ثقيل ذو كثافة مرتفعة، ويوجد في الأحوال العادية على هيئة فلز ذي لون فضي مزرق والذي سرعان ما يفقد لمعته إلى لون رمادي معتم عند التعرض للهواء. يدخل الرصاص في تركيب عدد من السبائك، وهو أيضاً فلز طري مطواع قابل للسحب والتطريق؛ كما أنه فلز مستقر، وثلاثة من نظائره تقع في نهاية سلسلة اضمحلال العناصر الثقيلة المشعة.

يصنف كيميائياً أنه من الفلزات بعد الانتقالية (الفلزات الضعيفة)، وتتجلى تلك الصفة في طبيعته المذبذبة؛ إذ يتفاعل الرصاص وأكسيده مع الأحماض والقواعد؛ كما أن هناك تفاوت في سمة مركباته الكيميائية حسب حالة الأكسدة، فمركبات الرصاص الثنائي ذات صفة أيونية، في حين أن مركبات الرصاص الرباعي تغلب عليها الصفة التساهمية مثلما هو الحال في مركبات الرصاص العضوي.

يستخرج الرصاص من خاماته بسهولة؛ ومنذ قديم الزمان تمكن الإنسان في العالم القديم من استحصاله، وخاصة من معدن غالينا، الذي يعد المصدر الرئيسي للرصاص. بما أن الفضة غالباً ما ترافق الرصاص في خاماته، لذلك كان السعي للحصول على الفضة سبباً في معرفة الرصاص واستخدامه في مجالات الحياة اليومية في روما القديمة. بلغ الإنتاج العالمي من الرصاص سنة 2014 حوالي 10 مليون طن، وكانت نسبة الحصول عليه من تدوير المخلفات الحاوية على الرصاص أكثر من 50%.

ساعدت الخواص المميزة للرصاص، من الكثافة المرتفعة والانخفاض النسبي لنقطة الانصهار وخموله الكيميائي تجاه الأكسدة، بالإضافة إلى وفرته النسبية المرتفعة وانخفاض ثمنه في استخدامه بالعديد من التطبيقات، التي شملت على سبيل المثال في الإنشاءات والوقاية من الإشعاع والسباكة وصناعة البطاريات والطلقات والمقذوفات والأثقال والسبائك المختلفة مثل سبائك اللحام وسبيكة بيوتر والسبائك سهلة الانصهار (الصهورة)؛ بالإضافة إلى استخدامه سابقاً في مجال الدهانات والإضافات إلى وقود السيارات (على شكل مركب رباعي إيثيل الرصاص).

الرصاص فلز سام، الأمر الذي أدى من الحد في بعض تطبيقاته في أغلب الدول بعد اكتشاف سميته. يؤثر الرصاص سلباً داخل الأجسام الحيوية، حيث يكون تأثيره مشابهاً للسموم العصبية من حيث القدرة على الإضرار بالجهاز العصبي وتعطيل الأداء الوظيفي لبعض الإنزيمات الحيوية مسبباً اضطرابات عصبية وحركية.

التاريخ

مقذوفات مصنوعة من الرصاص تعود إلى العصر اليوناني القديم.[1]

العصر القديم

يعد الرصاص من أقدم الفلزات المستخدمة في تاريخ البشرية. وكان هو أحد الفلزات بالإضافة إلى الزرنيخ والأنتيموان والتي جرى تجريبها في العصر البرونزي الأول من أجل تحضير البرونز، إلى أن اكتشف القصدير. عثر على قطع من الرصاص الفلزي يعود تاريخها إلى حوالي 7000 سنة قبل الميلاد في منطقة الأناضول بالقرب من جاتال هويوك، وهي تمثل أقدم موجودات تاريخية جرى معالجتها بالصهر.[2] في ذلك الوقت لم يكن للرصاص أي تطبيق معروف بسبب طراوته ومظهره الكامد؛[2] وكان العامل الرئيسي في انتشار استخراجه هو مرافقته للفضة في الخامات في القشرة الأرضية.[3]

كان المصريون القدماء أول من استخدم الرصاص في التجميل، وهو تطبيق انتشر بعد ذلك إلى اليونان القديمة وغيرها من الحضارات؛[4] بالإضافة إلى ذلك فمن المحتمل أن يكون المصريون القدماء قد استخدموا الرصاص أيضاً في تثقيل شباك صيد السمك وفي صناعة الزجاج والمينا المزجج وكذلك في صناعة أغراض الزينة.[3] استعملت عدة حضارات في منطقة الهلال الخصيب الرصاص في عدد من التطبيقات المختلفة مثل استخدامه في الكتابة وسك العملة وضمن مواد البناء.[3] أما في الشرق الأدنى فاستخدم الصينيون القدماء الرصاص كإحدى الوسائل لضبط النسل،[5] وكذلك في سك العملة؛[6] بالمقابل دخل الرصاص في صناعة التمائم في حضارتي وادي السند ووسط أمريكا؛[3] في حين أن شعوب أفريقيا الشرقية والجنوبية استخدمته في سحب الأسلاك.[7]

عصر اليونان والرومان
أنابيب مصنوعة من الرصاص تعود إلى العصر الروماني القديم.

بما أن الفضة كانت مستخدمة بكثرة في التجارة وفي صناعة مواد الزينة منذ التاريخ القديم، وبسبب مرافقتها للرصاص في الخامات، لذلك انتشرت معالجة الرصاص في منطقة الأناضول منذ 3000 سنة قبل الميلاد، ولاحقاً في مناطق مختلفة في اليونان مثل الجزر الإيجية ومدينة لافريو؛ والتي بقيت مسيطرة على إنتاج الرصاص حتى 1200 سنة قبل الميلاد.[8] منذ حوالي 2000 سنة قبل الميلاد بدأت مناطق أخرى تعرف بإنتاج الرصاص بالظهور والازدهار؛ فمثلاً تمكن الفينيقيون من معالجة الرصاص في مناطق مختلفة منها شبه الجزيرة الإيبيرية، وكذلك في اليونان وقبرص وسردينيا.[9]

مخطط يظهر تقريبياً الإنتاج العالمي من الرصاص منذ التاريخ القديم حتى الثورة الصناعية في أوروبا.[10]

أدى توسع الجمهورية الرومانية في منطقة حوض المتوسط إلى انتشار تعدين الرصاص، خاصة مع التطور النسبي لوسائل التعدين أثناء فترة العصر الكلاسيكي القديم؛ إذ قدرت سعة الإنتاج العظمى من الرصاص حينئذ بحوالي 80 ألف طن سنوياً؛ وذلك من المعالجة الحرارية لخامات الفضة الحاوية على الرصاص.[10][11] استخدم الرصاص في الكتابة على الألواح؛[12] وكذلك في صناعة النعوش.[13] كما شاع استخدام الرصاص في صناعة قنوات المجاري وفي الإنشاءات المدنية والصناعات العسكرية، خاصة مع سهولة سبكه والتعامل الحرفي معه، ومقاومته للتآكل؛[14][15][16][17] بالإضافة إلى سهولة الحصول عليه،[18] ورخص ثمنه.[19]

نصح عدد من الكتاب الرومان مثل كاتو الأكبر وكولوميلا وبلينيوس الأكبر باستخدام أواني الرصاص لتحضير دبس العنب الذي كان يضاف إلى الخمر؛[20] وذلك لأن الرصاص كان يضفي في بعض الأحيان مذاقاً حلواً (بسبب تشكل «سكّر الرصاص»، وهو مركب أسيتات الرصاص الثنائي)؛ في حين أن الأواني المصنوعة من النحاس أو البرونز كانت تعطي مذاقاً مرّاً بسبب تشكل الزنجار.[21] من جهة أخرى، وثق الكاتب الروماني فيتروفيو المخاطر الصحية للرصاص،[22] وقد يكون للاستخدام المفرط للرصاص في مجالات الحياة اليومية دوراً في انحدار الامبراطورية الرومانية، وذلك وفقاً لرأي بعض المحللين التاريخيين المتأخرين؛[23][24][25] إلا أن ذلك الرأي وجد معارضةً من بعض الباحثين الآخرين، الذين أشاروا على سبيل المثال أن ليس كل ألم معوي سببه التسمم بالرصاص،[26][27] وشككوا بدور أنابيب نقل المياه المصنوعة من الرصاص بحدوث حالات التسمم.[28][29]

العصور الوسطى

كانت الملكة إليزابيث الأولى ملكة إنجلترا عادة ما ترسم بوجه شديد البياض، والذي يعزى وفق مصادر تاريخية إلى استخدام أبيض الرصاص في تبييض الوجه، الأمر الذي كان سبباً في التعجيل بوفاتها.[30].

مع سقوط الإمبراطورية الرومانية الغربية تراجع إنتاج الرصاص في أوروبا الغربية، خاصة مع صعود دولة الأمويين في الأندلس، إذ كانت تلك المنطقة الوحيدة ذات الإنتاج المهم في أوروبا في ذلك الوقت؛[31][32] بالمقابل ازداد الإنتاج في مناطق أخرى من العالم مثل الصين والهند.[32]

كان الرصاص حاضراً في تجارب الخيميائيين سواء في عصر الحضارة الإسلامية أو ما قبل عصر النهضة الأوروبي؛ وكان له الرمز الخيميائي في مدونات ذلك العصر،[33]، والذي كان مخصصاً أيضاً لكوكب زحل. كان الرصاص عند الخيميائيين يعد من الفلزات الوضيعة الشائبة، والذي يمكن لجوهره أن يتحول إلى فلز نبيل نقي مثل الذهب بالعمليات والتقنيات الخيميائية المناسبة. وقد ذكره البيروني في كتابه الجماهر في معرفة الجواهر وخصص له قسما.

بالإضافة إلى ذلك ففد استخدم الرصاص منذ بداية القرن الثالث عشر في صناعة الزجاج المعشق؛[34] كما استخدم في غش الخمر، الأمر الذي أدى إلى حالات تسمم كثيرة موثقة حتى نهاية القرن الثامن عشر.[31][35] من جهة أخرى فقد كان الرصاص مادة أساسية في صناعة أجزاء آلة الطباعة التي اخترعت حوالي منتصف القرن الخامس عشر، الأمر الذي عرض الكثير من العمال لحالات التسمم بالرصاص أيضاً.[36] دخل الرصاص في صناعة مقذوفات وطلقات الأسلحة النارية نظراً لرخص ثمنه وتوفره ولارتفاع كثافته وانخفاض نقطة انصهاره.[37]

شاع استخدام أبيض الرصاص في مستحضرات التجميل في ذلك العصر، وذلك لتبييض الوجه، وكان يسمى حينها إسبيداج (أو الإسفيداج)؛[38][39] كما كان يستخدم للطلاء، إلا أن تلك الاستخدامات تراجعت تدريجياً للسمية. كان ذلك الاستخدام شائعاً ضمن الطبقات الأرستقراطية الأوروبية؛ وكذلك في اليابان أيضاً،[40] والتي شاع فيها تقليد غيشا في تبييض الوجوه حتى القرن العشرين، إذ كانت الوجوه البيضاء للنساء في ذلك العصر دلالة على أنوثة المرأة اليابانية.[41]

العصر الحديث

بعد اكتشافهم للعالم الجديد قام المستوطنون الأوروبيون بإنتاج الرصاص؛ وتعود أقدم السجلات التي تشير إلى الإنتاج في تلك المرحلة إلى سنة 1621 في مستعمرة فرجينيا البريطانية، وذلك بعد أربع عشر سنة من تأسيسها.[42] أما في أستراليا فقد كان أول منجم افتتح هناك للرصاص، وذلك في سنة 1841.[43]

تعدين الرصاص في منطقة حوض المسيسبي سنة 1865

ساعدت الثورة الصناعية على ارتفاع الإنتاج من الرصاص في أوروبا والولايات المتحدة،[10] إذ كان من أهم الفلزات اللاحديدية المعروفة حينئذ. كانت بريطانيا رائدة في ذلك المجال بادئ الأمر ثم تراجعت مع نضوب مناجمها مع مرور الوقت؛[44] ومع بداية القرن العشرين أضحت الولايات المتحدة الرائدة في الإنتاج العالمي من الرصاص، كما بدأت دول أخرى غير أوروبية بالظهور على ساحة الإنتاج العالمي مثل كندا والمكسيك وأستراليا.[45] كان الرصاص مطلوباً في ذلك الوقت بشكل أساسي للسباكة ولصنع الدهان؛[46] كما استخدم في عملية غرف الرصاص لتحضير حمض الكبريتيك. بالمقابل ازداد تعرض الطبقة العاملة للرصاص مما أدى إلى ظهور مخاطره للعلن، الأمر الذي استدعى إجراء أبحاث لدراسة تأثير الرصاص على الإنسان؛ وكان الطبيب ألفريد بارينغ غارود ممن قاموا بذلك، والذي ربط بين ضحايا التسمم بالرصاص ومهنتهم، فوجد أن نسبة الثلث منهم من السباكين والدهانين.

