دوال مثلثية

هذه مقالةٌ مختارةٌ، وتعد من أجود محتويات ويكيبيديا. انقر هنا للمزيد من المعلومات.
من ويكيبيديا، الموسوعة الحرة

هذه نسخة قديمة من هذه الصفحة، وقام بتعديلها Michel Bakni (نقاش | مساهمات) في 15:02، 23 ديسمبر 2020 (تصويب لغوي). العنوان الحالي (URL) هو وصلة دائمة لهذه النسخة، وقد تختلف اختلافًا كبيرًا عن النسخة الحالية.

في الرياضيات، الدوال المثلثيَّة[1] أو التوابع المُثلثية[2] أو الاقترانات المثلثية (بالإنجليزية: Trigonometric Functions)‏، وتُسمَّى أيضاً الدوال الزاويَّة أو الدوال الدائريَّة[3] هي مجموعة من الدوال الحقيقيةٌ التي تربط زاوية مثلث قائم مع نسبة ضلعين من أضلاعه.[4][5][6] من الدوال المثلثيةِ الشهيرة والأساسيّة، دالة الجيب، ويرمزُ إليها بالكتابة اللاتينية ، ودالةُ جيبِ التمام، ورمزها ، ودالة الظل، ورمزها .[ملاحظة 1] مقاليب هذه الدوال هم دوالٌ مثلثيّةٌ أيضاً وهي: قاطع التمام والقاطع وظل التمام على التوالي.[1]لاحظ أن مقلوب دالة الجيب هو دالة القاطع التمام ومقلوب دالة جيب التمام هو دالة القاطع.

يعود حساب المثلثات إلى ما قبل الميلاد، تحديداً في مصر القديمة واليونان القديمة. وضع الرياضياتي طاليس مبرهنة طاليس في مصر في القرن السادس قبل الميلاد، ووضع الرياضياتي فيثاغورس مبرهنة فيثاغورس، حيث يشار إلى هاتين المبرهنتين بأنهما حجر الأساس لحساب المثلثات. بالإضافة إلى مصر واليونان، حقق علماء الحضارات الأخرى، بما في ذلك الصين والهند والدول الإسلامية والدول الأوروبية، تقدمًا ملحوظًا في علم المثلثات؛ فبرز الخوارزمي والبتاني وأبو الوفاء محمد البوزجاني وشين كوا وغوا شوجينغ وغيورغ يواخيم ريتيكوس وغيرهم.

يُمكن تعريفُ هذه الدوالِ على أنّها نسبةٌ بين أضلاعِ مُثلثٍ قائمٍ يَحتوي تلك الزاويةَ أَو بشكل أكثر عموميةٍ، إحداثياتٍ على دائرة الوحدة.[ملاحظة 2] عند الإشارة إلى المثلثات، غالباً يُقصدُ المثلثُ في السَطح المستوي. وذلك ليكون مجموعُ الزوايا دائماً.

هناك عدة تعاريف أخرى للدوال المثلثية، بما في ذلك التعريف بواسطة التكاملات ومتسلسلات القوى والمعادلات التفاضلية، لكل منها تطبيقه الخاص. على سبيل المثال، في التعريف بواسطة متسلسلة القوى، تُستخدم متسلسلة تايلور أو لوران على نطاق واسع في حساب القيم التقريبية للدوال. تسمح بعض التعريفات بتمديد مجال الدوال المثلثية الست إلى المستوى العقدي.

يكون متغير الدوال المثلثية عموما زاويةً وقد يكون أيضا عددًا حقيقيًا. كل دالة لديها خصائصها، بما في ذلك الزوجية والفردية، والدورية والاستمرارية والتعامد. التطبيق الرئيسي لهذه الدوال هو حساب أطوال الأضلاع وزوايا المثلث والعوامل الأخرى ذات الصلة. يستخدم هذا التطبيق على مدىً واسعٍ في علوم مختلفة مثل علم المساحة والملاحة ومجالات الفيزياء المختلفة. في علم المساحة، تتمثل في عملية التثليث التي تستخدم لحساب إحداثيات نقطة معينة والتي تُستخدم حاليًا في القياس البصري ثلاثي الأبعاد [الإنجليزية]؛ وفي الملاحة، في حساب إحداثيات السفن ورسم المسارات وحساب المسافات أثناء الملاحة؛ وفي الجغرافيا، حساب مسافة بين نقطتين على الكرة الأرضية، وتحديد إتجاه القبلة بحساب زاويتها بالنسبة للشمال؛ وفي البصريات، تستخدم أساسا في دراسة ظاهرة انكسار الضوء. الدوال المثلثية دوال دوريَّةٌ، أي أنها تُكرر قيمتها بعد فترة محددة؛ ولهذا فإنها تُستعمل لتمثيل الظواهرِ المتكررة كالموجات وهي الأساس الذي يرتكز عليه تحويل فورييه. عملية فورييه هي عمليةٌ رياضيةٌ تُستخدمُ لتحويل دالّةٍ رياضيةٍ بمتغير حقيقي وذات قيم مركّبة إلى دالّة أخرى من نفس الطراز. تشمل الاستخدامات الأخرى للدوال المثلثية في صناعة الطاقة الكهربائية والاتصالات، ويشمل هذا تطبيق دراسة التيارات المتناوبة والتضمين التي تعتمد على موجات جيبية.

تعريف الدوال

يوضح الجدول التالي تسميات مختلفة للدوال الست، بالإضافة إلى التسميات الإنجليزية والفرنسية ومجال تعريفهن ومستقراتهن (المجال المقابل).

التسمية العربية[7] التسمية الإنجليزية[3] التسمية الفرنسية[3] الترميز بالحروف العربية

[8][9]

الترميز بالحروف اللاتينية

[1][10][11][12]

مجال التعريف[ملاحظة 3][13] مستقر[13]
الجَيْب Sine Sinus جا، جب sin جميع الأعداد الحقيقية
جَيْب التَمَام Cosine Cosinus جتا، تجب cos جميع الأعداد الحقيقية
الظِل، الظل الأول، الظل القائم أو المنتصب أو المعكوس Tangent Tangente ظا، ظل tan جميع أ.ح. ما عدا جميع الأعداد الحقيقية
ظِل التمام، الظل الثاني أو المبسوط أو المستوي Cotangent Cotangente ظتا، تظل cot [ملاحظة 4] جميع أ.ح. ما عدا جميع الأعداد الحقيقية
القاطع، قطر الظل الأول Secant Sécante قا sec جميع أ.ح. ما عدا
قاطع التمام، قطر الظل الثاني، قطر الظل Cosecant Cosécante قتا csc [ملاحظة 5] جميع أ.ح. ما عدا

أصل تسمية الدوال

(1) رسم توضيحي لسبب تسمية دالة الجيب بهذا الإسم
(2) رسمٌ توضيحيٌّ لسبب تسمية الدوال، عند تمثيل الرياضياتيين المسلمين للدوال في دائرة الوحدة واعتبار نصف قطرها OD مقياسًا، فكانت النتيجة كما هي موضحة في الشكل.

استُمِدّت الكلمة الإنجليزية "Sine" [ملاحظة 6] من الكلمة اللاتينية "Sinus" التي تعني "انحناء، خليج"، وبشكل أكثر تحديداً "الطية المعلقة للجزء العلوي للّباس الروماني تُوجة"، "طوق الثوب"، التي تم اختيارها على أنها ترجمة لِمَا تم تفسيره على أنه ترجمة الكلمة العربية الفصيحة "جَيْب" في ترجمات القرن الثاني عشر لأعمال البتاني والخوارزمي إلى اللغة اللاتينية للقرون الوسطى.[ملاحظة 7] كان الاختيار مبنيًا على القراءة الخاطئة للكلمة العربية "جيب" التي هي تحريف للكلمة جِيبا التي نشأت في حد ذاتها كنقحرة للكلمة السنسكريتية जीवा / jīvā التي تُترجَم جنبًا إلى جنب برفقة مرادفها jyā / ज्या (المصطلح السنسكريتي لدالة الجيب) إلى "وتر قوس المحارب".[14] في القرن الحادي عشر، شرح أبو الريحان البيروني ذلك في كتابه القانون المسعودي:[15]

«إن هذه الصناعة إذا أريد إخراجها إلى الفعل بمزاولة الحساب فيها فالأعداد مفتقرة إلى معرفة أوتار قسي الدوائر، فلذلك سمى أهلها كتبها العلمية زيجات من الزيق الذي هو بالفارسية زه، أعني الوتر، وسموا أنصاف الأوتار جيوباً، وإن كان اسم الوتر بالهندية جيبا ونصفه جيبارد، ولكن الهند إذا لم يستعملوا غير أنصاف الأوتار أوقعوا اسم الكل على النصف تخفيفاً في اللفظ»

استُعملت مصطلح "جَيْب" في الأصل لوصف خط مستقيم مرسوم عموديًّا من أحد طرفي قوس على خط مستقيم آخر يمر بالطَّرف الآخر،[16] أما علاقتها بجيب الزاوية، فجيب الزاوية هو عبارة عن مقدار هذا الخط المستقيم في دائرة الوحدة، كما هو موضّح في الشكل (2).

أما عن الاسم العربي لدالة الـ"ظل"، فقد جاء من مقدار ما يصنعه ظل المقياس على سطح أفقي أثناء سقوط الضوء على المقياس بزاوية معيّنة، فنقول أن طول الظل تساوي n أضعاف المقياس،[14] وعند تمثيل الرياضياتيين المسلمين للدالة على دائرة الوحدة باعتبار نصف قطر الدائرة مقياسًا، فكانت النتيجة هي أنها عبارة عن خط مستقيم يمُس الدائرة، لهذا السبب، أطلق الغربيون (منهم توماس فينك)، على الظل اسم "Tangent" التي أتت من اللاتينية "tangens" التي تعني "يمُس".[17][18][ملاحظة 8]

بنفس الطريقة مثل طريقة دالة الظل، كانت النتيجة هي أن قيمة قُطْر الظِّل (التسمية القديمة لدالة القاطع) هي عبارة عن خط مستقيم يقطع الدائرة، لذا أُطلق عليها اسم "القاطع"،[18] من المحتمل أن الكلمة الإنجليزية secant التي استمدت من اللاتينية "secans" التي تعني "يَقْطَع"، كانت ترجمة للتسمية العربية "قاطع".[17][ملاحظة 8]

أما عن بادئة "co-" (Cosine، Cotangent)، فقد عُثر عليها في كتاب العالم إدموند غونتر الذي يحمل عنوان "Triangulorum Canon" (صدر في عام 1620)، والذي يُعَرِّف Cosinus بأنها اختصار لـ sinus complementi التي استخدمت للإشارة إلى "جيب الزاوية المتممة لزاوية[19] أما عن التسمية العربية "جيب التمام"، فهي استخدمت للإشارة إلى نفس الشيء، حيث أن كلمة "التمام" باللغة العربية تعني شيء متمم، مثلاً يقال في الهندسة أن الزاوية المتممة للزاوية 30 في المثلث قائم الزاوية هي 60 وذلك لأن مجموعهما يعطي 90،[14] التسمية العربية واللاتينية أتيا من السنسكريتية कोटिज्या "كوتي-جيا" بمعنى "جيب القوس المتمم لقوس"، حيث يعني الجذر الأول للمصطلح "نهاية قوس المحارب" أو "نهاية" بشكل عام، ولكنها تعني في حساب المثلثات "متمم القوس" أو بمعنى آخر "القوس المقابل للزاوية المتممة لزاوية"، لأن عند نشأة دوال الجيب وجيب التمام، كانت تعتبر أنذاك دوالاً لأقواس وليست دوالاً لزوايا هندسية.[14][20][21]

التاريخ

العصر القديم

اللوح المسماري المعروف باسم بليمبتون 322، يقال عنها أنها تحتوي على جدول القواطع لخمسة عشر زوايا تتراوح بين 45 و 30 درجة.
ملف:Hipparchos 1.jpeg
أبرخش، الملقب بـ "أبي حساب المثلثات"

عُثر على دليل على استخدام الدوال المثلثية في مختلف المجالات، وخاصة في علم الفلك، في العديد من النصوص التي تعود إلى ما قبل التاريخ، بما في ذلك تلك الموجودة في اليونان ومصر وربما في بلاد الرافدين.

