متعددة الحدود
في الرياضيات، متعددة الحدود[1] أو كثير الحدود[2] أو العبارة الحدودية[1] (بالإنجليزية: Polynomial) هي عبارة جبرية تتكون من واحد أو أكثر من المعاملات والمتغيرات، تُنشأ باستخدام عمليات الجمع والطرح والضرب والأسس الصحيحة غيرالسالبة. على سبيل المثال، x2 − x/4 + 7 هي متعددة للحدود (وقد تسمى دالة تربيعية)، بينما x2 − 4/x + 7x3/2 ليست بمتعددة للحدود، لأن الحد الثاني يتضمن قسمة على المتغير x، (أي 4/x)، ولأن أيضا الحد الثالث يحتوي على أُس ليس بعدد صحيح طبيعي (3/2).
انظر إلى حلقة متعددات الحدود
الرموز والمصطلحات المستعملة
[عدل]تترجم كلمة متعددة الحدود، إلى اللغة الإنجليزية على سبيل المثال، بكلمة Polynomial. وتتكون هذه الكلمة من جزئين هما Poly و nomial. فكلمة Poly أصلها من اللغة الإغريقية وتعني متعدد، وnomial أصلها من اللغة اللاتينية، وأول من أدخل هذا المصطلح المركب إلى اللغة اللاتينية هو فرانسوا فييت.
تعريف
[عدل]تكتب متعددة حدود بمتغير واحد كما يلي:
على سبيل المثال، الصيغة التالية تبين متعددة حدود.
لها ثلاثة حدود: الأول من الدرجة الثانية والثاني من الدرجة الأولى والثالث من الدرجة الصفر.
قانون التبادلية المطبق على عملية الجمع يمكن من كتابة هذه الحدود الثلاث في أي ترتيب كان.
كثيرة الحدود هي دالة رياضية أو تركيب جبري بسيط وأملس.
كلمة (بسيط) تعني إنه لا يحوي من عمليات سوى الضرب والجمع، وكلمة (أملس) تعني أنه قابل للمفاضلة بلا حدود أي أنه يملك مشتقات من جميع الرتب في جميع النقاط.
متعددة الحدود من الدرجة لها على الأكثر منها أصفار حقيقية ؛ ومعها يكون الاس لأول الثابت الذي نطرياً يسمح اِختياره بالتعسف في كثيرة الحدود.
التاريخ
[عدل]إيجاد جذور متعددة ما للحدود، أو ما قد يسمى حلحلة المعادلات الجبرية هو واحد من المعضلات الرياضية الأكثر قدما. ولكن الرموز البسيطة الاستعمال والأنيقة المستعملة حاليا لم تتطور إلا في القرن الخامس عشر. قبل ذلك، كانت المعادلات تُكتب بالكلمات.
الرموز المستعملة
[عدل]أول استعمال لرمز التساوي (=) يعود إلى روبرت غيكوغد في كتاب له. كان ذلك عام 1557.
المعادلات الحدودية
[عدل]معادلة حدودية وتسمى أيضا معادلة جبرية هي معادلة تأخذ الشكل التالي:
على سبيل المثال،
هي معادلة حدودية.
في هذه المعادلة، قد يسمى المتغير مجهولا. أما القيم التي يأخذها المجهول لكي تصير المعادلة صحيحة فتسمى جذور المعادلة أو أصفارها، وواحدها الجذر والصفر. يقال عن عدد أن صفرٌ لمعادلة ما أو جذرها إذا كانت المعادلة صحيحة عندما يأخذ المجهول قيمة هذا العدد.
في إطار الجبر الابتدائية، هناك طرق تمكن من حلحلة المعادلات من الدرجتين الأولى والثانية بمتغير واحد، وهناك أيضا طرق تمكن من حلحلة المعادلات من الدرجة الثالثة والرابعة بمتغير واحد.
بالنسبة إلى معادلة حدودية من الدرجة الخامسة فما فوق، تمنع مبرهنة أبيل-روفيني من إمكانية ايجاد حلحلة عامة بالجذور، ولكن خوارزميات إيجاد جذور دالة تبقى قابلة للاستعمال من أجل ايجاد تقريبات عددية لحلول متعددة حدود أيا كانت درجتها.
عدد جذور معادلة حدودية معاملاتها أعداد حقيقية لا يتجاوز درجة هذه الدالة الحدودية ويساويها إذا أُخذت الحلول العقدية في عين الاعتبار. هذه الحقيقة تسمى المبرهنة الأساسية في الجبر. قد يأخذ جذران من هذه الجذور نفس القيمة. في هذه الحالة، يقال عنها أنها جذر مزدوج. وقد تأخذ ثلاثة جذور نفس القيمة، فيقال عنها أنها جذر ثلاثي، وهكذا.
حلحلة المعادلات الحدودية
[عدل]انظر أيضا خوارزمية إيجاد جذور دالة حدودية. انظر أيضا خواص جذور متعددة حدود.
مخططات
[عدل]-
متعددة حدود من الدرجة الثانية:
f(x) = x2 - x - 2 = (x+1)(x-2) -
متعددة حدود من الدرجة الثالثة:
f(x) = x3/4 + 3x2/4 - 3x/2 - 2 = 1/4 (x+4)(x+1)(x-2) -
متعددة حدود من الدرجة الرابعة:
f(x) = 1/14 (x+4)(x+1)(x-1)(x-3) + 0.5 -
متعددة حدود من الدرجة الخامسة:
f(x) = 1/20 (x+4)(x+2)(x+1)(x-1)(x-3) + 2 -
متعددة حدود من الدرجة السادسة:
f(x) = 1/30 (x+3.5)(x+2)(x+1)(x-1)(x-3)(x-4) + 2 -
متعددة حدود من الدرجة السابعة:
f(x) = (x-3)(x-2)(x-1)(x)(x+1)(x+2)(x+3)
متعددات الحدود والحساب
[عدل]الجبر التجريدي
[عدل]التصنيف
[عدل]عدد المتغيرات
[عدل]من أجل تصنيف متعددات الحدود، يمكن النظر إلى عدد المتغيرات الموجودة في الحدودية. تسمى متعددة الحدود ذات متغير واحد متعددة حدود أحادية المتغير.
الدرجة
[عدل]تتمثل الطريقة الثانية لتصنيف متعددات الحدود في النظر إلى درجاتها. على سبيل المثال، في متعددة الحدود ، الحد هو حد من الدرجة الأولى في متعددة حدود من الدرجة الثانية.
انظر أيضا
[عدل]مراجع
[عدل]- ^ ا ب المعجم الموحد لمصطلحات الرياضيات والفلك: (إنجليزي - فرنسي - عربي)، سلسلة المعاجم الموحدة (3) (بالعربية والإنجليزية والفرنسية)، تونس: مكتب تنسيق التعريب، 1990، ص. 117، OCLC:4769958475، QID:Q114600477
- ^ موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 539، OCLC:1369254291، QID:Q108593221