مع تقدم العلم وفهم آليات الإصابة بالتسمم الرصاص انتقل موضوع التعامل مع هذا الفلز من ردهات المخابر إلى قاعات البرلمانات، إذ بدأت التشريعات التي تحد التعامل به بالظهور. صدر أول قانون لفرض رقابة على الرصاص في المصانع في المملكة المتحدة أواخر القرن التاسع عشر؛[46] كما جرى تعيين هيئة طبية لفحص العمال؛ مما أدى في النهاية إلى انخفاض حوادث التسمم بالرصاص بحوالي 25 مرة ما بين سنتي 1900 و 1944.[47] بالإضافة إلى ذلك فقد منعت معظم الدول الأوروبية دهانات الرصاص في الأماكن الدخلية المغلقة منذ سنة 1930.[48][49] كانت إضافة رباعي إيثيل الرصاص إلى وقود السيارات لمنع خبط المحرك آخر وسيلة كان فيها الإنسان على تماس مباشر مع الرصاص؛ إلا أنها تراجعت تدريجياً مع مرور الزمن، خاصة مع جهود عدة ناشطين بيئيين مثل كلير باترسون؛ إلى أن منعت نهائياً في أوروبا والولايات المتحدة أواخر القرن العشرين؛[46] خاصة مع صدور تشريعات منذ سبعينات القرن العشرين هناك للحد من تلوث الهواء بالرصاص؛[50][51] مثل توجيه الحد من المواد الخطرة في أوروبا. جراء ذلك انخفض مستوى الرصاص في الدم وفق دراسات أجرتها مراكز مكافحة الأمراض واتقائها في الولايات المتحدة من 77.8% أواخر سبعينات القرن العشرين إلى 2.2% في أوائل تسعينات ذلك القرن.[52] في نهاية القرن العشرين كان المنتج الوحيد الحاوي على الرصاص والمستخدم بكثرة من البشر هو بطارية الرصاص الحمضية؛[53] إلا أنها لا تمثل خطراً مباشراً على صحة الإنسان. ازداد إنتاج الرصاص في الصين بشكل مطرد، إلى أن أصبحت في صدارة الإنتاج العالمي منذ بداية القرن الحادي والعشرين؛[54] إلا أن الأمر لم يخلو من مشاكل صحية هناك أيضاً.[55]

الأصل والوفرة

وفرة بعض العناصر الثقيلة في النظام الشمسي[56]
العدد
الذرّي
العنصر الكمّية
النسبية
42 موليبدنوم 0.798
46 بالاديوم 0.440
50 قصدير 1.146
78 بلاتين 0.417
80 زئبق 0.127
82 رصاص 1
90 ثوريوم 0.011
92 يورانيوم 0.003

في الكون

على الرغم من ارتفاع العدد الذري للرصاص إلا أن وفرته في الكون تفوق أغلب العناصر ذات العدد الأكبر من 40؛[56] إذ تبلغ وفرة الرصاص في النظام الشمسي نسبةً إلى عدد الجسيمات مقدار 0.121 جزء في البليون (ppb)،[56] وهو مقدار أكثر بمرتين ونصف من وفرة البلاتين وأكثر بثمان مرات من وفرة الزئبق وأكثر بحوالي 17 مرة من وفرة الذهب في الكون.[56] على العموم فإن كمية الرصاص في الكون بازدياد ضئيل مستمر،[57] لأن أغلب العناصر الأثقل منه تضمحل إليه تدريجياً؛[58] وتقدر نسبة ازدياد الرصاص في الكون منذ نشأته بحوالي 0.75%.[59]

إن الرصاص الابتدائي، والمتكون من نظائر الرصاص 204 و 206 و 207 و 208، كان قد تشكل نتيجة عمليات التقاط نيوترون متكررة داخل النجوم؛ وهي تشمل كلي النوعين العمليات البطيئة والسريعة.[60]

مخطط يظهر الجزء الأخير من عمليات التقاط النيوترون السريعة من الزئبق إلى البولونيوم. تمثل الدوائر والخطوط الحمراء التقاط النيوترون، أما الأسهم الزرقاء فتمثل اضمحلال بيتا، في حين أن الأسهم الخضراء تمثل اضمحلال ألفا؛ ويمثل التقاط الإلكترون بالأسهم ذات اللون السياني (الأخضر المزرق).

تفصل بين عمليات التقاط النيوترون البطئية سنوات أو عقود، مما يسمح للنوى الأقل استقراراً بأن تخضع لاضمحلال بيتا.[61] يمكن أيضاً أن لعمليات التقاط النيوترون أن تحدث بشكل بطيء جداً بستمر لملايين السنين بحيث يستحصل من نواة ثاليوم مستقرة على نظائر الرصاص المستقرة في النهاية.[62] بالمقابل، فإن عمليات التقاط النيوترون السريعة تحدث بشكل أسرع من اضمحلال النواة نفسها؛[63] وتكون مفضلة الحدوث في الأوساط ذات الكثافة النيوترونية المرتفعة مثل المستعرات العظمى أو مناطق اندماج النجوم النيوترونية؛ والتي يمكن أن يقدر معدل تدفق النيوترونات فيها بحوالي 1022 نيوترون لكل سم2 كل ثانية.[64] من جهة أخرى، فإن كمية الرصاص المتشكلة عن طريق عمليات التقاط النيوترون السريعة أقل من نظيرتها في العمليات البطيئة؛[65] إذ أنها تميل لأن تتوقف في الغالب عندما يصل عدد النيوترونات في النواة إلى 126؛[66] عند تلك النقطة تترتب النيوترونات في أغلفة مكتملة في نواة الذرة ويصبح من الصعب طاقياً استيعاب كمية أكبر.[67]

على الأرض

يصنّف الرصاص وفقاً لتصنيف غولدشميت كعنصر أليف الرصاص، بمعنى أنه يتواجد بشكلٍ عام مع الرصاص.[68] ومن النادر العثور عليه بصورته المعدنية كفلز طبيعي.[69] اعتبرت العديد من معادن الرصاص خفيفة نسبياً، وعلى مدار تاريخ الأرض بقيت في طبقة القشرة الأرضية ولم تغرق في باطن الأرض. لذا يعتبر الرصاص من العناصر المتقدمة نسبياً من حيث وفرته الطبيعية في القشرة الأرضية بنسبة 14 ppm؛ وهو في العنصر الثامن والثلاثين من حيث غزارة وفرته في القشرة الأرضية.[70][ا]

أهم المعادن التي تقترن بالرصاص هو معدن الغالينا (PbS) والتي توجد غالباً مع خامات الزنك.[72] ترتبط معظم مركبات الرصاص الأخرى بالغالينا بطريقة ما؛ البولانغيرايت Pb5Sb4S11، هو كبريتيد مختلط مشتق من الغالينا؛ أما أنغلزيت، PbSO4, فهو ناتج عن أكسدة الغالينا وسيروسيت أو خام الرصاص الأبيض، PbCO3, فهو ناتج عن تحلل الغالينا. تعتبر معادن الزرنيخ والقصدير والأنتيمون والفضة والذهب ونحاس والبزموث شوائب شائعة في معادن الرصاص.[72]

A line chart generally declining towards its right
Lead is a fairly common element in the Earth's crust for its high atomic number (82). Most elements of atomic number greater than 40 are less abundant.

تتجاوز الموارد العالمية من الرصاص حوالي ملياري طن. توجد منه مخزونات كبيرة في أستراليا والصين وأيرلندا والمكسيك والبيرو والبرتغال وروسيا والولايات المتحدة. وهذه الموارد الاحتياطية العالمية قابلة للاستخراج لأغراض اقتصادية. بلغ مجموع الكميات المستخرجة منه 88 مليون طن عام 2016 منها 35 مليون طن في أستراليا و17 مليون طن في الصين و6.4 مليون طن في روسيا.[73]

لا تتجاوز التركيزات النموذجية من الرصاص 0.1 μg/m3 في الجو؛ و 100 ملغم\كلغم في التربة؛ في حين أن تركيزه في في المياه العذبة ومياه البحر حوال 5 مايكروغرام\لتر [74]

الاستخراج والإنتاج

مخطط يظهر الإنتاج العالمي من الرصاص منذ منتصف القرن التاسع عشر

إن الإنتاج العالمي من الرصاص (وفق بيانات سنة 2014) في ازدياد مستمر نتيجة لاستخدامه بشكل رئيسي في صناعة بطاريات السيارات.[75] وفق تقدير مخزون الفلزات في المجتمع الصادر سنة 2010 عن لجنة المصادر العالمية التابعة لبرنامج الأمم المتحدة للبيئة فإن المجموع الكلي لكميات الرصاص المستخدمة أو المخزنة أو المطروحة أو المبددة هي 8 كغ لكل نسمة وسطياً على نطاق العالم؛ مع أخذ الفروقات بين الدول المتطورة (20–150 كغ لكل نسمة) والدول النامية (1–4 كغ لكل نسمة).[76]

عموماً يمكن تصنيف استخراج الرصاص حسب مصدر الحصول عليه إلى استخراج أولي من الخامات في القشرة الأرضية؛ وإلى استخراج ثانوي من تدوير الخردة. استخرج سنة 2014 مقدار 4.58 مليون طن من الرصاص من مصادر أولية، مقابل 5.64 مليون طن من مصادر ثانوية؛ وكانت حينها الصين وأستراليا والولايات المتحدة هي الدول في صدارة الإنتاج العالمي بتعدين الرصاص،[73] في حين أن الصين والولايات المتحدة والهند هي التي كانت في صدارة الدول بتدوير الرصاص.[77] إن عمليات إنتاج الرصاص الولية والثانوية متشابهة؛ وتلجأ بعض منشآت تعدين الرصاص إلى مواءمة خطوط إنتاجها بحيث يمكن معالجة خردة الرصاص في عملياتها، خاصة أنه في أغلب الأحيان وعند تطبيق تقنيات مناسبة يكون من الصعب التمييز بين الرصاص الناتج عن التعدين والرصاص الناتج عن التدوير. تحتاج بعض مصادر الرصاص الثانوية إلى عمليات تنقية، وعندما لا تقتضي الحاجة إعادة معالجة رصاص الخردة تنخفض التكاليف إلى أكثر من النصف، وخاصة عند المقارنة بالاحتياجات الطاقية اللازمة للعمليات في أسلوب التعدين.[78]

عمليات التعدين

معدن الغالينا من أكثر الخامات أهمية لاستخراج الرصاص.
الدول المتصدرة في إنتاج الرصاص (بيانات 2016)[73]
البلد الناتج
(آلاف
الأطنان)
 الصين 2,400
 أستراليا 500
 الولايات المتحدة 335
 بيرو 310
 المكسيك 250
 روسيا 225
 الهند 135
 بوليفيا 80
 السويد 76
 تركيا 75
 إيران 41
 كازاخستان 41
 بولندا 40
 جنوب أفريقيا 40
 كوريا الشمالية 35
 أيرلندا 33
 مقدونيا 33
دول أخرى 170

من أكثر الخامات أهمية في تعدين الرصاص هو معدن غالينا، والذي غالباً ما يوجد على شكل معدن مرافق مع كبريتيدات الفلزات الأخرى. إن معظم خامات الرصاص تحوي على نسب قليلة من الفلز، إذ أن أغناها به هي التي تحوي نمطياً على نسبة تتراوح بين 3–8%، ولذلك ينبغي إجراء عمليات تركيز من أجل الاستخراج. [79] في الخطوات الأولى من عملية التعدين تسحق الخامات وتطحن ثم تفصل وفق الكثافة وتعوّم ثم تجفف. يحوي المركّز الناتج على نسبة تصل في بعض الأحيان إلى 80% (نمطياً بين 50-60%) من الرصاص، [79] والذي يخضع إلى معالجة لاحقة للحصول على الرصاص (غير النقي)، وهناك أسلوبان رئيسيان لإجرائها؛ الأول منهما يعتمد على عملية ثنائية المرحلة تتضمن تحميص للمركز الناتج في فرن صناعي ثم استخراج للفلز في فرن لافح بعملية اختزال؛ أو بإجراء عملية مباشرة يتم فيها استخراج الرصاص من المركز في فرن واحد؛ والعملية الأخيرة هي الأكثر شيوعاً.[80]

العملية ثنائية المرحلة

تجرى أولاً عملية تحميص للمركز الكبريتيدي لدرجات حرارة تفوق 1000 °س في الهواء وبوجود كمية كافية من الأكسجين لأكسدة كبريتيد الرصاص الثنائي إلى أكسيد الرصاص الثنائي وثنائي أكسيد الكبريت:[81]

يمكن أن يستخدم غاز SO2 في تحضير حمض الكبريتيك؛ أما أكسيد الرصاص فيكون على شكل مصهور. بما أن المركز الكبريتيدي ليس نقياً، لذلك تعطي عملية التحميص مزيجاً من أكاسيد وكبريتات وسيليكات لفلز الرصاص ولفلزات أخرى موجودة في الخامة.[82] يلي ذلك إجراء عملية اختزال بفحم الكوك إلى الرصاص (غير النقي) بتفاعل من مرحلتين.[83]

في حال كانت الخامة الأولية غنية بالرصاص يمكن أن تجرى العملية السابقة بخطوة واحدة، وذلك بإجراء عملية تحميص غير كامل للخامة الكبريتيدية؛ ثم في مرحلة لاحقة يسخن المزيج من أكسيد وكبريتيد الرصاص بوجود الهواء مما يسهم في اختزال القسم المتبقي من PbS دون الحاجة إلى إضافة فحم الكوك:

العملية المباشرة

في هذه العملية يستحصل على صبات الرصاص وعلى الخبث الناتج من العمليات بشكل مباشر من مركز الرصاص. يصهر الرصاص في البداية في فرن ويؤكسد بواسطة تيار من الأكسجين مشكلاً أحادي أكسيد الرصاص؛ وبعد إضافة مسحوق فحم الكوك يختزل الأكسيد إلى فلز الرصاص وسط الخبث المتشكل من الشوائب المرافقة.[80]

إذا كان المادة الأولية غنية المحتوى يمكن الحصول منها على مردود 80% على شكل صبات من فلز الرصاص، وتكون نسبة 20% المتبقية غنية بأكسيد الرصاص. أما إذا كانت المادة الأولية فقيرة المحتوى فيمكن أكسدة كل الرصاص إلى خبث مرتفع المحتوى والذي يختزل لاحقاً إلى فلز الرصاص؛[80]

عمليات التدوير

عادةً ما يتم تجاوز مرحلة الصهر في عملية تدوير الرصاص، ولا تطبق إلا عندما يكون الرصاص قد تأكسد بشكل واضح.[78] بشكل مشابه لعمليات التعدين يعالج الرصاص في أفران مناسبة والتي تعطي ناتجاً من الرصاص متفاوت في نسبة الشوائب حسب نوع الفرن؛ فالفرن اللافح يعطي رصاصاً قاسياً (يحوي على 10% إثمد)، في حين أن القمين الدوار يعطي رصاصاً شبه طري (يحوي على 3-4% إثمد).[84]

يمكن أن يستحصل على الرصاص المدور من بطاريات السيارات كما هو الحال في عملية إساسميلت ISASMELT، والتي تعالج عجينة الرصاص الحاوية على أكاسيد الرصاص حرارياً في قمين بعد إزالة الكبريتات بالمعالجة بالقلوي للحصول على فلز الرصاص، والذي يكون غير نقياً لاحتوائه على شوائب من الإثمد.[85] يمكن إجراء عملية تنقية لاحقة للرصاص، ولكن ذلك يعتمد على الكلفة وعلى درجة النقاوة المطلوبة وعلى نوع الشوائب الموجودة.[85] من المصادر الثانوية الأخرى للرصاص بالإضافة إلى البطاريات كل من الصفائح والأنابيب والكبلات المستخدمة في بعض الإنشاءات.[78]

التنقية

غالباً ما تكون الشوائب الموجودة هي من فلزات الزرنيخ والإثمد والبزموت والزنك والنحاس والفضة والذهب؛ والتي عادةً ما تزال بسلسلة من المعالجات والعمليات الحرارية. يعالج المصهور في فرن عاكس مع الهواء والبخار والكبريت بوجود نترات الصوديوم/كربونات الصوديوم مما يؤكسد الشوائب عدا الذهب والفضة والبزموت. تزال تلك الشوائب المتأكسدة بقشطها على هيئة رغوة خبث طافية على السطح؛[86][87] في حين أن النحاس والزنك تزال بالانفصال الحبيبي؛ أما الشوائب الثمينة من الفضة والذهب فتزال وتستعاد وفق عملية باركس التي تتضمن إضافة الزنك إلى مصهور الرصاص لاستحصالهما، إذ أن الزنك لا يمتزج مع الرصاص، مما يسهل من فصله على هيئة محلول جامد.[88][87] بعد ذلك، وللتخلص من البزموت الموجود في الرصاص تجرى عملية بيترتون-كرول Betterton–Kroll التي تتضمن المعالجة بالكالسيوم والمغنسيوم ثم المعالجة الحرارية اللاحقة للتخلص من خبث البزموت.[87]

يمكن أن تجرى عملية التنقية بأسلوب آخر مغاير للمعالجات الحرارية وذلك اعتماداً على أسلوب كهركيميائي لمصهور الرصاص بواسطة عملية بيتس. في تلك العملية يغمس مصعد من الرصاص المشوب ومهبط من الرصاص النقي في كهرل من سداسي فلوروسيليكات الرصاص (PbSiF6)؛ وعند تطبيق فرق الجهد الكهربائي المناسب ينحل الرصاص الموجود على المصعد ويترسب على المهبط تاركاً أغلب الشوائب في المحلول.[87][89] ما يعيب تلك العملية هي كلفتها المرتفعة،[90] بسبب الحاجة إلى تطبيق جهد زائد في حوض التنقية؛ ولذلك لا تستخدم إلا في تنقية صبات الرصاص الحاوية على نسب مرتفعة من الشوائب.[91]

النظائر

للرصاص الطبيعي أربعة نظائر مستقرة لها الكتل الذرية التالية: 204 و 206 و 207 و 208؛[92] بالإضافة إلى آثار من خمس نظائر مشعة قصيرة عمر النصف.[93] تتوزع الوفرة الطبيعية لنظائر الرصاص المستقرة بين 52.4% للنظير رصاص-208 208Pb وحوالي 22.1% للنظير رصاص-207 207Pb وحوالي 24.1% للنظير رصاص-206 206Pb، في حين للنظير رصاص-204 204Pb يوجد بنسبة 1.4%.

يتوافق العدد الكبير من نظائر الرصاص مع حقيقة كون العدد الذري للرصاص زوجياً؛ إذ أن العدد الزوجي من الجسيمات دون الذرية في النواة يرفع من استقرارها. يتميز الرصاص بأن له عدد سحري من البروتونات (82)، ووفقاً لذلك فإن النواة تكون مستقرة بشكل كبير حسب نظرية نموذج الغلاف النووي.[94] علاوةً على ذلك فإن للرصاص-208 126 نيوتروناً، وهو عدد سحري آخر، وذلك يفسر لم لنظير الرصاص-208 استقرارية فوق العادة.[94] مع ارتفاع عدده الذري يكون الرصاص أثقل عنصر كيميائي تكون نظائره الطبيعية مستقرة، إذ أن الرصاص-208 هو أثقل نظير مستقر (أصبح هذا التمييز حقيقة بعد اكتشاف أن النظير الابتدائي البزموت-209 له نشاط إشعاعي.[95])[96]. يمكن لنظائر الرصاص الأربع المستقرة أن تضمحل نظرياً بنشاط إشعاعي عبر اضمحلال ألفا إلى نظائر الزئبق مع تحرر كمية من الطاقة، إلا أن ذلك لم يلاحظ على الإطلاق، وجرى تقدير عمر النصف لها بحوالي 1035 إلى 10189 سنة، [97] وهو ما يفوق العمر الحالي للكون.

توجد ثلاثة من نظائر الرصاص المستقرة في ثلاث من سلاسل الاضمحلال الرئيسية؛ إذ أن الرصاص-206 والرصاص-207 والرصاص-208 هي المنتجات النهائية لاضمحلال اليورانيوم-238 (سلسلة اليروانيوم) واليورانيوم-235 (سلسلة الأكتينيوم) والثوريوم-232 (سلسلة الثوريوم) على الترتيب.[98][99] يعتمد تركيز نظائر الرصاص المذكورة في عينات الصخور الطبيعية بشكل كبير على وجود نظائر اليورانيوم والثوريوم؛ فعلى سبيل المثال يمكن أن تتراوح الوفرة النسبية لنظير الرصاص-208 من 52% في العينات العادية إلى 90% في خامات الثوريوم،[100] ولذلك السبب فإن الوزن الذري القياسي يعطى بدرجة عشرية واحدة فقط.[101] مع مرور الزمن تزداد نسبة الرصاص-206 والرصاص-207 إلى الرصاص-204، وذلك لأن النظيرين الأولين يوجدان في سلسلة اضمحلال العناصر المشعة، في حين أن الأخير ليس كذلك؛ مما يسمح في النهاية بتحديد العمر الجيولوجي للعينات بستخدام أسلوب تأريخ بالرصاص-رصاص على سبيل المثال. من جهة أخرى، فإن اضمحلال اليروانيوم إلى الرصاص يمكّن من إجراء تأريخ باليورانيوم-رصاص.[102]

يتميز النظير رصاص-207 بأن له رنين مغناطيسي نووي، وتلك خاصية تساعد في دراسة مركباته في المحاليل والحالة الصلبة،[103][104] وفي جسم الإنسان من ضمن ذلك أيضاً.[105]

قطعة كبيرة من حجر نيزكي عثر عليها في محيط فوهة بارينجر. ساهمت الدراسات التأريخية بواسطة دراسة نسبة النظائر (يورانيوم-رصاص و رصاص-رصاص) بتقدير عمر كوكب الأرض.

يوجد للرصاص نظائر نظائر مشعة نادرة توجد بكميات نزرة. من بين تلك النظائر هناك الرصاص-210، والذي يبلغ عمر النصف له 22.3 سنة؛[92] ولكن على الرغم من ذلك يوجد في الطبيعة إذ أن ينتج من سلسلة اضمحلال طويلة تبدأ من اليورانيوم-238. كما أن النظائر الرصاص-211 والرصاص-212 والرصاص-214 تنتج أيضاً في سلسلة اضمحلال اليورانيوم والثوريوم ولذلك توجد طبيعياً. يحصل على نسب ضئيلة من الرصاص-209 من الاضمحلال العنقودي نادر الحدوث للراديوم-223، وهو بدوره ناتج اضمحلال لليورانيوم-235؛ وكذلك أيضاً من سلسلة اضمحلال النبتونيوم-237، والذي يستحصل من عملية التقاط نيوترون في خامات اليورانيوم. تستخدم نظائر الرصاص المشعة في عمليات التأريخ، فمثلاً يفيد قياس نسبة الرصاص-210 إلى الرصاص-206 في معرفة عمر العينات.[106]

إجمالياً فهناك حوالي 43 نظير مشع مصطنع للرصاص تتراوح كتلها الذرية بين 178–220.[92] الرصاص-205 أكثر نظائر الرصاص المشعة استقراراً، فعمر النصف له 1.5×107 سنة؛ يليه الرصاص-202 بعمر نصف مقداره 53 ألف سنة، وذلك بشكل أطول من أي نظير مشع طبيعي نزر للرصاص.[92]

الخواص الفيزيائية

عينة من فلز رصاص متصلب من مصهوره.

يوجد الرصاص النقي في الحالة القياسية من الضغط ودرجة الحرارة على شكل فلز صلب ذي لون فضي براق مائل قليلاً إلى الزرقة؛[107] وهو من الفلزات غير النبيلة، إذ عند التماس مع الهواء الرطب يفقد الرصاص بريقه ويصبح ذي مظهر باهت وتعتمد صبغة اللون على الشروط المحيطة؛ وهو يترك خدشاً ذي لون رمادي مزرق على الورق؛ وكان يستعمل فيما مضى للكتابة ومن ذلك أتت تسمية قلم رصاص رغم أن المادة المستخدمة حالياً هي من الغرافيت. تبلغ قيمة كمون القطب الكهربائي للرصاص −0.13 فولت؛[108] وهو فلز ذي مغناطيسية معاكسة وهو قابل للسحب والطرق،[109] وله مقاومة للتآكل بسبب خاصية التخميل.[110]

الرصاص من الفلزات الثقيلة، إذ يتميز بأنه ذي كثافة مرتفعة، والتي تعود إلى البنية المتراصة وفق النظام البلوري المكعب مركزي الوجوه، بالإضافة إلى الوزن الذري المرتفع.[111] تبلغ قيمة كثافة الرصاص مقدار 11.34 غ/سم3 وهي بذلك أكبر من كثافة الفلزات الشائعة مثل الحديد (7.87 غ/سم3) والنحاس (8.93 غ/سم3) والزنك (7.14 غ/سم3).[112] هناك بعض الفلزات النادرة ذات كثافة أعلى من الرصاص من ضمنها التنغستن والذهب (كلاهما ذي كثافة 19.3 غ/سم3) وكذلك الأوزميوم أكثر الفلزات المعروفة كثافةً بمقدار (22.59 غ/سم3)، وهي قيمة تبلغ حوالي ضعف كثافة الرصاص.[113] تبلغ قيمة ثابت الشبكة في البنبة البلورية المكعبة للرصاص مقدار 0.4950 نانومتر (4.95 أنغستروم[114] مع وجود 4 وحدات صيغة في كل وحدة خلية.[115]

البنية البلورية المكعبة للرصاص (a=495 pm).

الرصاص النقي فلز طري، إذ تبلغ صلادته وفق مقياس موس 1.5، بحيث يمكن خدشه بظفر اليد.[116] تبلغ قيمة معامل الحجم (وهي مقياس مدى قدرة المادة على الانضغاط) للرصاص مقدار 45.8 غيغاباسكال (GPa)؛ وللمقارنة فإن قيمتها بالنسبة للألومنيوم تبلغ 75.2 GPa وللنحاس 137.8 GPa في حين أنها للفولاذ الكربوني 160–169 GPa.[117] تعد قيمة مقاومة الشد للرصاص منخفضة نسبياً (تتراوح بين 12–17 ميغاباسكال)، وهي أقل بست مرات من قيمتها للألومنيوم وبعشر مرات من النحاس وبحوالي 15 مرة من الفولاذ الكربوني. يمكن على العموم رفع قيمتها بالنسبة للرصاص عند إضافة كميات صغيرة من النحاس أو الإثمد.