استنادًا إلى أحد التفسيرات للوحة المسمارية بليمبتون 322 (حوالي 1900 قبل الميلاد)، أكد البعض أن البابليين القدماء لديهم جدول القواطع. ومع ذلك، هناك الكثير من الجدل حول ما إذا كان جدول ثلاثيات فيثاغورس، أو حل المعادلات التربيعية، أو جدول مثلثي.[22][23]

تعد مبرهنة طاليس من أقدم الأعمال المتعلقة بحساب المثلثات، درس طاليس في مصر في القرن السادس قبل الميلاد، وتوصل إلى طريقة جديدة لحل مشكلة حساب ارتفاع الهرم خوفو، والتي عرفت فيما بعد باسم مبرهنة طاليس. يمكن اعتبار مبرهنة فيثاغورس أيضا أنها حجر الأساس لحساب المثلثات.[24] أنشأ الفلكي والرياضياتي اليوناني أبرخش (180-125 قبل الميلاد) أول جدول مثلثي، وهو جدول خاص بدالة الوتر، لهذا السبب أطلق عليه اسم "أبي حساب المثلثات". وضع منيلاوس الإسكندري أساسا للمثلثات الكروية.[25] في القرن الثاني ميلادي، أنشأ عالم الفلك اليوناني بطليموس الإسكندري جدولا مثلثيا مفصلا للأوتار في الكتاب 1، الفصل 11 من المجسطي.[26]

الرياضيات الهندية

تمثال العالم الهندي أريابهاتا (476-550 م) في المركز المشترك بين الجامعات لعلم الفلك والفيزياء الفلكية [الإنجليزية] (IUCAA) في بونه، الهند. يقال عنه أنه هو أول من اكتشف دالة الجيب ووضع أول جدول لها.[14]

كانت دراسة الدوال المثلثية شائعة أيضًا في الهند. على سبيل المثال، في القرن الرابع والخامس الميلادي، في كتاب "سوريا سيدهانتا"، استُخدِم جدول لأنصاف الأوتار بدلاً من جدول الأوتار في علم الفلك التي تعادل حاليا دالة الجيب. عرّفت مجموعة من الكتب العلمية "سيدهانتا" أولاً الجيب علاقةً حديثة بين نصف زاوية ونصف وتر، وعرفت أيضًا جيب التمام، وسهم الزاوية (1 - جيب تمامها)، ودالة الجيب العكسية.[25] يمكن إسناد دالة الجيب مع جيب التمام وسهم الزاوية إلى كل الدوال "جيا" و"كوتي جيا" و"أوتكراما جيا" المستخدمة في علم الفلك الهندي للحقبة الجوبتية، عن طريق الترجمة من السنسكريتية إلى العربية ومن العربية إلى اللاتينية.[25][27]

كان بهاسكارا الثاني واحد من الأوائل الذين اكتشفوا النتائج المثلثية لـ و ، مثل: ، كان ذلك في القرن الثاني عشر.[14]

خط مادهافا السانغماغرامي، في حوال عام 1400، خطوات مبكرة ومهمة في تحليل الدوال المثلثية بدلالة المتسلسلات غير المنتهية (طالع متسلسلات مادهافا).[28]

عصر الحضارة الإسلامية

تعريف الظل، وظل التمام، والقاطع وقاطع التمام عند رياضياتِيِي عصر الحضارة الإسلامية. حيث أن القطعة المستقيمة AD تمثل المقياس (عمودي في الأعلى وأفقي في الأسفل)، والقطعة المستقيمة OD تمثل ظله
محمد بن جابر بن سنان البتاني (854-929 م)، هو أول من وضع النسب المثلثية في تاريخ الرياضيات

خلال القرن التاسع الميلادي، كانت الدوال المثلثية الست المستعملة في العصر الحديث جزءاً من الرياضيات المستعملة في الحضارة الإسلامية، كما كان قانون الجيب معروفاً، وكان يستعمل في معضلة حل المثلثات.[29] باستثناء دالتي الجيب وجيب التمام التي اعتمدت من الرياضيات الهندية[ملاحظة 9]، اكتُشِفَت الدوال المثلثية الأربع الأخرى من قبل علماء الرياضيات المسلمين، بما في ذلك الظل وظل التمام والقاطع وقاطع التمام؛ حيث تنسب أقدم الأعمال المتبقية إلى الخوارزمي والمروزي الذين اعتبروا الدوال الأربعة الأخيرة.[14]

في أوائل القرن التاسع الميلادي، أنتج محمد بن موسى الخوارزمي جداول دقيقة لدوال الجيب والجيب التمام ويقال أنه أنتج أول جدول للظلال، كما أنه أنتج نسخة معدلة من زيج السند هند (الحاوية لجدول الجيوب) التي استعملت لحل المعضلات الفلكية.[30] في حوالي عام 830، اكتشف أحمد بن عبد الله المروزي ظل التمام، وأنتج جداول الظل وظل التمام.[31][32]

في البداية، عُرّفت الدوال الأربعة الأخيرة بطريقة تختلف عن الرياضيات الحديثة. حيث اعتبرت ظل التمام أنذاك طول ظل المقياس العمودي ارتفاعه 12 (أحيانًا 7) أصابع؛ في الأصل، استُخدمت هذه المفاهيم للحساب بالمزولة. كان يطلق على ظل المقياس الأفقي اسم "الظل المعكوس" التي تسمى ببساطة "الظل" حاليًا، وعلى ظل المقياس العمودي اسم "الظل المستوي".[33] كان يسمى وتر المثلث القائم المقابل (القطعة AO في الشكل على اليسار) "قطر الظل الأول" و"قطر الظل الثاني" التي يطلق عليها الآن القاطع وقاطع التمام، على التوالي.[34] في القرن العاشر ميلادي، قدم الفيلسوف وعالم الرياضيات الفارابي، في تعليقاته على المجسطي، تعريفات هذه الدوال الأربع بشكل مستقل عن المزولات، وتعريفها من خلال الجيب وجيب التمام في الدائرة المثلثية البطلمية التي طول نصف قطرها 60 (التي تساوي دائرة الوحدة، حيث أن نصف القطر معبر عنه بالنظام الستيني).[35] وضع محمد بن جابر البتاني النسب المثلثية لأول مرة والعلاقات الأساسية بين الدوال الست في القرن نفسه.[36] تم تحقيق التوحيد النهائي من قبل أبو الوفاء البوزجاني في النصف الثاني من القرن العاشر، والذي استخدم لأول مرة دائرة الوحدة لتعريف الدوال المثلثية، كما هو الحال في الرياضيات الحديثة.

ساهم محمد بن جابر البتاني في إدخال أنصاف الأوتار الهندية في الحسابات واستخدم لأول مرة مصطلحي "الجيب" و"جيب التمام" معرفاً إياهما بوصفهما أطوالاً بدلاً من نسب كما نعرفهما اليوم؛[37][38] كما أنه أنتج الجدول الأول لقواطع التمام لكل درجة من إلى 90°،[32][39] واكتشف أيضًا قانون جيب التمام للمثلثات الكروية.[40]

في القرن العاشر، اكتشف أبو الوفاء البوزجاني قانون الجيب للمثلثات الكروية،[41] واكتشف أيضا تلك المتطابقات المثلثية، حيث عبر الرياضياتيون اليونانيون عن تلك المتطابقات بدلالة الأوتار:[31]

طُوِّرت طريقة التثليث لأول مرة من قبل علماء الرياضيات المسلمين، الذين طبقوها على الاستخدامات العملية مثل مسح الأراضي والجغرافيا الإسلامية،[42] كما وصفها أبو الريحان البيروني في كتابه القانون المسعودي في أوائل القرن الحادي عشر. أدخل البيروني نفسه تقنيات التثليث لقياس حجم الأرض والمسافات بين الأماكن المختلفة،[43] كما أنه استخدم الرموز التالية للإشارة إلى الدوال: جا وجتا وظا وظتا وقا وقتا.[7] في نهاية القرن الحادي عشر، حل عمر الخيام معادلات من الدرجة الثالثة عن طريق الحلول العددية التقريبية التي تم الحصول عليها عن طريق استيفاء الجداول المثلثية. في القرن الثالث عشر، اعتبر نصير الدين الطوسي لأول مرة حساب المثلثات تخصّصًا منفصلاً عن علم الفلك،[44] وصاغ قانون الجيب للمثلثات المسطحة، كما أنه اكتشف قانون الظل.[45] قام غياث الدين الكاشي بالتعبير عن مبرهنة فيثاغورس المعممة (التي أصبحت تطلق عليها الآن "قانون جيب التمام") بدلالة جيب التمام بعدما أنشئت جداول لها التي أتاحت له صياغة المبرهنة، والبرهنة عليها في كتابه "مفتاح الحساب"، لذلك، أطلق الفرنسيين على هذا القانون اسم "مبرهنة الكاشي" (بالفرنسية: Théorème d'Al-Kashi)‏ تكريما له؛ وقدم بياناً صريحاً لهذا القانون في شكل مناسب للتثليث؛[46] مع العلم أن هذه المبرهنة تم التعبير عنها سابقًا من قبل العالم اليوناني إقليدس في كتابه الأصول، ولكن عدم وجود الدوال المثلثية آنذاك وكذلك الجبر أدى إلى استعمال مجموع وفرق المساحات؛[47] قام الكاشي أيضًا بصياغة المتطابقة التالية: واستخدمها لحساب جيب الزاوية بوضع و ثم حل المعادلة من الدرجة الثالثة المتحصل عليها؛ ووصل إلى 16 منزلة عشرية. هذه الصيغة معروفة عند الغربيين بـ"صيغة فييت" ونسبوها إلى فرانسوا فييت عن طريق الخطأ، ولكن الكاشي هو أول من أكتشف تلك الصيغة.[48] في حوالي 1440، وضع الرياضياتي وحاكم الدولة التيمورية أولوغ بيك جداول دقيقة للجيب والظل ووصل إلى 9 أرقام عشرية بعد الفاصلة في نفس الوقت تقريبًا.[49]

الرياضيات الصينية

لم يدرس العلماء الصينيون حساب المثلثات كثيرًا. درس العالمان الصينيان شين كوا وغوا شوجينغ الدوال المثلثية. على سبيل المثال، في القرن الحادي عشر، وجد شين كيو علاقة تقريبية لحساب طول القوس s بدلالة قطر الدائرة d وعمق القوس v وطول الوتر c:[50]

النهضة الأوروبية وما بعدها

صفحة من كتاب يعود تاريخه إلى عام 1619 تحتوي على جدول للدوال التالية: الجيب، والظل والقاطع.

كانت أطروحات العالم الألماني ريغيومونتانوس (خاصةً كتابه عن المثلثات De triangulis omnimodis في 1464) وتعليقاته على المجسطي لبطليموس، هي أصل نهضة حساب المثلثات في أوروبا.[25] علّق في كتابه عن المثلثات:[44]

«أنت من تريد دراسة أشياء كبيرةً وعجيبةً، ومن تتعجب من حركة النجوم، عليك أن تدرس هذه المبرهنات حول المثلثات. معرفتك لهذه الأفكار ستفتح لك الباب لعلم الفلك كله ولبعض المعضلات الهندسية.»

استخدم عالم الرياضيات الفرنسي ألبرت جيرارد (1595 – 1632 م) لأول مرة الاختصارات sin، وcos، وtan في كتابه "Trigonométrie".[51]

ربما كان الكتاب Opus palatinum de triangulis لغيورغ يواخيم ريتيكوس، طالب كوبرنيكوس، الأول في أوروبا الذي عرف الدوال المثلثية مباشرة بدلالة المثلثات القائمة بدلاً من الدوائر، مع جداول لجميع الدوال المثلثية الست؛ أُنهي هذا العمل من قبل طالب ريتيكيوس فالنتينوس أوتو في عام 1596.[52]

أُدخِلت المصطلحات "Tangent" و"Secant" لأول مرة من قبل عالم الرياضيات الدنماركي توماس فينك في كتابه "Geometria rotundi".[53]

في مقال نُشر عام 1682، برهن غوتفريد لايبنتس على أن دالة الجيب sin x ليست بدالة جبرية ل x، أي أنها دالة متسامية.[54]

كانت معظم مقدمة ليونهارت أويلر في كتاب analysin infinitorum (صدرت في عام 1748) عن تأسيس المعالجة التحليلية للدوال المثلثية في أوروبا، كما عرفها متسلسلاتٍ لانهائية ووضع صيغة أويلر، وعرفها كذلك اختصاراتٍ شبه حديثة (sin, cos, tang, cot, sec, cosec).[25]

في ستينيات القرن الثامن عشر، اخترع الإيطالي فينتشنزو ريكاتي الدوال الزائدية، وهي تلك الدوال التي تشبه لحدٍ كبيرٍ الدوال المثلثية.[55]

الدوال المثلثية التاريخية

هناك بعض الدوال الشائعة من الناحية التاريخية، ولكن نادراً ما تستخدم الآن، مثل دالة الوتر والسهم (يطلق عليها أيضا اسم "الجيب المنكوس"[56]) وسهم التمام ونصف السهم،[57] القاطع الخارجي وقاطع التمام الخارجي.[58]

وحدات قياس الزوايا

الدرجة: يعود استخدامها إلى عصور قديمة. تُحسبُ هذه القيمة عن طريق تقسيم دائرة إلى 360 جزءا متساويا، يرمز لها بقيمة متبوعة بدائرة صغيرة علوية.

