انتقل إلى المحتوى

مماس

من ويكيبيديا، الموسوعة الحرة
مماس
معلومات عامة
صنف فرعي من
جانب من جوانب
tangency (en) ترجم عدل القيمة على Wikidata
تعريف الصيغة
عدل القيمة على Wikidata
ممثلة بـ
tangency (en) ترجم عدل القيمة على Wikidata
لديه جزء أو أجزاء
المستقيم الأحمر هو مماس المنحنى عند النقطة الحمراء
مستوى مماس لفلكة (أو كرة)

المماسُّ أو المستقيم الماسّ أو الخط المُماسّ[1] هو خط يمر بنقطة وحيدة من دائرةٍ أو منحنى. المماس في حالة منحنى عام يُستخدم للتفاضل (Differential Calculus). مفهوم التماس هي واحد من أكثر المفاهيم الأساسية في الهندسة التفاضلية وجرى تعميمه على نطاق واسع، انظر فضاء مماس (Tangent space).

الفكرة البديهية لخط المماس للمنحنى هي فكرة الخط الذي "يلامس" المنحنى دون قطعه (تخيل المنحنى كما لو كان كيانا ماديًا لا يمكن اختراقه). الخط المستقيم الذي يقطع المنحنى يسمى قاطع.

علاوة على ذلك ، بالنظر إلى القاطع الذي يمر عبر نقطتين P و Q لمنحنى، يمكن اعتبار المماس عند P على أنه الخط المستقيم الذي يمر بالنقطة Q عندما تتطابق مع P.

هناك طريقة أخرى لرؤية مفهوم التماس من خلال التفكير في أن المماس عند نقطة P من منحنى γ هو الخط المستقيم الذي يشابه γ بالقرب من P.

حتى من هذه التعريفات غير الرسمية ، ندرك أنه قد تكون هناك حالات لا يتم فيها تعريف الخط المماس. على سبيل المثال ، إذا كان المنحنى ثلاثي وكان P رأسًا ، فلا يتوافق أي من التعريفين السابقين بشكل دقيق مع خط المماس المار بالنقطة P.

في الهندسة التركيبية، يمكن إعطاء تعريفات بديلة صارمة لخطوط مماس لمنحنيات محددة.[2] على سبيل المثال ، يمكن تعريف الخط المتماس لدائرة دلتا مركزها O ونصف قطرها r عند نقطة P (تنتمي لمحيط دلتا) على أنه الخط الذي يمر عبر P على مسافة r من O، أو على أنه الخط الوحيد بالمستوى الذي يتشارك مع الدائرة النقطة P.

tangency
معلوم قطع مكافئ دلتا ونقطة P تنتمي إليه. مطلوب تحديد الخط p المتماس لدلتا في النقطة P. وبعبارة أخرى ، مطلوب تحديد الخط القطبي p لـلنقطة القطبية P بالنسبة لدلتا

في الهندسة متعددة الأبعاد ، يمكن تحديد المستوى المتماس لسطح بطريقة مماثلة (فضاء مماس).

لتحديد التماس في حالة المنحنى العام، يتم استخدام أدوات حساب التفاضل والتكامل متناهية الصغر بشكل عام.

معرض

[عدل]

مراجع

[عدل]
  1. ^ ترجمة لاتينية: līnea tangēns
  2. ^ The problem of tangency to three non-homothetic conics. Dr. Hasan ISAWI نسخة محفوظة 2023-02-15 على موقع واي باك مشين.
  3. ^ Geometric Loci نسخة محفوظة 14 فبراير 2022 على موقع واي باك مشين.


انظر أيضًا

[عدل]