تبلغ نقطة انصهار الرصاص 327.5 °س،[118] وهي منخفضة نسبياً بالمقارنة مع باقي الفلزات؛[111] أما نقطة الغليان فتبلغ 1749 °س [118] وقيمتها هي الأخفض من بين عناصر مجموعة الكربون. للرصاص مقاومية كهربائية 192 نانوأوم-متر، وهي بذلك أكبر بحوالي قيمة أسية من قيمة مقاومية الفلزات الصناعية المعروفة (النحاس: 15.43 nΩ·m و الذهب 20.51 nΩ·m و الألومنيوم 24.15 nΩ·m).[119])؛ بالتالي للرصاص موصلية كهربائية أقل من الفلزات المذكورة، فقيمتها عند الرصاص 4.8 · 106 سيمنز/متر في حين أنها للفضة 62 · 106 S/m على سبيل المثال.[120] الرصاص موصل فائق عند درجات حرارة أدنى من 7.19 كلفن،[121] وهي بذلك أعلى نقطة حرجة من بين الموصلات الفائقة من النمط الأول وثالث اعلى قيمة من بين الموصلات الفائقة العنصرية.[122]

الخواص الكيميائية

يعطي اختبار اللهب للرصاص لوناً أزرق باهت.

تحوي ذرّة الرصاص على 82 إلكتروناً موزّعة على التشكيل التالي:Xe]4f145d106s26p2]. إن مجموع طاقتي التأين الأولى والثانية للرصاص مقارب في قيمته من القيمة المقابلة للقصدير، وهو العنصر الذي يعلو الرصاص في مجموعة الكربون، وهو أمر غير اعتيادي، إذ أن طاقات التأين عادةً ما تتناقص نزولاً في مجموعات الجدول الدوري. يعود ذلك التقارب في قيم طاقات التأين بين عنصري القصديير والرصاص إلى ظاهرة الانكماش اللانثانيدي، وهو تناقص في قيمة نصف القطر الذري في دورة اللانثانيدات (من عنصر اللانثانوم ذي العدد الذري 57 إلى عنصر اللوتيشيوم ذي العدد الذري 71)، ومع وجود نصف قطر ذري صغير نسبياً من عنصر الهافنيوم (72) إلى نهاية الدورة)؛ وذلك بسبب الحجب الضعيف على نوى تلك العناصر من الإلكترونات 4f. تبدو تلك الظاهرة بشكل أوضح عند جمع طاقات التأين الأربع الأولى للعنصرين، حيث إن مجموعها أعلى في الرصاص من نظيره في القصدير.[123] يمكن تفسير تلك الظاهرة وفق مبادئ كيمياء الكم النسبية؛[124] والتي إحداها مبدأ تأثير الزوج الخامل، إذ أن الإلكترونات 6s في الرصاص صعبة التأين ولا تساهم في الترابط الكيميائي، وهذا السبب الذي يجعل المسافة بين ذرات الرصاص في الشبكة البلورية كبيرة نسبياً.[125]

يكون لمجانسات الرصاص الخفيفة في مجموعة الكربون متآصلات مستقرة أو شبه مستقرة يكون لبعضها بنية الألماس المكعبة ذات رابطة تساهمية رباعية السطوح، وذلك لأن مستويات الطاقة في المدارات الذرية s و p متقاربة بشكل يسمح تهجينها إلى مدارات sp3؛ في حين أن تأثير الزوج الخامل في الرصاص يزيد المسافة بين المدارات s و p بحيث لا يمكن التغلب على تلك الفجوة الطاقية.[126] بالمقابل فإن الرصاص فلز، وذلك يتوافق مع ازدياد الخواص الفلزية للعناصر نزولاً في مجموعات الجدول الدوري؛[127] ولذلك فإن ذرات الرصاص تترابط فيما بينها برابطة فلزية تساهم فيها الإلكترونات p فقط غير المتمركزة والمتشاركة بين أيونات الرصاص الثنائي 2+Pb؛ ووفقاً لذلك فإن البنية البلورية الرصاص تكون حسب نظام بلوري مكعب مركزي الوجوه،[128] وذلك بشكل مماثل للعناصر ثنائية التكافؤ القريبة في قياس الذرة،[129] مثل الكالسيوم والسترونشيوم.[130]

يتأكسد الرصاص عند تعرضه للهواء الرطب ويشكل طبقة واقية ذات تركيب متفاوت تجمع بين أكاسيد الرصاص ومركبات أخرى، من بينها كربونات الرصاص الثنائي (الإسفيداج) والذي يعد أحد المكونات الشائعة لها؛[131][132][133] كما يمكن لكبريتات أو كلوريد الرصاص الثنائي أن تكون داخلة في تركيب تلك الطبقة، وخاصة في التجهيزات المدنية أو البحرية.[134] تجعل تلك الطبقة من الرصاص خاملاً في الهواء؛[134] وبالمقابل فإن مسحوق الرصاص الناعم يشتعل تلقائياً،[135] وذلك بلهب أزرق باهت.[136]

يتفاعل الفلور مع الرصاص عند درجة حرارة الغرفة مشكلاً فلوريد الرصاص الثنائي؛ في حين أن التفاعل مع الكلور يتطلب تسخيناً، إذ أن دخول الكلوريد في تركيب الطبقة على الرصاص يقلل من تفاعليته.[134] يتفاعل مصهور الرصاص مع الكالكوجينات (عناصر مجموعة الأكسجين) ليعطي كالكوجينيدات الرصاص الثنائي.[137]

يستطيع الرصاص الفلزي مقاومة أثر حمضي الكبريتيك والفوسفوريك ولكن ليس في حالة حمض النتريك وذلك لأن ملح نترات الرصاص قابل للانحلال؛ إذ تعتمد نتيجة مقاومة الرصاص للانحلال في الحموض على عدم الانحلالية وعلى التخميل اللاحق للملح الناتج.[138] في المقابل، تستطيع المحاليل القلوية المركزة أن تذيب الرصاص مشكلةً بذلك أملاح الرصاصيت.[139]

المركبات الكيميائية

للرصاص حالتي أكسدة رئيسيتين، وهما +2 و +4؛[134] ويعود ذلك إلى تأثير الزوج الخامل والذي يبرز بشكل واضح عند وجود فرق كبير في الكهرسلبية بين الرصاص وبين أنيونات الأكسيد أو الهاليد أو النتريد مسبباً وجود شحنة كهربائية موجبة جزئية ظاهرة على الرصاص. هناك فرق كبير نسبياً بين كهرسلبية الرصاص الثنائي (قيمتها 1.87) والرصاص الرباعي (قيمتها 2.33).[140] في حالة الفرق الكبير في الكهرسلبية يؤدي تأثير الزوج الخامل إلى حدوث انكماش أكبر لمدار 6s في الرصاص أكثر مما هو الحال في مدار 6p؛ مما يجعل مساهمة الإلكترونات في المدار 6s غير مفضلاً، ولذلك تكون السمة السائدة في مركبات الرصاص ذات السمة الأيونية أنها ثنائية التكافؤ. بالمقابل، فإن تأثير الزوج الخامل أقل تطبيقاً في مركبات الرصاص ذات السمة التساهمية، حيث يتشارك الرصاص الرابطة مع عناصر مقاربة في الكهرسلبية مثل الكربون في مركبات الرصاص العضوية، والتي تكون فيها المدارات 6s و 6p متقاربة، مما يتيح المجال لحدوث تهجين مداري على النمط sp3؛ إذ أن الرصاص كما الكربون يكون رباعي التكافؤ في تلك المركبات.[141] يمكن للرصاص أن يشكل سلسلة من ذرات الرصاص المترابطة مع بعضها تساهمياً، وتلك خاصية يتشارك مع مجانساته الأخف في مجموعة الكربون؛ إلا أن مدى طول السلسلة أصغر بكثير مما باقي تلك العناصر وذلك لأن طاقة الرابطة Pb–Pb أصغر بأكثر من ثلاث مرات من طاقة الرابطة C–C.[137] يمكن أن يصل طول سلسلة الرصاص إلى ثلاث ذرات كأقصى حد.[142]

أكسيد الرصاص الثنائي.

اللاعضوية

الرصاص الثنائي

إن مركبات الرصاص الثنائي هي السائدة في الكيمياء اللاعضوية لهذا العنصر؛ إذ أنه حتى المؤكسدات القوية مثل الفلور أو الكلور تتفاعل مع الرصاص لتعطي فقط هاليدات الرصاص الثنائي الموافقة PbF2 وPbCl2.[134] عادةً ما تكون أيونات الرصاص الثنائي عديمة اللون في محاليلها، [143] وهي ليست ذات صفة اختزالية مثلما هو الحال مع أيونات القصدير الثنائي؛ وهي تتحلمه جزئياً لتشكل (+Pb(OH ثم لاحقاً لتعطي في النهاية 4+[Pb4(OH)4] (والذي تشكل فيه أيونات الهيدروكسيل ربيطات جسرية.[144][145])

يوجد أكسيد الرصاص الثنائي (أو أحادي أكسيد الرصاص) في الحالة الطبيعية على شكلين مختلفين؛ الأول يدعى «مرتك» (أو المرداسنج) وهو الشكل ألفا α-PbO من الأكسيد وهو ذو لونه أحمر؛ أما الثاني فهو الشكل بيتا β-PbO ويدعى «ماسيكوت» (أو الإسفيداج المكلس) وهو ذو لون أصفر. يعد الشكل ألفا (مرتك) هو الأكثر شيوعاً، إذ أن الشكل بيتا (الماسيكوت) مستقر عند درجات حرارة تفوق 488 °س.[146]

لا يمكن عملياً الحصول على ملح هيدروكسيد الرصاص الثنائي Pb(OH)2؛ إذ أن رفع pH محاليل أملاح الرصاص الثنائي يؤدي إلى حدوث تفاعل حلمهة؛[147] ويترسب جراء ذلك ملح كربونات الرصاص القاعدية 2PbCO3·Pb(OH)2،[148] والمعروف باسم «أبيض الرصاص». أما كربونات الرصاص الثنائي (الإسفيداج) PbCO3 فهو مركب معروف ويدخل في تركيب الطبقة الواقية على الرصاص.

يشكل الرصاص الثنائي مختلف أملاح الكالكوجينيد حتى الثقيلة منها؛ فمركب كبريتيد الرصاص الثنائي PbS معروف وهو من أشباه الموصلات وله ناقلية ضوئية ويستخدم في تركيب مكاشيف الأشعة تحت الحمراء الحساسة، ويوجد طبيعياً على شكل معدن غالينا؛ أما سيلينيد الرصاص PbSe وتيلوريد الرصاص PbTe فلها ناقلية ضوئية أيضاً، وتتميز أنها بخلاف العادة ذات درجات لونية فاتحة.[149]

  الرصاص   والأكسجين في وحدة خلية أكسيد الرصاص الثنائي والرباعي.

إن هاليدات الرصاص الثنائي هي مركبات معروفة ومدروسة الخواص، وهي تشمل أملاح الفلوريد PbF2 (والذي كان من أول المركبات الأيونية التي اكتشفت غيها خواص الناقلية الأيونية من مايكل فاراداي سنة 1834.[150]) والكلوريد PbCl2 وبروميد الرصاص الثنائي PbBr2 واليوديد PbI2؛ وحتى ملح الأستاتيد،[151] بالإضافة إلى المركبات بين الهالوجينية مثل مركب PbFCl الذي يستخدم في إحدى طرق التحليل الوزني للفلور. تتفكك هاليدات الرصاص الثنائي عند التعرض للأشعة فوق البنفسجية، وخاصة ثنائي يوديد الرصاص.[152] للرصاص الثنائي قدرة جيدة على تشكيل العديد من المعقدات التناسقية مع أملاح الهاليدات مثل [PbCl4]2−, [PbCl6]4−.[152]. كذلك فإن مركبات الهاليدات الزائفة للرصاص الثنائي معروفة، ومنها ملح الثيوسيانات Pb(SCN)2 على سبيل المثال.[149][153]

إن كبريتات الرصاص الثنائي PbSO4 غير منحلة في الماء مثلما هو الحال مع كبريتات كاتيونات الفلزات الثقيلة ثنائية التكافؤ؛ في المقابل فإن أملاح النترات Pb(NO3)2 ذات انحلالية جيدة في الماء، ولذلك فإنها تستخدم مخبرياً في تحضير مركبات الرصاص الأخرى.[154]

من بين المركبات الأخرى المعروفة للرصاص الثنائي كل من أملاح الفوسفات Pb3(PO4)2 والزرنيخات Pb3(AsO4)2 والزرنيخات الهيدروجينية PbHAsO4 والكرومات PbCrO4 والسيليكات PbSiO3 وسداسي فلوروالسيليكات [Pb[SiF6 وبيرالكلورات Pb(ClO4)2 والسيلينات PbSeO4 والتيتانات PbTiO3 والتنغستات PbWO4 وكذلك الأزيد Pb(N3)2 بالإضافة إلى الأملاح المزدوجة مثل تيتانات زركونات الرصاص وغيرها.