الراديان أو الزاوية نصف القطرية أو التقدير الدائري: يساوي الزاوية المقابلة لقوس طوله مطابق لطول نصف قطر الدائرة، دورة كاملة هي زاوية مقدارها 2π راديان.[59][60]

الغراد: تعادل 1/400 من قياس الدائرة الكاملة، أو 100 جزء من الزاوية القائمة، يرمز لها بقيمة متبوعة بحرف "g" صغير علوي.[61]

الدورة: تعادل 360° أو راديان.

دقيقة وثانية القوس: هي وحدات فرعية للدرجة، تستخدم على مدًى واسع في نظام الاحداثيات الجغرافية.[62]

وحدة مقدار
درجة 30° 45° 60° 90° 180° 270° 360°
راديان 0 π/6 π/4 π/3 π/2 π 3π/2 2π
غراد 0g 100/3g 50g 200/3g 100g 200g 300g 400g
دورة 0 1/12 1/8 1/6 1/4 1/2 3/4 1

راديان مقابل درجات

في التطبيقات الهندسية، يكون متغير دالة مثلثية عمومًا هو مقياس الزاوية. لهذا الغرض، كل الوحدات الزاوية مناسبة، ويتم قياس الزوايا في أغلب الحالات بالدرجات.[63]

عند استخدام دالة مثلثية في حساب التفاضل والتكامل، فإن متغيرهم ليست عمومًا زاوية، لكنه بالأحرى عدد حقيقي. في هذه الحالة، من الملائم أكثر التعبير عن المتغير المثلثي طولَ قوس دائرة الوحدة المحددة بزاوية مع مركز الدائرة كرأس. لذلك، يُستخدم الراديان وحدةً للزاوية.[59][63][64]

ميزة كبيرة للراديان هي أن العديد من الصيغ تكون أبسط بكثير عند استخدامها، عادة كل الصيغ المتعلقة بالمشتقات والتكاملات.[63]

هذا هو بالتالي اصطلاح عام، عندما تكون وحدة الزاوية غير محددة بوضوح، يتم التعبير دائمًا عن متغيرات الدوال المثلثية بالراديان.

التعريف باستعمال المثلث قائم الزاوية

يوضح الشكل المقابل مثلثًا قائما [ملاحظة 11] يتكون من ثلاثة أضلاع a و b و c وزوايا A و B و C. الزاوية C قياسها وزاويتان أخريان حادتان ومتتامتان، بمعنى آخر، مجموع قياس الزاويتين يساوي أو π/2 راديان.

يسمى الضلع المقابل للزاوية C الوتر (كما هو موضح في الشكل المقابل). عند اعتبار الزاوية A، يسمى الضلعان اللذان يشكلان الزاوية القائمة بالضلع المجاور للزاوية A (الضلع AC) والضلع المقابل للزاوية A (الضلع BC).

تعرف الدوال المثلثية الرئيسية للزاوية A بـ:[1][65]

  • جيب الزاوية: هو النسبة بين الضلع المقابل والوتر. أي حاصل قسمة الضلع المقابل للزاوية على وتر المثلث القائم الزاوية، بمعنى آخر:
  • جيب تمام الزاوية: هو النسبة بين الضلع المحادي للزاوية ووتر المثلث، بتعبير آخر:
  • ظل الزاوية: يساوي النسبة بين الضلع المقابل للزاوية والضلع المجاور لها، أي:

وفقًا للتشابه الهندسي، إذا كان لمثلثين زوايا متساوية، فإن نسبة أضلاعهما متساوية. ونتيجة لذلك، تعتمد الدوال المثلثية التي تمثل النسبة بين طولي ضلعين على مقدار الزاوية فقط، يعني أن الدوال لا تتغير قيمتها مع التغير في طول الأضلاع.

بالنسبة للزاوية B، يمكننا أيضًا حساب الدوال المثلثية. الضلع المجاور للزاوية B (الضلع a) هو الضلع المقابل للزاوية A والضلع المقابل B (الضلع b) هو أيضًا الضلع المجاور لـ A، لذلك يمكن القول أن جيب الزاوية B هي جيب التمام الزاوية A والعكس صحيح. علاقة الجيب وجيب التمام بالزوايا المتتامة رياضيا هي كما يلي:[65]

كلما ازدادت قيمة الزاوية A من صفر إلى 90 درجة، تناقص طول الضلع المجاور تدريجياً ويزداد طول الضلع المقابل. عندما تقترب هذه القيمة من 90 درجة، فإن طول الضلع المجاور يقترب من الصفر. نتيجة لذلك، يؤول جيب تمام الزاوية A إلى الصفر. من ناحية أخرى، فإن طول الضلع المقابل يكون مطابقا للوتر (وفقًا لمبرهنة فيثاغورس، فإن الوتر دائمًا أكبر من الضلعين الآخرين). ونتيجة لذلك، جيب الزاوية A يساوي واحدا. بشكل عام، تتراوح قيمة الجيب وجيب التمام في المثلث القائم، بين الصفر والواحد. يمكن تتبع تغيرات ظل الزاوية بنفس الطريقة. عند حوالي 90 درجة، يؤول ظل الزاوية A إلى اللانهاية، وعندما تقترب من الصفر، تقترب قيمته من الصفر، وبالتالي فإن قيمة ظل الزاوية هي عدد موجب (من الصفر إلى اللانهاية).

يمكن تعريف الدوال المثلثية الثلاث الأخرى بأنها مقاليب الدوال الثلاث المذكورة أعلاه:[65]

  • ظل تمام الزاوية: هو النسبة بين الضلع المجاور على الضلع المقابل، أي:
  • قاطع الزاوية: هو النسبة بين الوتر على الضلع المجاور، أي:
  • قاطع تمام الزاوية: هو النسبة بين الوتر على الضلع المقابل، أي:

نطبق العلاقة بين الزوايا المتتامة، كما هو مذكور أعلاه في حالة الجيب و جيب التمام، أيضًا على الدوال المثلثية الأخرى:[65]

ملخص العلاقات

تُلخص العلاقة بين الدوال المثلثية وأضلاع المثلث القائم بالعلاقات التالية:

sin A = المقابل/الوتر ، cos A = المجاور/الوتر ، tan A = المقابل/المجاور ، cot A = المجاور/المقابل ، sec A = الوتر/المجاور ، csc A = الوتر/المقابل

التعريف باستعمال دائرة الوحدة

(1) في هذا الرسم، الدوال المثلثية الستة لزاوية اختيارية θ ممثلة إحداثياتٍ ديكارتية للنقاط المتعلقة بدائرة الوحدة. الإحداثيات الصادية لكل من A وB وD هن sin θ وtan θ وcsc θ على التوالي. في حين أن الإحداثيات السينية لكل من A وC E هن cos θ وcot θ وsec θ على التوالي.
(2) رسمٌ توضيحيٌّ للإنشاءات الهندسية لمختلف الدوال المثلثية من الوتر الذي يصنع زاوية مع محور السينات[ملاحظة 12] في دائرة الوحدة. بالإضافة إلى استعمال الدوال المثلثية الشائعة الحالية: فإنَّ الشكل يظهرُ بعضَ الدوالِ المثلثيّةِ التي هُجِرَ استعمالُها مثل: .
(3) يسرد مساعد الذاكرة "All science teachers (are) crazy" إشارات الدوال المثلثية من الربع الأول إلى الربع الرابع.[59][66]

يمكنُ تعريفِ الدوالِ المثلثيةِ: الجيب وجيب التمام والظل ومقلوباتها، بقيمِ إحداثياتِ النقاطِ على المستوى الإقليدي المرتبطةِ بدائرة الوحدة. دائرة الوحدة هي دائرة نصف قطرها وحدةٌ واحدةٌ ومركزها نقطة الأصل. رغم أن تعريفات المثلثِ قائمِ الزاوية تسمحُ بتعريفِ الدوالِ المثلثيةِ للزوايا بينَ 0 و راديان فقط، إلا أنَّ تعريفاتِ دائرةِ الوِحدةِ تُعمّمُ ذلك وتمدد مجال الدوال المثلثية لتسمحَ بجميع الأعداد الحقيقية الموجبةِ والسالبةِ.[67][68]

تُعطى تعريفات الدوال المثلثية من تقاطع مستقيمات مرتبطة بزاوية واقعةٍ على نقطة الأصل. إذا قطعَ الشعاعُ المنطلق من نقطة الأصل بزاويةَ [ملاحظة 13] دائرةَ الوحدةِ في النقطة فإنّ الدالةُ تُعرّف على أنها الإحداثي [ملاحظة 14] والدالة هي الإحداثي [ملاحظة 15] لنقطة التقاطع. وبمعنى آخر فإنَّ: . وبرسم مماسٍ من النقطة يقطعُ محورَي السينات[ملاحظة 12] والصادات[ملاحظة 16] في النقطتين على الترتيب، فإنَّ .

يتطابقُ هذا التعريفُ مع تعريفِ المثلث قائم الزاوية في الفترة باعتبار أنَّ نصفَ قطرِ دائرة الوحدة هو وترٌ للمثلث القائم. ولأنّ كل نقطة على دائرة الوحدة تُحقّق من مبرهنة فيثاغورس في المثلث القائم ، فإنَّ تعريف الدوال المثلثية على أنها الإحداثيات يُنتِجُ متطابقة فيثاغورس: .[5][67] وأخيراً فإنَّ المسافات تُعرّفُ على أنّها الدوال المثلثية: على الترتيب. بشكلٍ مُشابهٍ للاستنتاج السابق، يمكن تطبيق مبرهنة فيثاغورس في بقية المثلثات القائمة للوصول إلى متطابقات فيثاغورس الخاصة ببقية المتطابقات المثلثية. ومن تشابه هذه المثلثات القائمة السابقة، تُعطى العلاقات التي تربط بين جميع الدوال المثلثية كالآتي:[69]

بما أنَّ دوراناً بزاوية لا يُغير موضعَ الشكلِ ولا حجمَهُ، فإن النقاط ستبقى نفسها بالنسبة لزاويتين فرقَهُما مضاعف صحيح لـ . وعلى ذلكَ، الدوال المثلثية هن دوالٌ دورية ذات دورة بطول . بمعنى آخر، المساواةَ و صالحةٌ لأي زاوية ولأي عدد صحيح . ينطبق الشيء ذاته على الدوال المثلثية الأربع الأخرى.

تشير ملاحظة إشارة ورتابة دوال الجيب وجيب التمام والقاطع وقاطع التمام في الأرباع الأربعة إلى أن هي أصغر قيمة تكون دورية لها، أي هي الدورة الأساسية لتلك الدوال. إلا أن بعد الدوران بزاوية π، تعود النقطتان B وC إلى موضعهما الأصلي (الصورة (1))، بحيث تكون دالتا الظل وظل التمام لها دورة أساسية π.[1]

الدوران

يمكن الحصول على الدوال المثلثية للزوايا الأكبر من 90° باستخدام علاقات الدوران حول مركز الدائرة. أيضًا، يمكن حساب الزوايا الأصغر من الصفر بالانعكاس حول المحور الأفقي. يوضح الجدول التالي كل العلاقات المثلثية:

انعكاس حول المحور الأفقي[70] دوران بزاوية π/2 دوران بزاوية π دوران بزاوية 2kπ (مع k عدد صحيح) انعكاس حول المحور العمودي

القيم الجبرية

دائرة الوحدة
رسم توضيحي لكيفية حساب جيب زاوية مقدارها 30 درجة باستخدام مثلث متساوي الأضلاع.

