جبر بولياني

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث

الجبر البولياني (بالإنجليزية: Boolean Algebra) هو أحد مواضيع الرياضيات والرياضيات المنطقيّة والرياضيات المُتقطّعة، ويُعتَبر فرعاً من فروع الجبر حيثُ يعمل بمُتغيّرين اثنين هما الصح أو الخطأ ويُرمز لهما بالعددين 1 و 0 بعكس الجبر الإبتدائي الذي قد يكون المُتغيّر فيه أي عددٍ كان. وفي حين أن العمليّات الرئيسيّة في الجبر هي الجمع والضرب، تكون العمليّات في الجبر البولياني هي الاتصال conjunction وتُقرأ على أنّها واو العطف ( وَ and) ويُرمز لها بالرمز ∧؛ والعمليّة الثانية هي الانفصال disjunction وتُقرأ على أنّها حرف التخيير (أو or) ويُرمز لها بالرمز ∨؛ وثالث العمليّات الرئيسيّة هي النفي negation (ليس not) ويُرمز لها بالرمز ¬. وبهذا، تكون العلاقات في الجبر البولياني مُشابِهة للعلاقات العددية المستخدمة في الجبر المعتاد.

يُنسَب الجبر البولياني للعالِم الرياضي البريطاني جورج بول الذي ابتكرها وقدّمها في كتابِه الأوّل تحليل الرياضيات المنطقيّة (The Mathematical Analysis of Logic) عام 1847، وشرحها أكثر ووضع أُسسها في كتابِه استقراء قوانين التفكير (An Investigation of the Laws of Thought) عام 1854.[1] وأول من اقتَرح مُصطلح "الجبر البولياني" على هذا النوع من الجبر هو الرياضي الأمريكي هنري م. شيفر عام 1913.[2]

لم يَكن للجبر البولياني ذلك القدر من الأهميّة كاليوم حينما وضع جورج بول أُسسه، ولكن مع مجيء عصر الحواسيباتّضَح أن تشغيل الحاسوب وبرمجته يمكن أن يتم باتّباع الطريقة البوليانية، حيث أن الحاسوب يستخدم 0 و1 في عمليّاته وتفاهماته. وبذلك ساعَد الجبر البولياني على تطوير الإلكترونيات الرقمية، كما أنّه يُستَخدم في نظريّة المجموعات والإحصاء.[3]

القيَم[عدل]

العبارات في الجَبر الإبتدائي تَدُل قيمَتُها على أرقام، أما في الجبر البولياني فإن قيمَة العبارة الجبرية هي إما صح أو خطأ ويُطلَق عليها اسم قيمة الحقيقة، ويُمكن تمثيل هذه القيَم بالبت -نظام ثُنائي- وهو 0 و 1. هَذان العددان لا يتصرّفان كالأعداد الصحيحة، فمثلاً عند جَمع 1+1 في الجَبر الابتدائي فإن الناتِج هو 2، أما في الجَبر البولياني يكون الناتِج 1. يتعامَل الجبر البولياني كذلك مع الدوالووالمصفوفاتالتي تكون قيمتُها في المجموعة: {0,1}.[4]

العمليّات[عدل]

عمليّات أساسيّة[عدل]

ثلاثة عمليّات رئيسيّة في الجبر البولياني، هي:

تختلف قيمة الحقيقة بين العَدددين باختلاف العمليّات بينَهما، ويُمكن الاعتبار أنّ عمليّة الاتصال ∧ هي عمليّة جمع والانفصال ∨ عمليّة ضرب. ونستطيع التعبير عن العمليّات إمّا جبريّاً، أو من خلال جدول الحقيقة. وجدول الحقيقة التالي يُلخّص العلاقة بين المُتغيّرات في العمليّات الأساسيّة:

عمليّات ثانوية[عدل]

إن العمليّات المذكورة أعلاه هي العمليّات الأساسيّة في الجبر البولياني، هذا يعني أنّنا نستطيع إشتقاق عمليّات أُخرى مبنيّة على هذه العمليّات الأساسيّة. والعمليّات الثلاث المُشتقّة هي:

ويمكن تمثيل هذه العمليّات عبر جدول الحقيقة التالي:

0 0 1 0 1
1 0 0 1 0
0 1 1 1 0
1 1 1 0 1

انظر أيضا[عدل]

مراجع[عدل]

  1. ^ Boole, George (2003) [1854]. An Investigation of the Laws of Thought. Prometheus Books. ISBN 978-1-59102-089-9.
  2. ^ "The name Boolean algebra (or Boolean 'algebras') for the calculus originated by Boole, extended by Schröder, and perfected by Whitehead seems to have been first suggested by Sheffer, in 1913." E. V. Huntington, "New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell's Principia mathematica", in Trans. Amer. Math. Soc. 35 (1933), 274-304; footnote, page 278.
  3. ^ Givant, Steven; Halmos, Paul (2009). Introduction to Boolean Algebras. Undergraduate Texts in Mathematics, Springer. ISBN 978-0-387-40293-2.
  4. ^ Halmos, Paul (1963). Lectures on Boolean Algebras. van Nostrand.

وصلات خارجية[عدل]