الرصاص الرباعي

من النادر وجود مركبات لاعضوية للرصاص الرباعي، وهي تتشكل فقط في أوساط المحاليل المؤكسدة القوية، ولا توجد على شكل مركب في الشروط القياسية.[155] يمكن لأكسيد الرصاص الثنائي أن يتأكسد بشكل أكبر مما عليه ولكن إلى أكسيد الرصاص الثنائي والرباعي 2PbO·PbO2 والتي يمكن كتابة صيغته على الشكل Pb3O4؛ وله لون أحمر فاقع، ويسمى أحمر الرصاص. أما أكسيد الرصاص الرباعي PbO2 فهو ذو لون أسود؛ وهو مؤكسد قوي، إذ بإمكانه أن يؤكسد الكلوريد في حمض الهيدروكلوريك إلى غاز الكلور،[156] وذلك لأن رباعي كلوريد الرصاص المفترض تشكله غير مستقر ويتفكك تلقائياً إلى ثنائي كلوريد الرصاص PbCl2 وغاز الكلور Cl2.[157] بشكل مشابه لأكسيد الرصاص الثنائي الذي يشكل أملاح الرصاصيت فإن أكسيد الرصاص الرباعي يشكل أملاح الرصاصات وذلك عند المعالجة بالقلويات.

من مركبات الرصاص الرباعي اللاعضوية المستحصلة كل من كبريتيد الرصاص الرباعي (ثنائي كبريتيد الرصاص) PbS2، [158] وسيلينيد الرصاص الرباعي (ثنائي سيلينيد الرصاص) PbSe2،[159] واللذان هما مستقران عند ضغوط مرتفعة فقط. وهناك أيضاً فلوريد الرصاص الرباعي (رباعي فلوريد الرصاص) PbF4، وهو الهاليد الوحيد المستقر للرصاص الرباعي، رغم أنه أقل استقراراً من ثنائي الفلوريد؛ أما باقي الهاليدات مثل كلوريد الرصاص الرباعي (رباعي كلوريد الرصاص) PbCl4 فهي غير مستقرة وتتفكك تلقائياً.[160]

حالات أكسدة أخرى

يمكن الحصول على الرصاص الثلاثي (III) في بعض الحالات وذلك في بعض معقدات الرصاص العضوية التناسقية الضخمة، ولكنها حالة غير مستقرة إذ توجد في العادة على شكل جذري وسرعان ما تتحول إلى إحدى حالتي الرصاص المستقرة.[161][162][163] ينطبق الأمر ذاته على حالة أكسدة الرصاص الأحادية (I) والتي توجد فقط في المعقدات الجذرية.[164]

يمكن الحصول على حالة أكسدة كسرية للرصاص في مزائجه الأكسدية فقط، فمثلاً يستحصل على الأكسيد الأكسيد الأحادي النصفي Pb2O3 عند ضغوط مرتفعة مع مزائج أكسيدية أخرى. كما يمكن في بعض الحالات الحصول على حالة أكسدة سالبة القيمة للرصاص وذلك في مركبات طور زنتل بين الفلزية مثل مركب Ba2Pb الذي يكون فيه الرصاص نظرياً بحالة أكسدة -4؛[165] أو في بعض المعقدات الأيونية العنقودية مثل 2−Pb5 التي لها بنية جزيئية هرمية مزدوجة ثلاثية السطوح تكون فيها ذرتا رصاص في حالة الأكسدة -1 والثلاث ذرات المتبقية في حالة الأكسدة الصفرية الحرة (0).[166] تكون في أمثل تلك الأنيونات كل ذرة متموضعة على رأس المضلع وتساهم بإلكترونين لكل رابطة تساهمية على الضلعين المجاورين من مدارات sp3، أما الإلكترونين الآخرين فيبقيان على شكل زوج غير رابط.[144] يمكن الحصول على أمثال حالات الأكسدة السالبة للرصاص بالاختزال بواسطة الصوديوم في وسط من الأمونيا.[167]

العضوية

بنية جزيء رباعي إيثيل الرصاص:
  كربون
  هيدروجين
  رصاص

يشكل الرصاص مع الكربون مركبات عضوية فلزية، وهي ذات استقرار أقل من المركبات العضوية العادية،[168] وذلك بسبب ضعف الرابطة رصاص-كربون Pb–C؛[144] وهذا ما يجعل الكيمياء العضوية الفلزية للرصاص أقل أهمية من نظيرتها في القصدير على سبيل المثال.[169] في مركباته العضوية يكون الرصاص غالباً بحالة الأكسدة العليا +4، رغم وجود بعض مركبات الرصاص الثنائي العضوية؛ ومن أمثلتها كل من وأسيتات الرصاص الثنائي Pb(C2H3O2)2 (الذي كان يعرف سابقاً باسم سكّر الرصاص) وبلمبوسين Pb(η5-C5H5)2.[169] تمتلك مركبات الرصاص العضوية لذلك صفة مؤكسدة، كما هو الحال مع أسيتات الرصاص الرباعي وهو كاشف مهم للأكسدة في تفاعلات الاصطناع العضوي.[170]

يستطيع الرصاص أن يناظر الكربون في تشكيله للميثان وذلك بمركب البلومبان، وهو رباعي هيدريد الرصاص PbH4، وهو غير مستقر ويمكن الحصول عليه نظرياً من مفاعلة الرصاص مع الهيدروجين بوجود حفاز مناسب.[171] بالمقابل، فإن من أشهر مركبات الرصاص العضوية المستقرة كل من رباعي ميثيل الرصاص Pb(CH3)4 ورباعي إيثيل الرصاص Pb(C2H5)4، والتي لا تتفكك إلا عند تعريضها للحرارة،[172] أو بتعريضها للأشعة فوق البنفسجية؛[173] وكذلك مركب رباعي فينيل الرصاص الذي يتفكك عند الدرجة 270 °س.[169] يمكن تشكيل مركبات الرصاص العضوية من مفاعلة الرصاص مع الصوديوم ثم بالمفاعلة مع هاليدات الألكيل في وسط مناسب.[174] وكان أكثرها تحضيراً مركب رباعي إيثيل الرصاص،[169] إذ كان يستخدم ضمن الإضافات لوقود السيارات قبل منعه لسميته. أما باقي مركبات الرصاص العضوية فهي غير مستقرة؛[168] والكثير منها لا يمكن تحضيره بالمقارنة مع العناصر الأخرى.[171]

التحليل الكيميائي

يمكن الكشف عن الرصاص إما باستخدام الأساليب التقليدية أو بوسائل التحليل الآلي الحديثة.

الكشف عن الرصاص بالترسيب

يمكن الكشف عن أيونات الرصاص في المحاليل المائية بإجراء تفاعل ترسيب لأملاح الرصاص، ومن بين تفاعلات الكشف تلك تفاعل ترسيب الرصاص على شكل ملح يوديد الرصاص الثنائي أصفر اللون:

يمكن أن يجرى التفاعل مع أملاح أخرى للرصاص مثل ملح كبريتيد الرصاص الثنائي أسود اللون،[175] أو ملح كرومات الرصاص أصفر اللون.[176]

مطيافية الامتصاص الذري

تعد تقنية مطيافية الامتصاص الذري إما عبر أنبوب الغرافيت أو الكوارتز من أفضل الأساليب للكشف عن الكميات النزرة القليلة من الرصاص؛ حيث يمكن أن يصل الحد الأدنى للكشف 4.5 نانوغرام/مل. عادةً ما يعالج الرصاص مع بورهيدريد الصوديوم للحصول على هيدريد الرصاص الثنائي المتطاير والذي يجمع في كويب مخبري ثم يسخن كهربائياً إلى درجات حرارة تتجاوز 900 °س؛ وعندئذٍ تتذرر العينة ويمكن الكشف عن الرصاص حينها باستخدام مصباح المهبط المجوف، حيث يبدي الرصاص امتصاصية عند 283.3 نم. يمكن أن تجرى عملية التذرير باستخدام مزيج من شعلة مزيج من الهواء والأسيتيلين أو بلازما أشعة الميكرويف.[177]

مطيافية الانبعاث الذري

لإجراء التحاليل على عينات الرصاص باستخدام تقنية مطيافية الانبعاث الذري (AES) يتم في العادة استخدام البلازما إما من بلازما أشعة الميكروييف (MIP-AES) أو بلازما الآرغون المقترنة بالتحريض (ICP-AES). عادةً ما يتم الكشف عن الرصاص عند أطوال موجة 283.32 نم و 405.78 نم. تكون مستويات حد الكشف في هذه التقنية منخفضة أيضاً؛ فعلى سبيل المثال جرى الكشف باستخدام MIP-AES عن ثلاثي ميثيل الرصاص بتراكيز دنيا وصلت إلى 0.19 بيكوغرام/غ؛[178] في حين أن استخدام أسلوب ICP-AES مكّن من تحليل آثار من الرصاص في مياه الشرب ذات تركيز أدنى يصل إلى 15.3 نانوغرام/مل.[179][180]

مطيافية الكتلة

يمكن استخدام التقنيات المختلفة في مطيافية الكتلة تحليل آثار من الفلزات باستخدام البلازما المقترنة بالتحريض مصدراً للأيونات، فعلى سبيل المثال يصل حد الكشف عن الرصاص في عينة بول إلى 4.2 بيكوغرام/غرام.[181]

القياس الضوئي

تعد طريقة الديثيزون أكثر طرق الكشف عن الرصاص بواسطة القياس الضوئي شيوعاً. ديثيزون هو مركب عضوي عطري يستخدم ربيطةً ثنائية السن، ويشكل مع أيونات الرصاص عند مجال pH يتراوح بين 9–11.5 معقداً تناسقياً أحمر اللون له امتصاصية عند 520 نانومتر. من مشكلات هذا الأسلوب تداخل أيونات البزموت والثاليوم في التحليل، لذلك ينبغي ترسيبها أو استخلاصها أولاً.[182][183][184]

القياس الفولتي

تستخدم تقنيات القياس الفولتي المختلفة في تحليل الآثار من الرصاص، وذلك بتراكيز دنيا من حد الكشف تصل إلى 50 بيكومول في اللتر.[185][186]

الأثر الحيوي

رصاص
المخاطر
رمز الخطر وفق GHS GHS07: مضرّGHS08: خَطِر على الصحّةGHS09: خَطِر على البيئة
وصف الخطر وفق GHS Danger
بيانات الخطر وفق GHS H302, H332, H351, <abbr class="abbr" title="Error in hazard statements">H360Df, H373, H410
بيانات وقائية وفق GHS P201, P261, P273, P304, P340, P312, P308, P313, P391[187]
NFPA 704

0
1
0
 

لا يوجد للرصاص دور بيولوجي مؤكد، ولا يوجد مستوى أمان مؤكد للتعرض للرصاص.[188][189][190] خلُصت دراسة أجريت عام 2009 إلى أن "التعرض لمستويات تعتبر آمنة بشكلٍ عام من الرصاص قد يؤدي إلى نتائج سلبية على الصحة العقلية".[191] متوسط مستوى وجود الرصاص في جسم الإنسان البالغ حوالي 120 ملغماً،[ب] ومن المعادن الثقيلة التي توجد بنسب أكبر في جسم الإنسان الزنك (2500 ملغماً) والحديد (4000 ملغماً [193]. كما يتم امتصاص أملاح الرصاص بكفاءة عالية في جسم الإنسان [194]. تخزن نسبة قليلة من الرصاص (أي 1% في العظام)؛ أما الكمية الباقية فيتم إفرازها مع البول والبراز في غضون إسابيع قليلة من دخولها للجسم. يكون حوالي ثلث الرصاص في جسم الإنسان طبيعياً في جسم الطفل؛ لكن التعرص المستمر ينتج عن التراكم الحيوي للرصاص.[195]

السمية

الرصاص معدنٌ سام للغاية (سواء كان ذلك باستنشاقه أو ابتلاعه)، ما يؤثّر على كل أجهزة جسم الإنسان وأعضاءه تقريباً.[196] تعتبر المستويات الموجودة في الجو 100 ملغم\م 3 ذات خطورة فورية للحياة أو الصحة.[197] معظم الرصاص الذي يتم ابتلاعه يُمتصّ ألى مجرى الدم.[198] السبب الرئيسي للسمّية هو ميله لتغيير أداء الإنزيمات. حيث يقوم بذلك بالارتباط بالثيولات الموجودة في العديد من الإنزيمات،[199] أو تقليد المعادن الأخرى التي تعمل كعامل مرافق في العديد من التفاعلات الإنزيمية.[200] من بين المعادن الأساسية التي يتفاعل الرصاص معها الحديد والكالسيوم والزنك.[201] تميل المستويات العالية من الكالسيوم والحديد إلى توفير بعض الحماية ضد التسمم بالرصاص؛ لكن المستويات المنخفضة منهما تسبب زيادة في التعرض لسمّية الرصاص.[194]

التأثيرات

يمكن أن يسبب الرصاص أضرار بالغة للدماغ والكلى ويؤدي ذلك للموت في نهاية الأمر. يمكن أن يعبر الرصاص الحاجز الدموي الدماغي بتقليده عمل الكالسيوم. يعمل الرصاص على إتلاف أغمدة الميالين في العصبونات، ويقلّل عددها، ويتداخل مع مسارات النواقل العصبية ويحدّ من نمو الخلايا العصبية[199]. في جسم الإنسان، يثبّط الرصاص إنزيم سينثيز البرفوبيلينوجين وإنزيم فيروكيلاتيز فيمنع تكوّن بُرْفوبيلينوجين ويمنع اندماج الحديد مع بروتوبورفيرين 9، وهي آخر خطوة في عملية تركيب الهيم. يسبب هذا كله تخليقاً غير فعال للهيم وفقر الدم الجزئي.[202]