بالنسبة لبعض الزوايا، يمكن الحصول على قيم الدوال المثلثية بسهولة، تدعى هذه الزوايا: الزوايا الخاصة أو الزوايا الشهيرة.

إذا كان مقدار الزاوية يساوي 0°، فإن جيبها يساوي 0 وجيب التمام يساوي 1. وإذا كان مقدار الزاوية يساوي 90°، يصبح جيب التمام يساوي 0 والجيب يساوي 1، بتعبير آخر:

المثلث القائم ذو زاوية 45° له زاوية حادة أخرى تبلغ 45° أيضا، يطلق على هذا المثلث اسم مثلث قائم ومتساوي الساقين. في هذا المثلث، بناءً على مبرهنة فيثاغورس، طول الوتر يساوي √2 مرة طول كل من الساقين، إذن:

باستخدام خصائص مثلث متساوي الأضلاع (الشكل المقابل)، يمكن إظهار أن الضلع المقابل للزاوية 30° هو نصف طول الوتر، إذن:

وبالمثل، يتم الحصول على طول الضلع الآخر باستخدام مبرهنة فيثاغورس، الذي يساوي √3/2، نتيجة لذلك:

إن كتابة البسوط جذورا تربيعية للأعداد الصحيحة غير السالبة المتتالية، مع مقام يساوي 2، توفر طريقة سهلة لتذكر القيم.[71]

تنص مبرهنة نيفن على أن القيم النسبية الوحيدة لـθ التي تتواجد في المجال والتي يكون جيبها عدداً نسبياً هي الزوايا ذات القيم 0 و30 و90 درجة.[72] تمتد المبرهنة أيضًا إلى الدوال المثلثية الأخرى وإلى بعض الزوايا.[73] بالنسبة للقيم النسبية لـ θ، فإن القيم النسبية الوحيدة للجيب أو جيب التمام هي 0 و ±1/2 و ±1؛ والقيم النسبية الوحيدة للقاطع أو قاطع التمام هي ±1 و ±2؛ والقيم النسبية الوحيدة للظل أو ظل التمام هي 0 و ±1.[74]

مثل هذه التعبيرات البسيطة غير موجودة عمومًا للزوايا الأخرى التي تعتبر مضاعفات نسبية لزاوية مستقيمة. بالنسبة للزاوية التي تقاس بالدرجات، وهي من مضاعفات العدد 3، قد يتم التعبير عن الجيب وجيب التمام بدلالة الجذور التربيعية، طالع قيم جبرية دقيقة لثوابت مثلثية.[75] وبالتالي قد يتم انشاء هذه القيم للجيب وجيب التمام بواسطة المسطرة والفرجار.

بالنسبة لزاوية عدد صحيح بالدرجات، يمكن التعبير عن الجيب وجيب التمام بدلالة الجذور التربيعية والجذر التكعيبي لعدد مركب غير حقيقي.[76] تسمح نظرية غالوا بإثبات أنه إذا لم تكن الزاوية مضاعف ، فإن الجذور التكعيبية غير الحقيقية لا يمكن تجنبها.

بالنسبة للزاوية التي تقاس بالدرجات وهي عدد نسبي، الجيب وجيب التمام هما عددان جبريان، يمكن التعبير عنهما بدلالة الجذور النونية.[76]

بالنسبة للزاوية التي تقاس بالدرجات وهي عدد غير كسري، إما أن تكون الزاوية أو الجيب وجيب التمام عددين متساميين. إنها لازمة مبرهنة باكر، ثُبتت في عام 1966.[77]

القيم الجبرية البسيطة

يلخص الجدول التالي أبسط القيم الجبرية للدوال المثلثية.[78] يمثل الرمز النقطة عند اللانهاية على الخط الحقيقي الممتد بشكل إسقاطي؛ إنها غير مؤشَّرة، لأنها عندما يظهر في الجدول، تؤول الدالة المثلثية المقابلة إلى +∞ في جهة، وإلى -∞ في جهة أخرى، عندما يؤول المتغير إلى القيمة في الجدول.

راديان
درجة

حساب التفاضل والتكامل

الدوال المثلثية هي دوال قابلة للتفاضل. هذا ليس واضحا على الفور من التعاريف الهندسية المذكورة أعلاه. علاوة على ذلك، فإن الاتجاه الحديث في الرياضيات هو بناء هندسة رياضية من حساب التفاضل والتكامل بدلاً من العكس. لذلك، باستثناء في المستوى الأساسي، يتم تعريف الدوال المثلثية باستخدام طرق حساب التفاضل والتكامل.

لتعريف الدوال المثلثية داخل حساب التفاضل والتكامل، هناك عدة امكانيات، منها التعريف باستخدام متسلسلة القوى أو المعادلات التفاضلية. هذه التعريفات الأخيرة متكافئة لأن انطلاقا من واحد منهم، من السهل البدء في استرداد التعريفات الأخرى كخاصية. ومع ذلك، يعتبر التعريف من خلال المعادلات التفاضلية أكثر طبيعية إلى حد ما، لأنه على سبيل المثال، قد يبدو اختيار معاملات متسلسلة القوى كله اختياري، ومتطابقة فيثاغورس هي أسهل بكثير لاستنتاج من المعادلات التفاضلية.

الاشتقاق والمكاملة

المشتقات الأولى والثانية للدوال المثلثية مع مشتقاتها العكسية هي كما يلي:

دالة مشتقها الأول[60] مشتقها الثاني مشتقها من الرتبة n[79] تكامل[59]
معقد[80]
معقد[80]
معقد[80]
معقد[80]

تعريف بواسطة التكامل

يمكن الحصول على تعريف آخر استنادا إلى الطول الدقيق لقوس الدائرة. باعتبار معادلة النصف العلوي للدائرة ، يمكننا إيجاد العلاقة بين الزاوية و وفقًا للمعادلة التالية:[81][82]

حيث تنتمي الزاوية θ إلى المجال .

التعريف بواسطة المعادلات التفاضلية

  • الجيب وجيب التمام هما من الدوال الفريدة من نوعها التي تقبل التفاضل، بحيث:
كل من دالتي الجيب والجيب التمام تحققان المعادلة التفاضلية التالية: (معادلتها المميزة هي ، جذرها هي وحدة تخيلية موجبة أو سالبة ±i) بتعبير آخر، كل منهما تساوي مقابل مشتقتها من الدرجة الثانية.
الجيب هو الحل الوحيد لهذه المعادلة التي تحقق الشروط التالية:[83]
جيب التمام هو الحل الوحيد لهذه المعادلة التي تحقق الشروط التالية:[83]
بتطبيق قاعدة ناتج القسمة على تعريف ظل الزاوية باعتباره نسبة بين الجيب وجيب التمام، يحصل الفرد على أن دالة الظل تحقق:
إذن، دالة الظل هي حل للمعادلة التفاضلية التالية:


  • نعتبر المعادلة التفاضلية من الدرجة الثانية التالية:
إن حل هذه المعادلة هي الدالة الأسية من الشكل ، حيث و هما جذور المعادلة المميزة للمعادلة (). أيضا و هي ثوابت كيفية بناءً على الشروط الأولية.
إذا كانت المعادلة المميزة لها جذور عقدية، فإن حل هذه المعادلة هي الدالة الأسية العقدية:
حيث هو الجزء الحقيقي و هو الجزء التخيلي لجذر المعادلة المميزة. استنادًا إلى صيغة أويلر، يمكننا تحويل الدالة الأسية العقدية إلى دالتي الجيب وجيب التمام، لذلك في حالة الجذور العقدية، ستتضمن حل المعادلة التفاضلية دوال مثلثية:[84]

باستعمال المتسلسلات

دالة الجيب (باللون الأزرق) تحسب بصفة تقريبية اقترابا كبيرا بواسطة متعددة الحدود لتايلور من الدرجة السابعة (باللون الوردي) بالنسبة لدورة كاملة متمركزة حول أصل المَعلم.
الرسوم المتحركة لتقريب جيب التمام بواسطة متعددة الحدود لتايلور.
إلى جانب متعددات الحدود الأولى لتايلور

دوال مثلثية هي دوال تحليلية. يمكن تمثيل جميع الدوال المثلثية بواسطة متسلسلات لانهائية.

باستخدام متسلسلة تايلور، يمكن كتابة كل دالة مستمرة على شكل متسلسلة قوة بجوار النقطة a على النحو التالي:[85]

حيث يرمز n! إلى عاملي عدد.

عندما يكون a=0، تتحول هذه المتسلسلة إلى متسلسلة ماكلورين، رياضيا:[86]

ملاحظة: الزاوية x مقاسة بالتقدير الدائري في جميع السلاسل التالية.

متسلسلات ماكلورين لكل من الجيب وجيب التمام

  • جيب الزاوية:[87]

يوضح الشكل المقابل الرسم البياني لدالة الجيب إلى جانب متعدد الحدود السابع لماكلورين. قيمة دالة الجيب عند الصفر تساوي صفر، لذا فإن الحدود الزوجية لمتسلسلة القوة للجيب هي صفر. ونتيجة لذلك، فإن متسلسلة القوة للجيب ستحتوي فقط على حدود فردية.

  • جيب تمام الزاوية

وبالمثل، فإن الحدود الفردية لمتسلسلة جيب التمام هي صفر ، وتحتوي المتسلسلة فقط على حدود زوجية.

نصف قطر التقارب [ملاحظة 17] لتلك المتسلسلات غير منتهية. ولذلك، يمكن أن تمدد دالتا الجيب وجيب التمام إلى دوال كاملة، والتي هي (بالتعريف) دوال ذات قيم عقدية (مركبة) وتامة الشكل على مجمل المستوي العقدي.[88]

متسلسلات القوى لباقي الدوال

الدوال المثلثية الأخرى لها مجالات خاصة، لذلك لا يمكن تحديد متسلسلة تايلور لأي قيمة. بالنسبة لدالتي الظل والقاطع اللتان هي غير معرفة عند π/2 (أو °90)، فإن مجال تعريف متسلسلاتهم هي بين /2 و π/2، لذا، يمكن تمثيل هاتين الدالتين بواسطة متسلسلة ماكلورين. أيضًا بالنسبة لدالتي ظل التمام وقاطع التمام اللتان هي غير معرفة عند الصفر، فإن مجال تعريف متسلسلاتهم هي بين 0 و π وبين و 0، لذلك، يمكن تمثيلهن بواسطة متسلسلة لوران، هذه الأخيرة، هي تمثيل دالة على شكل متسلسلة القوى ذات درجات سالبة (متسلسلة ذات بعض الحدود المرفوعة لِأُس سالب).[89]

بتعبير أدق، نعرف:

Un، هو عدد Up/down من الرتبة n.

Bn، هو عدد بيرنولي من الرتبة n.

و En، هو عدد أويلر من الرتبة n.

تُعرف الدوال المثلثية الأربعة الأخيرة على أنها كسور من الدوال الكاملة. ولذلك، يمكن أن تُمدّد إلى دوال جزئية الشكل، والتي هي دوال تامة الشكل في كامل المستوي العقدي، باستثناء بعض النقاط المعزولة التي تسمى الأقطاب. هنا، الأقطاب هي أعداد من الشكل بالنسبة لدالتي الظل والقاطع، أو بالنسبة لدالتي ظل التمام وقاطع التمام، حيث k هو عدد صحيح كيفي.[90]

يمكن أيضًا حساب علاقات الاستدعاء الذاتي لمعاملات متسلسلة تايلور لتلك الدوال. متسلسلاتهما لها نصف قطر التقارب منتهي. معاملاتهم لها تفسير توافقي: فهي تُعدّد التبديلات المتناوبة للمجموعات المنتهية.[91]

عدد الحدود في متسلسلة القوة المستخدمة لتقريب الدوال غير منتهي، ولكن في الحسابات يتم استخدام عدد محدود من تلك الحدود. يطلق على الحدود الأخرى غير المحسوبة اسم الباقي. يُعرَّف الباقي من الرتبة n لمتسلسلة بواسطة:[59]

مع زيادة قيمة x، ستكون هناك حاجة إلى المزيد من الحدود لتحقيق دقة معينة، ونتيجة لذلك، ستنخفض سرعة التقارب. بالإضافة إلى ذلك، فإن الدوال الأربعة الأخيرة لها نقاط عدم الاستمرار (نقاط عدم الإتصال)، ومتسلسلات القوى لهذه الدوال معرفة على مجال معين.

