يرجى إعادة صياغة هذه المقالة باستخدام التنسيق العام لويكيبيديا

قاعدة ناتج القسمة

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
Arwikify.svg
يرجى إعادة صياغة هذه المقالة باستخدام التنسيق العام لويكيبيديا، مثل إضافة الوصلات والتقسيم إلى الفقرات وأقسام بعناوين. (مارس 2015)


في التحليل الرياضي، قاعدة ناتج القسمة إحدى طرق إيجاد مشتق أو تفاضل تابع رياضي هو ناتج قسمة تابعين رياضيين قابلين للاشتقاق :

إذا كان التابع المراد مفاضلته ، f(x), يمكن أن يكتب :

f(x) = \frac{g(x)}{h(x)}

و h(x)0, تقول القاعدة عندئذ أن مشتق g(x)/h(x) يساوي إلى :

\frac{d}{dx}f(x) = f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{{h(x)}^2}.

بمعنى مشتقة الاقتران النسبي = (المقام *مشثقة البسط - البسط * مشاقة المقام)/ (المقام)^2


Nuvola apps edu mathematics-ar.svg
هذه بذرة مقالة عن الرياضيات بحاجة للتوسيع. شارك في تحريرها.