مخطط لجسم الإنسان يوضح أعراض التسمم بالرصاص حسب العضو

تتضمن أعراض التسمم بالرصاص اعتلال الكلى ومغص شبيه بآلام البطن وضعف في الأصابع والرسغين والكاحلين، وتحدث زيادة قليلة في ضغط الدم، لا سيما لدى الأشخاص في منتصف العمل وكبار السن، لكن قد تكون الزيادة واضحة فتسبب فقر الدم. وجدت العديد من الدراسات وجود ارتباطٍ بين زيادة التعرض للرصاص وانخفاض معدل ضربات القلب.[203] أما في النساء الحوامل، فقد يؤدي التعرض للرصاص بمستويات مرتفعة إلى الإجهاض. أما التعرض المزمن للرصاص بمستويات مرتفعة فيقلل الخصوبة عند الذكور.[204] بالنسبة لدماغ الطفل في طور النمو، يتداخل الرصاص مع تكوين التشابك العصبي في القشرة المخية وتطوّر الجهاز العصبي (بما في ذلك النواقل العصبية)، وتنظيم القنوات الأيونية.[205] يتسبب التعرض للرصاص في الطفولة المبكرة بزيادة مخاطر اضطرابات النوم أما في مراحل الطفولة المتأخرة فيسبب النعاس المفرط في النهار.[206] كما ترتبط مستويات الدم المرتفعة بتأخر سن البلوغ عند الفتيات.[207] في القرن العشرين، تم الربط بين تباين التعرض للرصاص (ارتفاعاً وانخفاضاً) الموجود في الجو الناتج عن احتراق الرصاص رباعي الإيثيل في البنزين وبين تباين معدلات الجريمة ارتفاعاً وانخفاضاً، ويعرف ذلك بفرضية الرصاص-الجريمة التي لم تكن مقبولة عالمياً.[208]

مصادر التعرّض

أصبح التعرض للرصاص مشكلة عالمية منذ أن أصبح التعدين وصهر المعادن عمليات صناعية رئيسية، وشيوع صناعة البطاريات والتخلص منها وإعادة تدويرها في العديد من دول العالم. يدخل الرصاص إلى الجسم عن طريق الاستنشاق أو الابتلاع أو امتصاص الجلد. الطريقة الأكثر شيوعاً هي استنشاق الرصاص إلى الجسم، أما بالنسبة للابتلاع فتتراوح نسبة حدوثة بين 20 - 70%، حيث الأطفال أكثر عرضةً لابتلاع الرصاص من البالغين.[209]

ينتج التسمم عادةً عن ابتلاع الطعام أو الماء الملوث بالرصاص، أو ابتلاع تربة ملوثة أو غبار أو طلاء يستخدم فيه الرصاص، وهي الحالات أقل شيوعاً.[210] قد تحتوي منتجات مياه البحر على الرصاص إذا تعرضت لتلوّث بالمياه الصناعية الناتجة عن المنشآت القريبة. [211] يمكن أن تتلوث الفواكة والخضراوات أيضاً بمستويات عالية من الرصاص الموجود في التربة التي تزرع فيها. وتتلوث التربة من تراكم الجزئيات التي مصدرها الأنابيب والطلاء والانبعاثات المتبقية من البنزين المحتوي على الرصاص.[212]

يعتبر استخدام الرصاص لتصنيع أنابيب المياه أمراً جدلياً، خاصة في الدول التي فيها ماء يسر أو مياه حمضية. [213] يشكّل الماء العسر طبقة غير قابلة للذوبان داخل الأنابيب في حين يذيب الماء اليسر والماء الحمضي أنابيب الرصاص.[214] يؤدي ثاني أكسيد الكربون الذائب في الماء المنقول بواسطة أنابيب مصنوعة من الرصاص إلى تكوين بيكربونات الرصاص قابلة للذوبان؛ قد يؤدي الماء المشبع بالأكسجين إلى تذويب الرصاص ك[[هيدروكسيد الرصاص الثنائي]. شرب هذه المياه، ومع مرور الوقت، يمكن أن يسبب مشاكل صحية بسبب سمية الرصاص المذاب. كلما زاد محتوى الماء العسر من بيكربونات الكالسيوم وكبريتات الكالسيوم، كلما زادت طبقة كربونات الرصاص وكبريتات الرصاص الواقية التي تتشكل داخل الأنابيب.[215]

تسجيل كايموغرافيكي يبين تأثير أسيتات الرصاص على قلب ضفدع معدّ للتجارب.

يعتبر دخول الدهانات المحتوية على الرصاص إلى الجسم المصدر الرئيسي للتعرّض بالنسبة للأطفال: من مصادر دخول الدهان إلى الجسم مضغ عتبات النوافذ القديمة المدهونة. أيضاً، عندما يبلى الدهان الجاف، فإنه يتقشّر ويتفتت ويصبح بعضه غباراً، ثم يدخل إلى الجسم من خلال اليدين أو الطعام أو المشروبات الملوثة. كما يؤدي تناول بعض المواد التي تقدم في الطب التقليدي إلى التعرض لبعض مركبات الرصاص..[216]

أما طريقة التعرّض الرئيسية الثانية فهي "الاستنشاق، حيث يتأثر بهذه الطريقة العمّال الذين يعملون بمهنٍ ترتبط بالرصاص ومركّباته،[198] والمدخنون، حيث يحتوي دخان السجائر على نظائر الرصاص الإشعاعية بالإضافة للعديد من المواد السامة الأخرى.[217]

قد يكون تعرض الجلد للرصاص خطيراً بالنسبة للأشخاص الذين يعملون بمركّبات الرصاص العضوية، حيث أن معدل امتصاص الجلد للرصاص غير العضوي يكون أقل.[218]

العلاج

يتضمن علاج التسمم بالرصاص عادةً استخدام ديمركابرول وسوكيمير[219] قد تتطلب الحالات الحادة استخدام ثنائي صوديوم كالسيوم الإيديتات والكالسيوم بطريقة الاستخلاب، وأملاح حمض إثيلين ديامينيتيتراسيتيك ثنائية الصوديوم (ثنائي أمين الإيثيلين رباعي حمض الأسيتيك). إذ تكوّن تآلفاً أكبر مع الرصاص من الكالسيوم، فينتج عن ذلك خُلابة الرصاص التي تفرز خارج الجسم مع البول تاركةً خلفها الكالسيوم غير المؤذي..[220]

الأثر البيئي

موقع لتجميع البطاريات في داكار في السنغال، حيث توفي 18 طفلاً على الأقل بسبب التسمم بالرصاص عام 2008.

استخراج وإنتاج واستخدام والرصاص والتخلص منه ومن منتجاته كلها عمليات تسببت بتلوث التربة والمياه. وقد بلغت انبعاثات الرصاص إلى الجو ذروتها أثناء الثورة الصناعية، وفترة استخدام البنزين المحتوي على الرصاص في النصف الثاني من القرن العشرين. تنتج انبعاثات الرصاص من مصادر طبيعية (أي تركيز الرصاص الطبيعي) والإنتاج الصناعي والحرق وإعادة التدوير وإعادة استخراج الرصاص المدفون سابقاً.[221] ولا يزال تركيز الرصاص مرتفع في التربة والرواسب في المناطق الصناعية والحضرية؛ تتضمن الانبعاثات الناتجة عن الصناعة حرق الفحم الحجري [222]، الذي لا يزال متّبعاً في العديد من مناطق العالم، تحديداً في الدول النامية.[223] يمكن أن يتراكم الرصاص في التربة، خاصة تلك ذات المحتوى العضوي المرتفع، حيث يتبقّى فيها لمئات بل آلاف السنين. ينافس الرصاص البيئي غيره من المعادن التي وجدت في أو على سطح النباتات ما قد يمنع عملية التركيب الضوئي ويؤثر سلباً على نمو النبات وبقائه إن وجد بتركيزات عالية بما فيه الكفاية. يسبب تلوّث التربة والنباتات بالرصاص تصاعد السلسلة الغذائية التي تؤثر على الكائنات الحية الدقيقة والحيوانات. في الحيوانات، إذا ابتُلع الرصاص أو استُنشق أو امتصه الجلد، فإنه يسبب سمّية في العديد من الأجهزة الحيوية، فيضر بالجهاز العصبي والكلى والتكاثر وتكون الدم وأنظمة القلب والأوعية الدموية [224] يتأثر السمك بالرصاص من المياه والرواسب[225]، وبالتالي فإن التراكم الإحيائي في السلسلة الغذائية يشكل خطراً على الأسماك والطيور والثدييات البحرية.[226] يشمل الرصاص الاصطناعي ذلك المستخدم في طلقات الأسلحة وغطاسات الصيد. وهذان من بين أقوى مصادر التلوث بالرصاص في جانب مواقع إنتاج الرصاص[227]. تم حظر استخدام الرصاص في طلقات الأسلحة وغطاسات الصيد في الولايات المتحدة عام [228]2017، [229] على الرغم من أن هذا الحظر استمر لمدة شهر واحد فقط، كما يُدرس مثل هذا الحظر حالياً في الاتحاد الأوروبي.[230] تتضمن الطرق التحليلية المتّبعة لتقدير نسب الرصاص في البيئة استخدام قياس الضوء الطيفي وفلورية الأشعة السينية والمطيافية الذرية والكيمياء الكهربائية. ومن المقايسات الحيوية المهمة للتسمم بالرصاص فحص مستويات حمض أمينوليفولينيك في بلازما الدم والمصل والبول.[231]

القيود والمعالجة

حدث تحول كبير في استخدام الرصاص بحلول منتصف ثمانينيات القرن الماضي. ففي الولايات المتحدة خفضت اللوائح البيئية أو ألغت استخدام الرصاص في المنتجات غير المتعلقة بالبطارية، بما في ذلك البنزين والدهانات وشبكات المياه. وأمكن استخدام أجهزة تحكم الجسيمات في محطات توليد الطاقة التي تعمل بالفحم من أجل التقاط انبعاثات الرصاص.[222]

الاستخدامات

A closed structure of black bricks
قطع طوب من الرصاص (مخلوط بالأنتيمون بنسبة 4%) مستخدمة كدرع واقٍ من الإشعاعات.[232]

خلافاً للاعتقاد الشائع، لا يوجد قط مادة الرصاص في أقلام الرصاص الخشبية. عندما صنعت أقلام الرصاص كأداة للكتابة من مادة الغرانيت الملفوفة، كان نوع الغرافيت المستخدم آنذاك يعرف باسم "الرصاص الأسود plumbago" (ويعني الاسم حرفياً "تصرّف كالرصاص" أو "نموذج الرصاص").[233]

الشكل الأولي (كعنصر)

لمعدن الرصاص العديد من الخصائص الميكانيكية المفيدة، بما في ذلك الكثافة العالية، ونقطة الانصهار المنخفضة، والليونة، والخمول النسبي. تتفوق العديد من المعادن على الرصاص في بعض هذه الخصائص، لكنها أقل شيوعاً واستخراجها من خاماتها أكثر صعوبةً. ونظراً لسمّية الرصاص، فقد استبعد من بعض الصناعات والاستخدامات.[234]

استخدم معدن الرصاص في تصنيع طلقات الأسلحة منذ اختراعها في العصور الوسطى. نظراً لكونه غير مكلف ونقطة انصهاره منخفضة، فقد كان من المفضّل استخدامه لصنع ذخائر الأسلحة الصغيرة وقذائف الطلقات النارية الصغيرة بطريقة الصبّ ومعدات تقنية بسيطة؛ ونظراً لكون كثافته أعلى من كثافة بعض المعادن الأخرى الشائعة، يعتبر الحفاظ على تسارع تغيير الرصاص أفضل من غيره. أما اليوم، فلا يزال الرصاص المادة الأساسية لصناعة طلقات الأسلحة ويستخدم لخلطه مع معادن أخرى لتصليبها.[37] أثيرت مخاوف من استخدام طلقات الرصاص في الصيد قد تضرّ بالبيئة. لذا بدأت ولاية كاليفورنيا حظر استخدام طلقات الرصاص للصيد في تموز (يوليو) 2015.[235] يستخدم الرصاص في العديد من التطبيقات بفضل كثافته العالية ومقاومته للتآكل. فهو يستخدم كصابورة لتوازن القوارب الشراعية؛ إذ تتيح كثافته بالحدّ من مقاومة الماء، وبالتالي موازنة تأثير الرياح على الأشرعة. [236] كما يستخدم في نظام الوزن الخاص بالغوص المتّبع في عمليات الغوص بجهاز التنفس تحت الماء المكتفي ذاتيا لمقاومة طفو الغطّاس.[237] عام 1993، تم تدعيم قاعدة برج بيزا المائل بحوالي 600 طن من الرصاص.[238] وبسبب مقاومته للتآكل، يُستخدم الرصاص كغمدٍ وقائي للكابلات تحت الماء.[239]