لمنع التقارب من التباطؤ والتخلص من مشكلة نقاط عدم الاستمرار، يجب علينا تقليص الزاوية قدر الإمكان قبل استخدام المتسلسلة. باستخدام متطابقات الزوايا المتتامة، يمكن تقليص الزاوية إلى ، وباستخدام بعض المتطابقات المثلثية إلى . بهذه الطريقة، تزداد سرعة تقارب المتسلسلة والكفاءة الحسابية.[92]

متسلسلات أخرى

هناك تمثيل متسلسلات تحليلا كسريا جزئيا، حيث يتم تجميع دوال المقلوب المزاحة فقط، بحيث تتطابق أقطاب دالة ظل التمام ودوال المقلوب:[93]
يمكن إثبات هذه المتطابقة بواسطة خدعة هرغلوتز (Herglotz).[94]

الكسور المستمرة المعممة

كسر مستمر معمم هو تعميم للكسور المستمرة الاعتيادية حيث تأخذ مقاماته وبسوطه قِيَمًا حقيقية أو عقدية ما.

يمكننا كتابة الدوال الرياضية على هذا النحو:[95]

فيما يلي الكسور المستمرة لبعض الدوال:

متسلسلة الجداء اللانهائي

الجداء اللانهائي التالي لدالة الجيب له أهمية كبيرة في التحليل العقدي:[96]

من هذه المتسلسلة، نستنتج أن:[96]

باستخدام المعادلات الدالية

يمكننا أيضا تعريف الدوال المثلثية باستخدام المعادلات الدالية المختلفة.[ملاحظة 18]

مثلا،[97] الجيب وجيب التمام هما دالتان فريدتان من الدوال المستمرة التي تحقق صيغة الفرق:

بشرط أن تكون من أجل .

في المستوي المركب

يمكن التعبير عن الجيب وجيب التمام لعدد مركب بدلالة الدوال نفسها والدوال الزائدية:[98]

من الممكن أن نمثل بيانيا الدوال المثلثية دوالا ذات قيم عقدية (مركبة) عن طريق تمثيل بواسطة الألوان. يمكن مشاهدة العديد من الميزات الفريدة للدوال العقدية من الرسم البياني؛ على سبيل المثال، يمكن اعتبار دالتي الجيب وجيب التمام أنهما غير منتهية عندما يصبح الجزء التخيلي لـ z أكبر (لأن اللون الأبيض يمثل اللانهاية)، وحقيقة أن الدوال تحتوي على أصفار أو أقطاب بسيطة تتضح من حقيقة أن الألوان تدور حول كل صفر أو قطب مرة واحدة بالضبط. إن مقارنة هذه التمثيلات البيانية (بواسطة الألوان) مع تلك التمثيلات الخاصة بالدوال الزائدية توضح العلاقات بينهما.[99]

تمثيل الدوال على المستوى العقدي:

التمثيل البياني لـ z=x+iy التي استخدمت في التمثيلات البيانية.

حيث تمثل عمدة عدد مركب بالألوان، ومعياره بوسائل أخرى، مثل السطوع أو الاشباع اللوني.

الخصائص

زوجية وفردية

الدوال الزوجية والدوال الفردية هي دوال تحقق شرطا معينا يتعلق بالتناظر.

جيب التمام والقاطع دالتان زوجيتان، أما الدوال الأخرى فهي دوال فردية، بتعبير آخر:

دورية

الدوال المثلثية كلها دوالٌ دوريةٌ أصغر دورة لها هي 2π. باستثناء الظل وظل التمام، التي أصغر دورة لها هي π، بتعبير آخر، من أجل عدد صحيح k، لدينا:

في تحويل فورييه والمعادلات الموجية، تستخدم خاصية دورية الدوال المثلثية لحل المعادلات التفاضلية.[59]

استمرارية (اتصال)

إن الجيب وجيب التمام هما دالتان مستمرتان دومٌا وقابلة للإشتقاق ويتضح ذلك بوضوح من خلال التعريف بواسطة المثلث القائم والتعريف بواسطة دائرة الوحدة. إن الدوال الأخرى، التي مقامهما هي دالة الجيب أو جيب التمام، ليست دائمًا مستمرة. لأن قيمة كل من دالة الجيب وجيب التمام في بعض الأماكن تساوي الصفر. نقاط عدم الاستمرار للدوال المثلثية هي كالتالي (حيث k هو عدد صحيح كيفي):

  • الظل والقاطع:
  • ظل التمام وقاطع التمام:

تعامد

تعتبر دالتا الجيب وجيب التمام دالتان متعامدتان (Orthogonals)، أي:[ملاحظة 19]

تستخدم هذه الخصائص لحساب معاملات متسلسلة فورييه.[100][101]

تحويلا لابلاس وفورييه

تحويل لابلاس هو أحد طرق حل المعادلات التفاضلية. تحويلات لابلاس لدالتي الجيب وجيب التمام هي كما يلي:[ملاحظة 20][102]

  • تحويل الجيب:
  • تحويل جيب التمام:

تحويلات فورييه لدالتي الجيب وجيب التمام هي كما يلي:[ملاحظة 21][103]

  • الجيب:
  • جيب التمام:

دالة ذاتية

إن دالتا الجيب وجيب التمام هما دالتان ذاتيتان (Eigenfunctions) لمؤثر لابلاس. على سبيل المثال، إذا كان : يمثل مؤثر لابلاسي أحادي البعد، فإن دالتا الجيب وجيب التمام تحقق : ، حيث هي قيمة ذاتية؛ يمكن التحقق من هذه المساواة انطلاقا من التعريف بواسطة المعادلة التفاضلية للدالتين.[104]

حساب القيم

حساب القيم الدقيقة للدوال المثلثية يدوياً أمر صعب ومعقد، لكن في العصرِ الحديثِ، زالَت تعقيداته بسبب توفر أجهزة الحاسوب والآلات الحاسبة، التي تمكن بسهولة الحصول على القيمة الدقيقة لأي زاوية. بالنسبةِ لبعضِ الزوايا، فيمكن الحصول على القيم الجبرية الدقيقة لدولِّها المثلثية دون اللجوء إلى حساباتٍ بالأجهزة، وتُسمّى هذه الزوايا: الزوايا الخاصة. على سبيل المثال، قيمُ الدوال المثلثية لجميع الزوايا من مضاعفات العدد 3 دقيقة. تُحسَبُ النسب المثلثية للزاوية 3° بتطبيق الفرق بين زاويتين ذات القيم 18° و15° (3 = 15 - 18). وتُحسَبُ النسب المثلثية للزاوية 18° باستخدام خواص ونِسَب الخماسي المنتظم.

لحساب قيمة دالة لأي زاوية، يجب على المرء أولاً تقليص مجال الزاوية (على سبيل المثال، من الصفر إلى π/2). يتم ذلك باستخدام كل من خاصية دورية وتناظر الدوال المثلثية.[105]

قبل الحواسيب، حصل الناس بشكل عام على قيمة الدوال المثلثية من خلال استيفاء الجداول المثلثية. هذه الجداول لها تاريخ طويل في علم المثلثات. عادة ما يتم الحصول على القيم في الجداول عن طريق استخدام متطابقات نصف الزاوية وضعف الزاوية، على التوالي، بدءاً بقيمة معروفة (مثل sin (π/2) = 1).[41]

تستخدم الحواسيب والحاسبات الحديثة مجموعةً متنوعةً من التقنياتِ لتوفير قيم الدوال المثلثية عند الطلب للزوايا الأخرى. تتمثل إحدى الطرق الشائعة، خاصةً في المعالِجات الراقية (Higher-end Processors) ذات وحدات الفاصلة العائمة، في جمع بين تقريب بواسطة كثير الحدود أو بواسطة الدوال الكسرية (مثل تقريب تشيبيشيف، تقريب بادي، وعادةً ما يتعلق بالدقة العليا أو المتغيرة، متسلسلات تايلور ومتسلسلة لوران) وتقليص المدى (Range reduction) والبحث في الجدول—تبحث (الخوارزميات) أولاً في جدول صغير عن أقرب زاوية، ثم تستخدم كثير الحدود لحساب التصحيح.[106][107] على الأجهزة الأكثر بساطة التي تفتقر إلى مضاعف العتاد، توجد خوارزمية تسمى CORDIC عالية الكفاءة، لأنها تَستَخدِم الإزاحات والإضافة والطرح فقط.[108]

بالنسبة لحسابات عالية الدقة، عندما يصبح تقارب المتسلسلة بطيئًا للغاية، يمكن تقريب الدوال المثلثية بواسطة المتوسط الحسابي الهندسي، الذي يقارب في حد ذاته الدالة المثلثية بواسطة تكامل اهليلجي (المركب).[109]

متطابقات أساسية و مبرهنات

هناك عدد من المتطابقات تربط الدوال المثلثية بعضها ببعض. يحتوي هذا القسم على المتطابقات الأساسية والمبرهنات، لمزيد من المتطابقات، طالع قائمة المطابقات المثلثية. يمكن إثبات هذه المتطابقات هندسيا من التعريف باستعمال دائرة الوحدة أو التعريف باستعمال المثلث القائم (على الرغم من أنه بالنسبة للتعاريف الأخيرة، يجب توخي الحذر للزوايا التي لا تنتمي إلى هذا المجال [0 , π/2]). بالنسبة إلى البراهين غير الهندسية التي تستخدم فقط أدوات حساب التفاضل والتكامل، يمكننا استخدام المعادلات التفاضلية مباشرة. يمكننا أيضا استخدام متطابقة أويلر للتعبير عن جميع الدوال المثلثية بدلالة الدالة الأسية العقدية واستخدام خصائص الدالة الأسية.

متطابقة فيثاغورس

تنص هذه المتطابقة على أن مجموع مربع جيب زاوية ما، لتكن ، مع مربع الجيب التمام لنفس الزاوية يساوي الواحد، ويُعبر عنها رياضياً بالعلاقة التالية:[60]

يجب الانتباه إلى أن الترميز sin2 x + cos2 x يكافئ sin x)2 + (cos x)2).

متطابقات مجموع وفرق زاويتين

تسمح صيغ الفرع والمجموع بتوسيع الجيب وجيب التمام والظل لمجموع أو فرق زاويتين بدلالة جيب وجيب تمام وظل الزوايا نفسها.

المجموع

ويُحسب كما يأتي:[67]

الفرق

ويُحسب كما يأتي:[67]

متطابقات ضعف الزاوية

عندما تكون الزاويتان متساويتان، فإن صيغ المجموع تقلص إلى معادلات أبسط تعرف باسم متطابقات ضعف الزاوية.[67]

يمكن استخدام هذه المتطابقات لاشتقاق متطابقات التحويل من المجموع إلى الجداء.

بوضع و هذا يسمح بالتعبير عن جميع الدوال المثلثية لـ كدالة كسرية لـ

بالإضافة إلى

هذا هو التعويض بظل نصف الزاوية (ويسمى أيضا تعويض فايرشتراس)، الذي يسمح بتقليص حساب التكاملات والمشتقات العكسية للدوال المثلثية إلى دوال كسرية.[110]

متطابقات ثلاثية الزاوية

ويُحسب كما يأتي:[111]

متطابقات نصف الزاوية

ويُحسب كما يأتي:[112]

قانون الجيب

ليكن ABC مثلث، وa وb وc أضلاعه، ينص قانون الجيب على ما يلي:

حيث تشير Δ إلى مساحة المثلث، أو بشكل مكافئ:
حيث يشير R إلى نصف قطر الدائرة المحيطة بالمثلث.[67]

يمكن إثبات ذلك بتقسيم المثلث إلى مثلثين قائمين وباستخدام التعريف الوارد أعلاه للجيب. قانون الجيب مفيد في حساب أطوال الأضلاع المجهولة في مثلث إذا كانت هناك زاويتان وضلع واحد معلومتان. هذا هو الموقف الشائع الذي يحدث في التثليث، وهي تقنية لتحديد مسافات غير معروفة عن طريق قياس زاويتين ومسافة مغلقة يمكن الوصول إليها.