منحوتة من الرصاص المطلي بالذهب من القرن السابع عشر الميلادي

للرصاص استخدامات عديدة في صناعات البناء والتشييد؛ تستخدم صفائح الرصاص كمعدن معماري في مواد تدعيم الأسقف، والتصفيح والحشوات المعدنية المانعة للتسرب وفي صناعة المزاريب ووصلاتها وفي حواجز الأسقف.[240][241] تستخدم قوالب الرصاص المفصلة في قطع الزخرفة المستخدمة لإصلاح صفائح الرصاص. كما لا يزال مستخدماً لصناعة التماثيل والمنحوتات.[242]}} بما في ذلك دعامات التماثيل.[243] في الماضي، كان الرصاص يستخدم عادةً في توازن عجلات السيارات؛ لكن توقف استخدامه لهذا الغرض لأسباب بيئية.[73]

يضاف الرصاص إلى سبائك النحاس، كالنحاس الأصفر والبرونز، لتحسين إمكانية استخدامها في صناعة المياكن. ولكونه غير قابل للذوبان في النحاس عملياً، يشكّل الرصاص كريات صلبة في السبيكة كالحد الحبيبي وهذا من عيوبه. في التركيزات المنخفضة وعند استخدامه كمادة تشحييم، تعوق الكريات تشكيل الرايش أثناء عمل السبائك، وبالتالي تستخدم سبائك الرصاص ذي التركيزات الأكبر في صناعة المحامل. يوفر الرصاص خاصية التشحيم، ودعم المحامل.[244]

كثافة الرصاص العالية وعدده الذري وقابليته على التشكيل جعلت منه مادة أساسية لتصنيع الحواجز التي تمتص الصوت والاهتزازات والإشعاع..[245] ليس للرصاص ترددات صدى طبيعية؛[245] نتيجةً لذلك، تستخدم صفائح الرصاص كطبقات لتخفيت الأصوات في الجدران والأرضيات والأسقف في الاستديوهات الصوتية.[246] .[246] تصنع أنابيب الأرغن من سبائك الرصاص عادةً وذلك بمزجها بكميات مختلفة من القصدير للتحكم في نغمة كل أنبوب.[247][248]الرصاص مادة مهمة في صناعة الدروع الواقية من الإشعاعات المؤينة في الفيزياء النووية وغرف التصوير بالأشعة السينية[249] وذلك بسبب كثافته ومعامل امتصاصه المرتفع. [250] يستخدم الرصاص المصهور كمادة تبريد في المفاعلات السريعة بتبريد الرصاص.[251]

أكبر استخدامات الرصاص في أوائل القرن 21 هو "بطاريات الرصاص الحمضية". حيث توفر التفاعلات في البطارية بين الرصاص وثاني أكسيد الرصاص وحمض الكبريتيك مصدراً جيداً للجهد الكهربائي..[ج] تم تركيب المكثفات الفائقة التي تتضمن بطاريات الرصاص الحمضية في تطبيقات تعتمد مقاييس الكيلووات والميغاوايت في أستراليا واليابان والولايات المتحدة لتنظيم الترددات وتحويل الطاقة الشمسية وتطويع الرياح وتطبيقات أخرى [[مكثف فائق[253] تتميز هذه البطاريات بكثافة طاقة أقل وأكثر كفاءة في تفريغ الشحنات من بطاريات أيونات الليثيوم، لكنها أرخص بكثير[254]

زجاج كريستالي
زجاج رصاصي

يستخدم الرصاص في كوابل الطاقة ذات الجهد العالي كمادة تغليف لمنع انتشار المياه إلى العازل الكهربائي؛ إلا أن استخدام الرصاص لهذا الغرض أصبح يقل تدريجياً.[255] كما أن استخدامه في سبائك لحام القصدير المستخدمه في الإلكترونيات أصبح أقل في بعض الدول وذلك بهدف تقليل كمية النفايات الضارة بالبيئة.[256] يعتبر الرصاص أحد ثلاثة معادن تستخدم في اختبار أودي المتّبع لفحص مواد المتاحف، التي تستخدم للكشف عن الأحماض العضوية والألدهيدات والغازات الحمضية.[257][258]

مركباته

إضافة لتطبيقات معدن الرصاص الرئيسية، تعتبر بطاريات الرصاص الحمضي أكبر مستهلك لمركبات الرصاص. إذ تستخدم تفاعلات التخزين وإلإطلاق مركبات كبريتات الرصاص الثنائي وأكسيد الرصاص الرباعي:

Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)

أما التطبيقات الأخرى لمركّبات الرصاص فمتخصصة جداً وفي في طريقها للتلاشي. تستخدم عوامل التلوين التي يدخل الرصاص في تكوينها في تزجيج الخزف والزجاج، خاصة ظلال اللونين الأحمر والأصفر. [259] تم التخلص من الألوان التي يدخل الرصاص في تكوينها في أوروبا وأمريكا الشمالية، لكنها لا تزال مستخدمة في الدول الأقل تقدماً كالصين[260] والهند[261] وإندونيسيا. [262] يستخدم رباعي أسيتيد الرصاص وثاني أكسيد الرصاص كعوامل مؤكسدة في الكيمياء العضوية. كما يستخدم الرصاص في طلاء الأسلاك الكهربائية مع كلوريد متعدد الفاينيل.[263][264] ويمكن استخدامه لمعالجة فتائل الشموع لضمان فترة احتراق أطول وأقوى. لكن وبسبب سمّيته، يستخدم المصنّعون الأوروبيون والأمريكيون الشماليون الآن بدائل كالزنك. [265][266] يحتوي الزجاج الرصاصي على 12-28% أكسيد الرصاص الثنائي، الذي يعمل على تغيير خصائصه البصرية ويقلل انتقال الإشعاع المؤين.[267] تستخدم أشباه الموصلات القائمة على الرصاص مثل تيلورايد وسيلينايد الرصاص المستخدمان في خلايا الألواح الضوئية وأجهزة استكشاف الأشعة تحت الحمراء.[268]

في الحياة والثقافة العامة

في اللغة

يسمى الرصاص في اللغة العربية أيضاً باسم الصَرَفان.[269] وأما الآنك هو: الأُسْرُبُّ. وهو: الرصاص القلعيُّ، أو القزدير، أو الرصاص الأبيض، وقيل: الأسود، وقيل هو: الخالص منه. [270]