تمثيل المثلث الكروي ABC

في حالة المثلثات الكروية، ينص القانون على ما يلي:[31]

حيث a و b و c هن أضلاع المثلث الواقع في سطح الكرة؛ و A و B و C هن الزوايا المقابلة.[ملاحظة 22]

قانون جيب التمام

طريقة الكاشي لبرهنة قانون جيب التمام بالنسبة للمثلثات الحادة (باستخدام مثلث حاد محاط بثلاث مربعات). حيث أن المستطيلان الأخضران متقايسان والمستطيلان الأحمران أيضًا متقايسان، يمكن إثبات م.خ التقايس بإثبات تقايس المثلثات JAE و JAB ، و JAB و CAM ، و CAM و FAM بتحريك أحد الرؤوس بالتوازي مع القاعدة وأحدهما بالدوران على أحد زوايا المربعات، ويمكن الإثبات بطريقة مشابهة، المستطيلان الأحمران (طالع الصورة المتحركة)؛ ويمكن إثبات أن المستطيلان الأزرقان متقايسان ومساحة أحدهما يساوي CA × CB × cos C بمعرفة أن CE = CB cos C و CD = CA cos C. يمكن إثبات بالنسبة للمثلثات المنفرجة بطريقة مشابهة.[113]

يعتبر قانون جيب التمام تعميمًا لمبرهنة فيثاغورس على جميع أنواع المثلثات المستوية. ويسمى أيضا مبرهنة الكاشي.[114]

وقد تكتب هاته الصيغة كما يلي:

حيث C هي الزاوية المقابلة للضلع c.
يمكن إثبات هذه المبرهنة بتقسيم المثلث إلى مثلثين قائمين وباستخدام مبرهنة فيثاغورس، أو باستخدام طريقة الكاشي كما هي موضحة على اليسار.[67]
يمكن استخدام قانون جيب التمام لحساب طول ضلع المثلث إذا كان الضلعان والزاوية بينهما معلومة. يمكن أيضًا استخدامه لإيجاد جيب تمام لأي زاوية إذا كانت أطوال كل الأضلاع معلومة.

في حالة المثلثات الكروية، ينص القانون على ما يلي:[115][116]

حيث a و b و c هي الأقواس الثلاثة للمثلث الكروي (والتي يطلق عليها مجازًا أضلاع وتسمى أحيانًا بجوانب المثلث الكروي) وتقاس بالدرجات القوسية أي بقيمة الزاوية المركزية المقابلة لكل منها داخل الكرة، حيث تحول بعد ذلك إلى وحدات الطول العادية بالضرب في قيمة الدرجة القوسية والتي تساوي محيط الكرة/360 ما يعادل ط × نصف قطر الكرة/180 والرمز ط هنا أو π في اللاتينية؛ والزاوية C هي الزاوية المقابلة للقوس c.

ويمكن اشتقاق المعادلة التالية مِن العلاقة السابقة لإيجاد قيمة الزاوية C المقابلة للقوس c في المثلث الكروي عندما تكون مجهولة وبقية الأطوال الثلاثة لأقواس المثلث a و b و c معلومة:

وهناك صورة أخرى للمعادلة حيث تكون قيم الزوايا الثلاث A و B و C معلومة لنحصل على قيمة قوس مجهول في المثلث الكُرويّ وليكن القوس c كما يلي:[117]

ومنها يمكن حساب قيمة زاوية مجهولة بمعلومية طول القوس المقابل لها ومعلومية قيمتي الزاويتين الأخرتين بالمثلث الكروي هكذا:

قانون الظل

ليكن ABC مثلث، تنص الأشكال الاربعة لقانون الظل على ما يلي:[118]

حيث a=BC وb=AC وc=AB.

يمكن إثبات هذه المبرهنة باستخدام قانون الجيب والمتطابقات المثلثية.

أما بالنسبة للمثلثات الكروية، ينص القانون على ما يلي:[ملاحظة 22][119]

قانون ظل التمام

ليكن ABC مثلث، وa وb وc أضلاعه (حيث a=BC وb=AC وc=AB)، إذا كان:

(نصف قطر الدائرة الداخلية للمثلث)

و

(نصف محيط المثلث)،

ثم كل ما يلي يشكل قانون ظل التمام:[118]

نستنتج أن:

مبرهنة الساندويتش

تساعد هذه المبرهنة في حساب النهايات الصعبة ومشتقات الدوال المثلثية. هذه المتباينة الصالحة فقط عند المجال ، هي كما يلي:[120]

تمكننا هذه المتباينة من حساب النهاية التالية:[121] . تفيد هذه النهاية في حساب مشتقات الدوال المثلثية، طالع تفاضل الدوال المثلثية.

المتباينات المشابهة هي كما يلي:[122]

مبرهنة بطليموس

مبرهنة بطليموس هي علاقة بين الأضلاع الأربعة وقطرا الرباعي الدائري (رباعي محاط بدائرة تشمل جميع رؤوسه).

ليكن ABCD رباعي دائري، إذا كان θ1+θ2+θ3+θ4=180°، فإن:[123]

صيغة مولفيده

لتكن a و b و c أطوال أضلاع للمثلث، و α و β و γ الزوايا المقابلة لتلك الأضلاع الثلاثة على التوالي. تنص صيغة مولفيده على ما يلي:[124]

قانون موري

ينص هذا القانون الرياضي على أن جداء جيوب التمام لكل من 20° و40° و80° يساوي 1/8، بتعبير رياضي:

وهي حالة خاصة للمتطابقة العامة:

مع و .

هذه المتطابقة تثير الفضول، لأن، عند تعويض n و α للحد الثاني بتلك القيم، يحصل المرء على أن:

بما أن:

هناك متطابقة مشابهة لهذه المتطابقة، وهي متعلقة بدالة الجيب:

زيادة على ذلك، عند تقسيم المتطابقة الثانية على الأولى، تنتج متطابقة أخرى:[125]

الدوال العكسية

الدوال المثلثية دورية، وبذلك، هي ليست متباينة، وبالتالي ليس لديها دالة عكسية.  ومع ذلك، في كل مجال تكون فيه الدالة المثلثية رتيبة، يمكن للمرء تحديد دالة عكسية، بهذه الطريقة، تعرّف الدوال المثلثية العكسية كدوال متعددة القيم. لتعريف دالة عكسية حقيقية، يصير من الضروري تقليص مجال تعريفها إلى مجال تكون فيه الدالة رتيبة، حتى تكون الدوال المثلثية دوالا تقابلية. يعطى الاختيار الشائع لهذا المجال الذي يطلق عليه اسم "مجموعة القيم الرئيسية" في الجدول التالي. عادة ما يرمز إلى الدوال المثلثية العكسية بالبادئة "arc" قبل اسم أو اختصار الدالة.[126]

يوضح الجدول الآتي قائمة الدوال المثلثية العكسية مع ابراز كل من مجال تعريفهن ومشتقتهن.

الدالة[3] اسمها بالإنجليزية[3] الترميز[126] التعريف مجال التعريف[67] المجال المقابل (مجموعة القيم الرئيسية)[67] المشتقة[67]
قوس الجيب Arcsine
قوس جيب التمام Arccosine
قوس الظل Arctangent جميع الاعداد الحقيقية
قوس قاطع التمام Arccosecant أو
قوس القاطع Arcsecant أو
قوس ظل التمام Arccotangent جميع الاعداد الحقيقية

غالبًا ما تستخدم الترميزات sin-1 و cos-1... إلخ لـ arcsin و arccos ،... وهكذا. عند استخدام هذا الترميز، قد يؤدي هذا إلى الالتباس بين الدوال العكسية والمعاكيس الضربية.[126]

يمنع الترميز بالبادئة "arc" مثل هذا الالتباس، على الرغم من أنه يمكن الخلط بين "arcsec" لـ arcsecant و لـ "arcsecond"(التي تعني "ثانية القوس").[126]

يُمكن للدوال المثلثية العكسية أن تعرف بواسطة المتسلسلات تماما كما هو الحال بالنسبة للدوال المثلثية. على سبيل المثال،

يمكن أيضًا التعبير عنها بدلالة اللوغاريتمات العقدية.[127] طالع دوال مثلثية عكسية لمزيد من التفاصيل.

الدوال الزائدية

صورة متحركة للدوال المثلثية (الدائرية) والدوال الزائدية. باللون الأحمر، منحنى معادلته x² + y² = 1 (دائرة الوحدة)، وبالأزرق x² - y² = 1 (القطع الزائد)، مع النقاط (cos(θ),sin(θ)) و (1,tan(θ)) باللون الأحمر و (cosh(θ),sinh(θ)) و (1,tanh(θ)) باللون الأزرق.

الدوال الزائدية هي تلك الدوال التي تشبه الدوال المثلثية لكنها معرفة بواسطة القطع الزائد بدلاً من الدائرة: تمامًا كما تشكل النقاط (cos t, sin t) دائرة ذات نصف قطر يساوي الواحد، تشكل النقاط (cosh t, sinh t) النصف الأيمن للقطع الزائد.[128]

الدوال الزائدية هي:

الدالة[3] الترميز[129] التعريف[129] تعبير بدلالة الدوال المثلثية

[ملاحظة 23]

الجيب الزائدي
جيب التمام الزائدي
الظل الزائدي
ظل التمام الزائدي
القاطع الزائدي
قاطع التمام الزائدي

يعتمد كلا النوعين على عُمدة (Argument)، إما زاوية دائرية أو زاوية زائدية.

بما أن مساحة القطاع الدائري الذي نصف قطره r وزاويته u هي ، فسوف تكون مساوية لـ u عندما تكون r = √2. في الرسم البياني، تكون الدائرة مماسية على القطع الزائد الذي معادلته xy = 1 عند النقطة (1,1). يمثل القطاع البرتقالي مساحة ومقدار الزاوية الدائرية. وبالمثل، تمثل القطاعان الأصفر والأحمر معًا مساحة ومقدار الزاوية الزائدية.

سيقان المثلثين القائمين اللذين وتراهما هما عبارة عن شعاع محدد للزوايا يبلغ طولهما 2√ مرة الدوال الدائرية والزائدية.[128]

في حالة القطع الزائد الذي معادلته x2 - y2 =1، مقدار الزاوية الزائدية هو ضعف المساحة الزرقاء المحددة بالشعاع ومحور السينات والقطع الزائد (انظر الصورة (8))، تماما كما يكون مقدار الزاوية الدائرية هو ضعف المساحة الزرقاء للدائرة التي معادلتها x2 + y2 =1 (انظر الصورة (9)).[128]

في المتطابقات الزائدية، هناك تشابه كبير بينها وبين المتطابقات المثلثية، بعض الأمثلة على ذلك:[128]

علاقة الدوال المثلثية بالدوال الخاصة

يمكن كتابة بعض الدوال الخاصة بدلالة مجموعة من الدوال بما في ذلك الدوال المثلثية.

  • دالة بيسل من الرتبة 1/2: دالة بيسل التي هي عبارة عن متسلسلة القوى، هي حل للمعادلة التفاضلية من الدرجة الثانية التالية:

حيث يمثل a الرتبة. يمكن كتابة أحد الحالات الخاصة لدالة بيسل (a = 1/2) كدوال مثلثية على النحو التالي:[130]

حيث تمثل n رتبتها.

يمكن كتابة متعدد الحدود لتشيبيشيف من الرتبة n بدلالة الدوال المثلثية:[131]

تطبيقات

حساب المتجهات

في الرياضيات والفيزياء، تُستخدم المتجهات[ملاحظة 24] (التي لها مقدار واتجاه) لتمثيل كمية متجهة وبالاخص في الفيزياء مثل تمثيل القوة والسرعة. تستخدم بعض حسابات المتجهات دوال مثلثية. على سبيل المثال، يمكن حساب الجداء القياسي [ملاحظة 25]لمتجهين x وy بواسطة قانون جيب التمام:[132]

يمكن أيضًا استخدام المعادلة التالية لحساب مقدار الضرب المتجهي:[ملاحظة 26]

حيث هو محدد المتجهتين و.

الإحداثيات القطبية، والأسطوانية والكروية

تمثيل نقطتين في نظام الإحداثيات القطبية

الدوال المثلثية هي الأساس لتحديد نظام الإحداثيات القطبية الذي يكون فعالا في تبسيط العديد من المشكلات الرياضية والفيزيائية، بما في ذلك بعض التكاملات. في نظام الإحداثيات هذا، بدلاً من إحداثيات x وy لنقطة (المستخدمة في نظام الإحداثيات الديكارتية)، بُعدها عن المركز والزاوية المحصورة بين الخط الذي يربطها بالمركز والخط الأفقي (r , θ) فهي تعتبر إحداثيات النقطة.[59] تحويل الإحداثيات الديكارتية إلى الإحداثيات القطبية والعكس بالعكس باستخدام الدوال المثلثية:[59]

تتشكل أيضًا أنظمة الإحداثيات الأسطوانية والكروية، التي تعد إحداثيات قطبية معممة على ثلاثية الأبعاد، على أساس الدوال المثلثية. تُستخدم هذه الأنظمة في مشكلات مثل تكاملات ثلاثية الأبعاد لها تناظر أسطواني أو كروي.

المساحات

  • مثلث: هناك قانون يعبر عن مساحة المثلث بدلالة أضلاعه a وb والزاوية المحصورة بينهم θ دون الحاجة إلى معرفة ارتفاعه:[133]
  • متوازي أضلاع: يمكن ايجاد مساحته من خلال معرفة أطوال أضلاعه a وb وإحدى زواياه θ دون الحاجة إلى معرفة ارتفاعه بتطبيق هذا القانون:[134]
حيث n هو عدد أضلاعه، وl هو طول إحدى أضلاعه، وp هو محيط المضلع.
إذا كان المضلع محاط بدائرة نصف قطرها R ومحيط بدائرة نصف قطرها r (يُعتبَر أيضًا عامد المضلع[ملاحظة 27]):

المحيطات

  • مضلع منتظم: يمكن إيجاد محيطه بدلالة عدد أضلاعه n والمسافة بين مركز المضلع وأحد رؤوسه b ودالة الجيب:[136]
حيث هو معامل التباعد المركزي، و هو التكامل الإهليلجي التام من النوع الثاني:

الحجوم

حيث ، و هن أطوال الأحرف.[138]

العلاقة بدالة الأس وبالأعداد المركبة

تمثيل عدد مركب على المستوي المركب
حيث هو معيار العدد المركب، و i هي وحدة تخيلية مربعها يساوي مقابل واحد ().

إثبات: [139] نعتبر متسلسلة تايلور للدالة الأسية:

بوضع: ، تصبح المتسلسلة:

من متسلسلات تايلور لكل من الجيب وجيب التمام، نستنتج أن:

  • لدينا:

قد تستعمل صيغة أويلر للحصول على بعض المتطابقات المثلثية، وذلك بكتابة دالتي الجيب والجيب التمام كما يلي:

  • يمكن ملاحظة أن جيب التمام يمكن اعتباره الجزء الحقيقي والجيب هو الجزء التخيلي للدالة الأسية العقدية. رياضيا:
  • أيضًا، باستخدام تعريف بواسطة متسلسلة ماكلورين للدوال الزائدية والمثلثية، يمكن الحصول على العلاقات بين تلك الدوال:

علم الفلك

استخدمت حساب المثلثات الكروية لعدة قرون لتحديد موقع الشمس والاقمار والنجوم، والتنبؤ بالكسوف والخسوف، ووصف مدارات الكواكب.

في العصر الحديث، تستخدم تقنية التثليث في علم الفلك لقياس مسافة النجوم القريبة، وكذلك في أنظمة الملاحة عبر الأقمار الصناعية.[141][142]

الخرائط

تستخدم عملية التثليث في إيجاد إحداثيات والبعد لسفينة بالنسبة للشاطئ وذلك بقياس الزوايا بين نقطتين مرجعيتين

حساب المثلثات هو أساس معظم ممارسات رسم الخرائط والمساحة. قياس زاوية باستخدام الجهاز أو بدون استخدامه، إسقاط الخرائط (تحويل سطح ناقصي إلى سطح مستوي)، وتحديد الارتفاعات، و حساب زاوية الإتجاه [الإنجليزية]، والمسح الاجتيازي المفتوح والمغلق،[ملاحظة 28] وتصميم الأقواس في انشاء الطرقات، جزء من تطبيقات الدوال المثلثية في مسح الأراضي.

على سبيل المثال، في التثليث، وهي إحدى الطرق القديمة للمساحة، نحسب احداثيات نقطة معينة من خلال قياس الزوايا بين نقطتين مرجعيتين، التي تُستخدم حاليًا في القياس البصري ثلاثي الأبعاد [الإنجليزية]. يُستخدَم في التثليث قانون جيب التمام وقانون الجيب لحساب زوايا المثلثات وتحديد الموقع الدقيق لكل نقطة.[143]

في هذه الحالة، تُحسَب المسافة بتطبيق هذا القانون:[144]

رسم توضيحي لكيفية حساب ارتفاع جبل.

مثال آخر في التثليث، إذا أراد المرء قياس ارتفاع h لجبل أو مبنى مرتفع، يتم تحديد الزوايا α، و β من نقطتين أرضيتين إلى الأعلى. لتكن ℓ مسافة بين هذه النقاط، يحسب الارتفاع بتطبيق هذا القانون:[145]

متسلسلة فورييه وتحويل فورييه

دالتا الجيب وجيب التمام مثل كثيرات الحدود المتعامدة ولها استقلالية خطية. ومنهم يمكن كتابة أي دالة (دورية بشكل عام) على أنها العلاقة التالية بدلالة متسلسلة من تلك الدوال، والتي تسمى متسلسلة فورييه:[146]

بالنسبة للدوال الفردية، فقط حدود دالة الجيب، أما الدوال الزوجية، فقط حدود دالة جيب التمام زائد معامل ثابت.

تحويل فورييه هو نوع من التحويل التكاملي وهو عبارة عن امتداد لمتسلسلة فورييه. يُعرف هذا التحويل بـ:[147]

تُحوّل الدالة الأسية العقدية إلى دوال مثلثية بواسطة صيغة أويلر. تستخدم تحويل فورييه لحل المعادلات التفاضلية الجزئية مثل معادلة الموجة والتحليل الطيفي ومعالجة الإشارات.[148]

يستخدم تحويل فورييه أيضا في ضغط صور من النوع JPEG، حيث يستخدم فيها تحويل جيب التمام المتقطع، هذه الأخيرة، هي تقنية تمثل البيانات على شكل مجاميع دوال جيب التمام.[149]

الحركة التذبذبية (الاهتزازية)

صورة متحركة لموجة مربعية مع عدد متزايد من التوافقيات

الدوال المثلثية مهمة أيضا في الفيزياء. على سبيل المثال، يتم استخدام الجيب وجيب التمام لوصف الحركة التوافقية البسيطة، التي تنمذج العديد من الظواهر الطبيعية، مثل حركة كتلة متصلة بنابض،[150] وبالنسبة للزوايا الصغيرة، الحركة الرقاصية لكتلة معلقة بواسطة خيط،[151] وفي الهندسة الكهربائية، دراسة الدارات الكهربائية[84] مثل دارة الرنان التوافقي RLC. دوال الجيب وجيب التمام هي اسقاطات أحادية البعد لحركة دائرية منتظمة.

تثبت الدوال المثلثية أيضًا على أنها مفيدة في دراسة الدوال الدورية العامة. تُعد أنماط الموجات المميزة للدوال الدورية مفيدة لنمذجة الظواهر المتكررة مثل الصوت أو الموجات الضوئية.[152]

بشكل عام، يمكن التعبير عن دالة دورية f(x) كمجموع موجات الجيب أو موجات جيب التمام في متسلسلات فورييه مثل موجة مربعية أو موجة سن المنشار.[153]

نرمز للدالة الحاوية للجيب أو جيب التمام بالرمز φk، يأخذ مفكوك الدالة الدورية f(t) الشكل:[154]

حيث ck هو معامل المتسلسلة.

على سبيل المثال، يمكن كتابة الموجة المربعية كمتسلسلة فورييه:[155]

في الرسوم المتحركة لموجة مربعية في أعلى اليسار، يمكن ملاحظة أن بعض الحدود فقط تنتج تقريبًا جيدًا إلى حد ما.

المعادلات الوسيطية

منحنى ليساجو، كُوّن هذا الشكل باستعمال دوال تعتمد على الدوال المثلثية، حيث و

يمكن تمثيل بعض المنحنيات الخاصة باستخدام المعادلات الوسيطية وبدلالة الدوال المثلثية، بعض الأمثلة على المنحنيات الخاصة هي كما يلي:

  • الدائرة: تعطى المعادلة الوسيطية للدائرة ذات المركز ونصف القطر بواسطة:[156]
  • القطع الناقص: يُمثَّل القطع الناقص ذو المركز ونصف المحور الكبير ونصف المحور الصغير كما يلي:[157]
حيث و هن عبارة عن ثوابت تصف عدد فصوص الشكل.
أو
ويمكن تمثيل وسيطيًا القطع الزائد العمودي بواسطة:
أو
حيث، هي مركز القطع الزائد.

بالإضافة إلى تلك المنحنيات، يمكن أيضًا تمثيل عدة منحنيات التي تعتمد على الدوال المثلثية، بما في ذلك المنحنى العجلي التحتي، اللولب، السطوح الوسيطية [الإنجليزية]،... وهكذا.

البصريات

انكسار الضوء.

التطبيق الأساسي للدوال المثلثية في علم البصريات هو قانون سنيل. ينص هذا القانون، الذي ينطبق على ظاهرة انكسار الضوء، على العلاقة بين زوايا السقوط والانكسار:

حيث:

  • θ1: زاوية سقوط الموجة، θ2: زاوية انكسار الموجة.
  • v1: سرعة الضوء في الوسط الأول، v2: سرعة الضوء في الوسط الثاني.
  • n1: معامل الانكسار للوسط الأول، n2: معامل الانكسار للوسط الثاني

بالإضافة إلى انكسار الضوء، تُستخدم الدوال المثلثية في مجالات أخرى من البصريات، مثل تحليل تداخل الموجات والاستقطاب والحيود.[159]

الملاحة 

تاريخيا، استخدمت حساب المثلثات لتحديد احداثيات خطوط الطول والعرض لسفن الإبحار، ورسم المسارات، وحساب المسافات أثناء الملاحة.[67]

لا يزال حساب المثلثات مستخدمًا في الملاحة من خلال وسائل مثل نظام التموضع العالمي (GPS) والذكاء الاصطناعي للمركبات الذاتية.[71]

تُستخدم هذه المعادلة لتحديد المسافة بين نقطتين على الأرض:[ملاحظة 29]

حيث:

  • λA وλB هما خطا عرض النقطتين المرغوبة.
  • LA وLB هما خطا طول النقطتين المرغوبة.
  • R هو نصف قطر الأرض.

يمكن إثبات ذلك من قانون جيب التمام للمثلثات الكروية.[67][160]


الفيزياء الميكانيكية

في الفيزياء الميكانيكية، تُطبق الدوال المثلثية على معادلات الحركة ثنائية الأبعاد وثلاثية الأبعاد، وحتى في دراسة حركة الأجسام. على سبيل المثال، عند تحليل الاختلافات الدورية في الحركيات والديناميكيات الدورانية، ومعادلات الزخم والزخم الزاوي، وظواهر التصادم، نستخدم فيها دوال مثلثية.[161]

قذف جسم من مبدأ المَعْلم

من أكثر التطبيقات المعروفة للدوال المثلثية في الميكانيكا هي دراسة ظاهرة حركة جسم مقذوف بزاوية α، وتكتب المعادلة الوسيطية لمسارها بدلالة الزمن t على النحو التالي:

حيث x و y هي إحداثيات موضع الجسم عند t ثانية بعد السرعة الإبتدائية v0، وg هو تسارع الجاذبية.[162]

أيضا، يتم الحصول على سرعة الجسمين و ومقدار الزاويتين و اللتين صنعهما الجسمان بعد التصادم المرن باستخدام الدوال المثلثية، بتطبيق قانون حفظ الزخم (في كلا المعادلتين، قبل تصادم جسمين (على اليسار) = بعد تصادم جسمين (على اليمين)):[163]

ثابت : على المحور x

ثابت : على المحور y

القبلة

حساب القبلة من مدينة يوغياكارتا الإندونيسية.

القبلة هي وجهة المصلي عند الصلاة وهي عند المسلمين الكعبة المشرفة في مدينة مكة.