مراجع

  1. ^ Lead sling bullet.
  2. ^ ا ب Rich 1994، صفحة 4.
  3. ^ ا ب ج د Winder 1993b.
  4. ^ History of Cosmetics.
  5. ^ Toronto museum explores 2003.
  6. ^ Yu & Yu 2004، صفحة 26.
  7. ^ Bisson & Vogel 2000، صفحة 105.
  8. ^ Rich 1994، صفحة 5.
  9. ^ United States Geological Survey 1973.
  10. ^ ا ب ج Hong et al. 1994، صفحات 1841–43.
  11. ^ de Callataÿ 2005، صفحات 361–72.
  12. ^ Ceccarelli 2013، صفحة 35.
  13. ^ Ossuaries and Sarcophagi.
  14. ^ Rich 1994، صفحة 6.
  15. ^ Thornton, Rautiu & Brush 2001، صفحات 179–84.
  16. ^ Bisel & Bisel 2002، صفحات 459–60.
  17. ^ Retief & Cilliers 2006، صفحات 149–51.
  18. ^ Lewis 1985، صفحة 15.
  19. ^ Thornton, Rautiu & Brush 2001، صفحة 183.
  20. ^ Eschnauer & Stoeppler 1992، صفحات 58.
  21. ^ Grout 2017.
  22. ^ Hodge 1981، صفحات 486–91.
  23. ^ Gilfillan 1965، صفحات 53–60.
  24. ^ Nriagu 1983، صفحات 660–63.
  25. ^ Frankenburg 2014، صفحة 16.
  26. ^ Scarborough 1984.
  27. ^ Waldron 1985، صفحات 107–08.
  28. ^ Reddy & Braun 2010، صفحة 1052.
  29. ^ Delile et al. 2014، صفحات 6594–99.
  30. ^ Kellett 2012، صفحات 106–07.
  31. ^ ا ب Winder 1993a.
  32. ^ ا ب Rich 1994، صفحة 7.
  33. ^ Ede & Cormack 2016، صفحة 54.
  34. ^ Rich 1994، صفحة 8.
  35. ^ Samson 1885، صفحة 388.
  36. ^ Sinha et al. 1993.
  37. ^ ا ب Ramage 1980، صفحة 8.
  38. ^ Tungate 2011، صفحة 14.
  39. ^ Donnelly 2014، صفحات 171–172.
  40. ^ Nakashima et al. 1998، صفحة 59.
  41. ^ Ashikari 2003، صفحة 65.
  42. ^ Rabinowitz 1995، صفحة 66.
  43. ^ Gill & Libraries Board of South Australia 1974، صفحة 69.
  44. ^ Lead mining.
  45. ^ Rich 1994، صفحة 11.
  46. ^ ا ب ج Riva et al. 2012، صفحات 11–16.
  47. ^ Hernberg 2000، صفحات 246.
  48. ^ Crow 2007.
  49. ^ Markowitz & Rosner 2000، صفحة 37.
  50. ^ More et al. 2017.
  51. ^ American Geophysical Union 2017.
  52. ^ Centers for Disease Control and Prevention 1997.
  53. ^ Rich 1994، صفحة 117.
  54. ^ United States Geological Survey 2005.
  55. ^ Zhang et al. 2012، صفحات 2261–73.
  56. ^ ا ب ج د Lodders 2003، صفحات 1222–23.
  57. ^ Roederer et al. 2009، صفحات 1963–80.
  58. ^ Lochner, Rohrbach & Cochrane 2005، صفحة 12.
  59. ^ Lodders 2003، صفحة 1224.
  60. ^ Burbidge et al. 1957، صفحات 608–615.
  61. ^ Burbidge et al. 1957، صفحة 551.
  62. ^ Burbidge et al. 1957، صفحات 608–609.
  63. ^ Burbidge et al. 1957، صفحة 553.
  64. ^ Frebel 2015، صفحات 114–15.
  65. ^ Burbidge et al. 1957، صفحات 608–610.
  66. ^ Burbidge et al. 1957، صفحة 595.
  67. ^ Burbidge et al. 1957، صفحة 596.
  68. ^ Langmuir & Broecker 2012، صفحات 183–184.
  69. ^ Davidson et al. 2014، صفحات 4–5.
  70. ^ Emsley 2011، صفحات 286, passim.
  71. ^ Cox 1997، صفحة 182.
  72. ^ ا ب Davidson et al. 2014، صفحة 4.
  73. ^ ا ب ج د United States Geological Survey 2017، صفحة 97.
  74. ^ Rieuwerts 2015، صفحة 225.
  75. ^ Tolliday 2014.
  76. ^ Graedel 2010.
  77. ^ Guberman 2016، صفحات 42.14–15.
  78. ^ ا ب ج Thornton, Rautiu & Brush 2001، صفحة 56.
  79. ^ ا ب Davidson et al. 2014، صفحة 6.
  80. ^ ا ب ج Davidson et al. 2014، صفحة 17.
  81. ^ Thornton, Rautiu & Brush 2001، صفحة 51.
  82. ^ Davidson et al. 2014، صفحات 11–12.
  83. ^ Thornton, Rautiu & Brush 2001، صفحات 51–52.
  84. ^ United States Environmental Protection Agency 2010، صفحة 1.
  85. ^ ا ب Thornton, Rautiu & Brush 2001، صفحة 57.
  86. ^ Davidson et al. 2014، صفحة 25.
  87. ^ ا ب ج د Primary Lead Refining.
  88. ^ Pauling 1947.
  89. ^ Davidson et al. 2014، صفحة 34.
  90. ^ Thornton, Rautiu & Brush 2001، صفحات 52–53.
  91. ^ Davidson et al. 2014، صفحة 23.
  92. ^ ا ب ج د IAEA - Nuclear Data Section 2017.
  93. ^ University of California Nuclear Forensic Search Project.
  94. ^ ا ب Stone 1997.
  95. ^ Marcillac et al. 2003، صفحات 876–78.
  96. ^ P. de Marcillac, N. Coron, G. Dambier, J. Leblanc, J.-P. Moalic: Experimental detection of α-particles from the radioactive decay of natural bismuth. In: Nature. 422, 2003, S. 876–878; doi:10.1038/nature01541.
  97. ^ Beeman et al. 2013.
  98. ^ Radioactive Decay Series 2012.
  99. ^ Committee on Evaluation of EPA Guidelines for Exposure to Naturally Occurring Radioactive Materials et al. 1999.
  100. ^ Smirnov, Borisevich & Sulaberidze 2012.
  101. ^ Greenwood & Earnshaw 1998، صفحة 368.
  102. ^ Levin 2009، صفحات 40–41.
  103. ^ Webb 2000، صفحة 115.
  104. ^ Wrackmeyer & Horchler 1990.
  105. ^ Cangelosi & Pecoraro 2015.
  106. ^ Fiorini 2010، صفحات 7–8.
  107. ^ Greenwood & Earnshaw 1998، صفحة 372.
  108. ^ Michael Binnewies: Allgemeine und anorganische Chemie. Spektrum, Heidelberg 2004, ISBN 3-8274-0208-5.
  109. ^ Anderson 1869، صفحات 341–43.
  110. ^ Greenwood & Earnshaw 1998، صفحات 372–73.
  111. ^ ا ب Thornton, Rautiu & Brush 2001، صفحة 6.
  112. ^ Lide 2005، صفحات 12-35, 12-40.
  113. ^ Lide 2005، صفحات 4-13, 4-21, 4-33.
  114. ^ Ralph W. G. Wyckoff (1963)، Crystal Structures, Band 1 (PDF) (ط. 2.)، New York, London, Sydney: John Wiley & Sons، ص. 3
  115. ^ Hugo Strunz, Ernest H. Nickel (2001)، Strunz Mineralogical Tables. Chemical-structural Mineral Classification System (ط. 9.)، Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller)، ص. 35، ISBN:3-510-65188-X
  116. ^ Vogel & Achilles 2013، صفحة 8.
  117. ^ Gale & Totemeier 2003، صفحات 15–2–15–3.
  118. ^ ا ب Lide 2005، صفحة 12-219.
  119. ^ Lide 2005، صفحة 12-45.
  120. ^ A. F. Holleman, E. Wiberg, N. Wiberg (1995)، Lehrbuch der Anorganischen Chemie (ط. 101)، Berlin: de Gruyter، ISBN:3-11-012641-9{{استشهاد}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  121. ^ Blakemore 1985، صفحة 272.
  122. ^ Webb, Marsiglio & Hirsch 2015.
  123. ^ Lide 2005، صفحة 10-179.
  124. ^ Pyykkö 1988، صفحات 563–94.
  125. ^ Norman 1996، صفحة 36.
  126. ^ Greenwood & Earnshaw 1998، صفحات 226–27, 374.
  127. ^ Parthé 1964، صفحة 13.
  128. ^ Christensen 2002، صفحة 867.
  129. ^ Slater 1964.
  130. ^ Considine & Considine 2013، صفحات 501, 2970.
  131. ^ Thürmer, Williams & Reutt-Robey 2002، صفحات 2033–35.
  132. ^ Tétreault, Sirois & Stamatopoulou 1998، صفحات 17–32.
  133. ^ Thornton, Rautiu & Brush 2001، صفحات 10–11.
  134. ^ ا ب ج د ه Greenwood & Earnshaw 1998، صفحة 373.
  135. ^ Bretherick 2016، صفحة 1442.
  136. ^ Harbison, Bourgeois & Johnson 2015، صفحة 132.
  137. ^ ا ب Greenwood & Earnshaw 1998، صفحة 374.
  138. ^ Thornton, Rautiu & Brush 2001، صفحات 11–12.
  139. ^ Polyanskiy 1986، صفحة 20.
  140. ^ Dieter & Watson 2009، صفحة 509.
  141. ^ Kaupp 2014، صفحات 9–10.
  142. ^ Stabenow, Saak & Weidenbruch 2003.
  143. ^ Hunt 2014، صفحة 215.
  144. ^ ا ب ج King 1995، صفحات 43–63.
  145. ^ Bunker & Casey 2016، صفحة 89.
  146. ^ Greenwood & Earnshaw 1998، صفحة 384.
  147. ^ Greenwood & Earnshaw 1998، صفحة 387.
  148. ^ Inorganic Chemistry,Egon Wiberg, Arnold Frederick Holleman Elsevier 2001 (ردمك 0-12-352651-5)
  149. ^ ا ب Greenwood & Earnshaw 1998، صفحة 389.
  150. ^ Funke 2013.
  151. ^ Zuckerman & Hagen 1989، صفحة 426.
  152. ^ ا ب Greenwood & Earnshaw 1998، صفحة 382.
  153. ^ Bharara & Atwood 2006، صفحة 4.
  154. ^ Greenwood & Earnshaw 1998، صفحة 388.
  155. ^ Toxicological Profile for Lead 2007، صفحة 277.
  156. ^ Downs & Adams 2017، صفحة 1128.
  157. ^ Brescia 2012، صفحة 234.
  158. ^ Macintyre 1992، صفحة 3775.
  159. ^ Silverman 1966، صفحات 2067–69.
  160. ^ Greenwood & Earnshaw 1998، صفحة 381.
  161. ^ Becker et al. 2008، صفحات 9965–78.
  162. ^ Mosseri, Henglein & Janata 1990، صفحات 2722–26.
  163. ^ Konu & Chivers 2011، صفحة 391–92.
  164. ^ Hadlington 2017، صفحة 59.
  165. ^ Röhr 2017.
  166. ^ Alsfasser 2007، صفحات 261–63.
  167. ^ Greenwood & Earnshaw 1998، صفحة 393.
  168. ^ ا ب Polyanskiy 1986، صفحة 43.
  169. ^ ا ب ج د Greenwood & Earnshaw 1998، صفحة 404.
  170. ^ Zýka 1966، صفحة 569.
  171. ^ ا ب Wiberg, Wiberg & Holleman 2001، صفحة 918.
  172. ^ Toxicological Profile for Lead 2007، صفحة 287.
  173. ^ Polyanskiy 1986، صفحة 44.
  174. ^ Windholz 1976.
  175. ^ Whitten, Gailey & David 1996، صفحات 904–5.
  176. ^ G. Jander, E. Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie. 16. Auflage. S. Hirzel-Verlag, Stuttgart 2005, ISBN 3-7776-1388-6, S. 533, 472, 540–541.
  177. ^ N. Maleki, A. Safavi, Z. Ramezani: Determination of lead by hydride generation atomic absorption spectrometry (HGAAS) using a solid medium for generating hydride. In: J Anal At Spectrom. 14, 1999, S. 1227–1230; doi:10.1039/A808429G.
  178. ^ M. Heisterkamp, F. Adams: In situ propylation using sodium tetrapropylborate as a fast and simplified sample preparation for the speciation analysis of organolead compounds using GC-MIP-AES. In: J. Anal. At. Spectrom. 14, 1999, S. 1307–1311; doi:10.1039/A901340G.
  179. ^ M. Zougagh, A. Garcia de Torres, E. Alonso, J. Pavon: Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn. In: Talanta. 62, 2004, S. 503–510; doi:10.1016/j.talanta.2003.08.033.
  180. ^ Z. Chen, N. Zhang, L. Zhuo, B. Tang: Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions. In: Microchim Acta. 164, 2009, S. 311–336; doi:10.1007/s00604-008-0048-8.
  181. ^ A. Townsend, K. Miller, St. McLean, St. Aldous: The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS. In: J. Anal. At. Spectrom. 13, 1998, S. 1213–1219; doi:10.1039/A805021J.
  182. ^ R. Lobinski, Z. Marczenko: Spectrochemical Trace Analysis for Metals and Metalloids. Elsevier 1997, ISBN 0-444-82879-6.
  183. ^ I. Oehme, O. S. Wolfbeis: Optical Sensors for Determination of Heavy Metal Ions. In: Microchim. Acta. 126, 1997, S. 177–192; doi:10.1007/BF01242319.
  184. ^ B. Lange, Z. J. Vejdelek: Photometrische Analyse. Verlag Chemie, Weinheim 1980.
  185. ^ Y. Bonfil, E. Kirowas-Eisner: Determination of nanomolar concentrations of lead and cadmium by anodic-stripping voltammetry at a silver electrode. In: Anal. Chim. Acta. 457, 2002, S. 285–296;
  186. ^ J. Wang: Stripping Analysis at Bismuth Electrodes: A Review. In: Electroanalysis. 17, 2005, S. 1341–1346; doi:10.1002/elan.200403270.
  187. ^ "Lead 695912".
  188. ^ Emsley 2011، صفحة 280.
  189. ^ Lead poisoning and health نسخة محفوظة 07 يناير 2019 على موقع واي باك مشين.
  190. ^ https://www.who.int/ipcs/lead_campaign/WHO-Lead-Exposure_Adapted-Map-Proof_English.pdf
  191. ^ Bouchard، Maryse؛ Bellinger، David C.؛ Weuve، Jennifer؛ Matthews-Bellinger، Julia؛ Gilman، Stephen E.؛ Wright، Robert O.؛ Schwartz، Joel؛ Weisskopf، Marc G. (1 ديسمبر 2009). "Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in U.S. young adults". Archives of general psychiatry. ج. 66 ع. 12: 1313–1319. DOI:10.1001/archgenpsychiatry.2009.164. PMC:2917196. PMID:19996036 – عبر PubMed Central.{{استشهاد بدورية محكمة}}: صيانة الاستشهاد: تنسيق PMC (link)
  192. ^ World Health Organization 2000، صفحات 149–53.
  193. ^ Emsley 2011، صفحة 280, 621, 255.
  194. ^ ا ب Luckey & Venugopal 1979، صفحات 177–78.
  195. ^ Toxic Substances Portal.
  196. ^ United States Food and Drug Administration 2015، صفحة 42.
  197. ^ National Institute for Occupational Safety and Health.
  198. ^ ا ب Occupational Safety and Health Administration.
  199. ^ ا ب Rudolph et al. 2003، صفحة 369.
  200. ^ Dart, Hurlbut & Boyer-Hassen 2004، صفحة 1426.
  201. ^ Kosnett 2006، صفحة 238.
  202. ^ Cohen, Trotzky & Pincus 1981، صفحات 904–06.
  203. ^ Navas-Acien 2007.
  204. ^ Sokol 2005، صفحة 133, passim.
  205. ^ Mycyk, Hryhorczuk & Amitai 2005، صفحة 462.
  206. ^ Liu et al. 2015، صفحات 1869–74.
  207. ^ Schoeters et al. 2008، صفحات 168–75.
  208. ^ Casciani 2014.
  209. ^ Tarragó 2012، صفحة 16.
  210. ^ Toxicological Profile for Lead 2007، صفحة 4.
  211. ^ Bremner 2002، صفحة 101.
  212. ^ Agency for Toxic Substances and Disease Registry.
  213. ^ Thornton, Rautiu & Brush 2001، صفحة 17.
  214. ^ Moore 1977، صفحات 109–15.
  215. ^ Wiberg, Wiberg & Holleman 2001، صفحة 914.
  216. ^ Tarragó 2012، صفحة 11.
  217. ^ Centers for Disease Control and Prevention 2015.
  218. ^ Wani, Ara & Usman 2015، صفحات 57, 58.
  219. ^ Prasad 2010، صفحات 651–52.
  220. ^ Masters, Trevor & Katzung 2008، صفحات 481–83.
  221. ^ United Nations Environment Programme 2010، صفحة 4.
  222. ^ ا ب Trace element emission 2012.
  223. ^ United Nations Environment Programme 2010، صفحة 6.
  224. ^ Assi et al. 2016.
  225. ^ World Health Organization 1995.
  226. ^ UK Marine SACs Project 1999.
  227. ^ United Nations Environment Programme 2010، صفحة 9.
  228. ^ McCoy 2017.
  229. ^ Cama 2017.
  230. ^ Layton 2017.
  231. ^ Lauwerys & Hoet 2001، صفحات 115, 116–117.
  232. ^ Street & Alexander 1998، صفحة 181.
  233. ^ Evans 1908، صفحات 133–79.
  234. ^ Baird & Cann 2012، صفحات 537–38, 543–47.
  235. ^ California Department of Fish and Wildlife.
  236. ^ Parker 2005، صفحات 194–95.
  237. ^ Krestovnikoff & Halls 2006، صفحة 70.
  238. ^ Street & Alexander 1998، صفحة 182.
  239. ^ Jensen 2013، صفحة 136.
  240. ^ Think Lead research.
  241. ^ Weatherings to Parapets.
  242. ^ Lead garden ornaments 2016.
  243. ^ Putnam 2003، صفحة 216.
  244. ^ Copper Development Association.
  245. ^ ا ب Rich 1994، صفحة 101.
  246. ^ ا ب Guruswamy 2000، صفحة 31.
  247. ^ Audsley 1965، صفحات 250–51.
  248. ^ Palmieri 2006، صفحات 412–13.
  249. ^ National Council on Radiation Protection and Measurements 2004، صفحات 16.
  250. ^ Thornton, Rautiu & Brush 2001، صفحة 7.
  251. ^ Tuček, Carlsson & Wider 2006، صفحة 1590.
  252. ^ Progressive Dynamics, Inc..
  253. ^ Olinsky-Paul 2013.
  254. ^ Gulbinska 2014.
  255. ^ Rich 1994، صفحات 133–34.
  256. ^ Zhao 2008، صفحة 440.
  257. ^ Beiner et al. 2015.
  258. ^ Szczepanowska 2013، صفحات 84–85.
  259. ^ Burleson 2001، صفحات 23.
  260. ^ Insight Explorer & IPEN 2016.
  261. ^ Singh 2017.
  262. ^ Ismawati et al. 2013، صفحة 2.
  263. ^ Zweifel 2009، صفحة 438.
  264. ^ Wilkes et al. 2005، صفحة 106.
  265. ^ Randerson 2002.
  266. ^ Nriagu & Kim 2000، صفحات 37–41.
  267. ^ Amstock 1997، صفحات 116–19.
  268. ^ Rogalski 2010، صفحات 485–541.
  269. ^ لسان العرب، باب صرف
  270. ^ إسلام ويب نسخة محفوظة 24 مارس 2018 على موقع واي باك مشين.

مصادر


وسوم <ref> موجودة لمجموعة اسمها "arabic-abajed"، ولكن لم يتم العثور على وسم <references group="arabic-abajed"/> أو هناك وسم </ref> ناقص