يتم تطبيق نموذج الدائرة العظمى لحساب القبلة باستخدام حساب المثلثات الكروية، وهو العلم الذي برع فيه العلماء المسلمين قديمًا واستقر العمل في تحديد القبلة عليه. في الشكل التالي، يشكل الموقع O والكعبة Q والقطب الشمالي N مثلثًا على الكرة الأرضية. يُشار إلى القبلة بـ OQ، وهو اتجاه الدائرة العظمى التي تشمل النقطتين O و Q. يمكن أيضًا التعبير عن القبلة كالزاوية (أو ) للقبلة بالنسبة للشمال، وتسمى أيضًا "إنحراف القبلة". يمكن حساب هذه الزاوية كدالة رياضية لخط العرض المحلي ، وخط عرض الكعبة ، وفرق بين خطي الطول لمنطقة ما والكعبة ،[164] هذه الدالة مستمدة من قاعدة ظل التمام التي تنطبق على أي مثلث كروي ذات الزوايا ، و ، و والجوانب ، و ، و :

[165]

بتطبيق هذه الصيغة على المثلث الكروي (بتعويض )[166] وبتطبيق المتطابقات المثلثية، نحصل على:[ملاحظة 30]

، أو
[164]

الكهرباء والاتصالات

تمثيل دورة واحدة لنظام ثلاثي الطور من 0° إلى 360° (2π راديان) على طول المحور الزمني.  يمثل المنحني اختلاف الجهد اللحظي (أو التيار) بدلالة الزمن. تتكرر هذه الدورة بتردد يعتمد على نظام القدرة الكهربائية.

تستخدم التيارات المتناوبة في تزويد المنازل والمصانع بالطاقة الكهربائية، ويُعبَّر عنها بشكل موجة جيبية. أحد الأسباب الرئيسية لتفضيل التيار المتردد على التيار المستمر في الصناعة هو إمكانية تحويل مستوى الجهد للتيار المتناوب باستخدام المحولات، وهذا يُقلل من الطاقة الضائعة عند النقل لمسافات طويلة ويجعلها ذات ربح عالٍ، بالإضافة لإمكانية عدم استعمال المبدلات في المولدات.[167][168]

تولد محطات الكهرباء تيارات ثلاثية الطور في الغالب (انظر الصورة).[167] يمكن وصف تغير التيار المتناوب بتلك المعادلات: و [ملاحظة 31] وبالتالي تُحسب وتُحدد علاقات مختلفة مثل القدرة اللحظية ، القدرة الفعالة، القدرة غير الفعالة، ... إلخ، أو مفاهيم مثل تقدم الطور، وتأخر الطور وزاوية القدرة ومعامل القدرة، ...، من خلال تحليل الدوال المثلثية.[169] الكهرباء التي تُغذى بها المنازل هي موجة جيبية ترددها غالباً ما يكون 50 أو 60 هرتز.[167][168]

في نمذجة خط نقل الطاقة الكهربائية، تُنمذج محددات الخط بواسطة دوال زائدية.[168]

في أنظمة الاتصالات، عادة ما تدعم كل قناة الاتصال نقل إشاراتٍ فقط في نطاق ترددي معين، ويتعذر إرسال الإشارة عبر القناة إذا كان ترددها خارج هذا النطاق. ولذلك، من أجل إرسال إشارة لها تردد خارج النطاق، عادة ما يتم تثبيتها على موجة أخرى لها تردد متوافق مع نطاق القناة، تُسمَّى هذه التقنية التضمين. في الإشارات التشابهية تكون الموجة الحاملة موجة جيبية. على سبيل المثال، في تضمين المطال، يتم ضرب الإشارة التي تحتوي على المعلومات في الموجة الحاملة للموجة الجيبية.[170]

انظر أيضًا

هوامش وملاحظات

  1. ^ وقد يُشار إليها أيضاً بـ.
  2. ^ تُسمّى أيضاً دائرة مثلثية أو دائرة واحدية.
  3. ^ حيث k عدد صحيح كيفي.
  4. ^ أو تلك الرموز: cotan, cotg ctg, ctn
  5. ^ أو هذا الرمز: cosec
  6. ^ تم تدوين الشكل الانجليزي لأول مرة عام 1593 في الكتاب  Horologiographia الخاص بـ Thomas Fale.
  7. ^ هناك مصادر مختلفة أنسبت الاستخدام الاول للمصطلح "sinus" إلى:
    • طالع:
      Merlet, A Note on the History of the Trigonometric Functions in Ceccarelli (ed.), International Symposium on History of Machines and Mechanisms, Springer, 2004
    • أو
      Maor (1998), chapter 3, for an earlier etymology crediting Gerard.
    • أو
      Katx, Victor (Jul 2008). A history of mathematics (بالإنجليزية) (3 ed.). Boston: Pearson. p. 210 (sidebar). ISBN:978-0321387004.
  8. ^ أ ب طالع فرع من قسم التاريخ "العصر الذهبي للحضارة الإسلامية" لمزيد من التفاصيل.
  9. ^ كانت العلاقة المثلثية لدالة الظل معروفة عند الهنود، ولكن لم يعتبروها كميةً مثلثيةً مستقلة كدالة الجيب.
  10. ^ أ ب الشريط الأفقي فوق الرقم يعني أن هذا الرقم يتكرر إلى ما لا نهاية.
  11. ^ المثلث القائم أو المثلث قائم الزاوية هو مثلثٌ إحدى زواياه قائمة، أي أن ضلعيه يشكلان زاوية قياسها .
  12. ^ أ ب يسمى أيضًا محور الفواصل أو محور الأفاصيل
  13. ^ عكس اتجاه عقارب الساعة لأجلِ زاويةٍ موجبةٍ ، وفي اتجاه عقارب الساعة من أجل زاويةٍ سالبةٍ .
  14. ^ يُسمّى أيضاً الفاصلة أو الأفصول.
  15. ^ يُسمّى أيضاً الترتيبة أو الأرتوب.
  16. ^ يسمى أيضًا محور العينات (في سوريا) أو محور التراتيب أو محور الأراتيب
  17. ^ نصف قطر التقارب لمتسلسلة قوى هو نصف قطر أكبر قرص تتقارب فيه المتسلسلة. وهو إما عدد حقيقي غير سالب أو ∞.
  18. ^ المعادلة الدالية هي أي معادلة التي متغيرها هي عبارة عن دالة.
  19. ^ تكون الدوال متعامدة إذا كان جدائهما الداخلي يساوي الصفر.
  20. ^ حيث: a هو ثابت حقيقي. s هو عدد مركب.
  21. ^ حيث: هي وحدة تخيلية مربعها يساوي -1.
  22. ^ أ ب أطوال الأضلاع تساوي عدديًا قياس الزوايا التي تقابل أقواس الدائرة العظمى في المركز بالراديان. لذلك، بالنسبة لكرة ذات نصف قطر R لا يساوي الواحد، يجب قسمة أطوال الأضلاع على R قبل استخدام المتطابقة.
  23. ^ i هي وحدة تخيلية مربعها يساوي -1
  24. ^ تسمى أيضًا "أشعة" مفردها "شعاع".
  25. ^ وتسمى أيضا "جداء سلمي".
  26. ^ تسمى أيضا "ضرب اتجاهي" أو "جداء شعاعي"
  27. ^ عامد هو قطعة مستقيمة التي تربط مركز المضلع المنتظم بمنتصف أحد أضلاعه
  28. ^ المسح الاجتيازي هو طريقة لمسح منطقة مفتوحة أو مغلقة باستخدام قياس الزوايا والمسافات.
  29. ^ يجب تحويل الإحداثيات إلى الراديان في الحساب.
  30. ^ *إذا كان إحداثي خط العرض معبر عنه بالدرجات العشرية متبوع بـ N (التي تعني شمالاً)، يجب وضع إشارة "+" قبل قيمة خط العرض؛ وإذا كان متبوع بـ S (التي تعني جنوبًا)، نضع إشارة "-" قبل القيمة.
    • بنفس الطريقة المذكورة أعلاه، إذا كان احداثي خط الطول بالدرجات العشرية متبوع بـ E (التي تعني شرقًا)، يجب وضع إشارة "+" قبل قيمة خط الطول؛ وإذا كان متبوع بـ W (التي تعني غربًا)، نضع إشارة "-" قبل القيمة.
    • وإن كانت الإحداثيات معبر عنها بالدرجات والدقائق والثواني، يجب تحويلها إلى الدرجات العشرية، طالع قسم وحدات قياس الزوايا.

  31. ^ حيث:
    • و هما مطالا دالة التيار الكهربائي ودالة الجهد الكهربائي.

مراجع

فهرس المراجع
  1. ^ أ ب ت ث ج د فرانك؛ موير، د روبرت (1 مارس 2004). سلسلة ملخصات شوم ايزي ; حساب المثلثات. international house for cultural investments. ISBN:978-977-282-145-7. مؤرشف من الأصل في 2020-02-21.
  2. ^ محمد مفيد (1 يناير 2013). التكامل في الرياضات. مركز الكتاب الأكاديمي. ISBN:978-9957-35-052-9. مؤرشف من الأصل في 2020-02-21.
  3. ^ أ ب ت ث ج ح ميشال إبراهيم ورامي أبو سليمان وفادي (1 يناير 2007). قاموس المصطلحات العلمية - انكليزي/فرنسي/عربي. دار الكتب العلمية. ISBN:978-2-7451-5445-3. مؤرشف من الأصل في 2020-02-21. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  4. ^ Katx, Victor (Jul 2008). A history of mathematics (بالإنجليزية) (3 ed.). Boston: Pearson. p. 210 (sidebar). ISBN:978-0321387004.
  5. ^ أ ب "Clark University". مؤرشف من الأصل في 2017-12-18.
  6. ^ A Note on the History of the Trigonometric Functions in Ceccarelli (ed.), International Symposium on History of Machines and Mechanisms, Springer, 2004 See Maor (1998), chapter 3, for an earlier etymology crediting Gerard. See Katx, Victor (Jul 2008). A history of mathematics (بالإنجليزية) (3 ed.). Boston: Pearson. p. 210 (sidebar). ISBN:978-0321387004. نسخة محفوظة 10 يونيو 2018 على موقع واي باك مشين.
  7. ^ أ ب كرلو (199?). علم الفلك. ktab INC. مؤرشف من الأصل في 2020-04-12. {{استشهاد بكتاب}}: تحقق من التاريخ في: |تاريخ= (مساعدة)
  8. ^ "5 معلومات مهمة عن المثلث وزوايا المثلث". إيد أرابيا. 15 أكتوبر 2018. مؤرشف من الأصل في 2019-12-22. اطلع عليه بتاريخ 2020-04-12.
  9. ^ الرياضيات - المنهاج الجزائري القديم. 1999.
  10. ^ Max; Association, Research and Education (1 Jan 1984). Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms (بالإنجليزية). Research & Education Assoc. ISBN:978-0-87891-521-7. Archived from the original on 2020-04-13.
  11. ^ Anthony (2007). Pure mathematics: Trigonometry (بالإنجليزية). Pass Publications. ISBN:978-1-872684-87-1. Archived from the original on 2020-04-13.
  12. ^ Journal of Engineering for Industry (بالإنجليزية). American Society of Mechanical Engineers. 1969. Archived from the original on 2020-04-13.
  13. ^ أ ب "Table of Domain and Range of Common Functions". www.analyzemath.com. مؤرشف من الأصل في 2019-02-08. اطلع عليه بتاريخ 2020-04-10.
  14. ^ أ ب ت ث ج ح خ Kim (29 Dec 2008). Mathematics in India (بالإنجليزية). Princeton University Press. ISBN:978-1-4008-3407-5. Archived from the original on 2020-03-04.
  15. ^ القانون المسعودي. ج. 1. ص. 275. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغs: |بواسطة= و|الجلد= (مساعدة)
  16. ^ أبي الفتح إسماعيل بن مصطفى/شيخ زاده (1 يناير 2019). رسائل الكلنبوي في علم الفلك - رسالة الربع المجيب. دار الكتب العلمية. ص. 151. ISBN:978-2-7451-8540-2. مؤرشف من الأصل في 2020-07-01.
  17. ^ أ ب Oxford English Dictionary
  18. ^ أ ب Régis (1996). Encyclopedia of the History of Arabic Science (بالإنجليزية). Psychology Press. ISBN:978-0-415-12411-9. Archived from the original on 2020-03-04.
  19. ^ Gunter، Edmund (1620). Canon triangulorum.
  20. ^ B.B. Datta and A.N. Singh (1983). "Hindu Trigonometry" (PDF). Indian Journal of History of Science. ج. 18 ع. 1: 39–108. مؤرشف من الأصل (PDF) في 2017-02-05. اطلع عليه بتاريخ 2010-03-01.
  21. ^ Team, Almaany. "تعريف و شرح و معنى تمام بالعربي في معاجم اللغة العربية معجم المعاني الجامع، المعجم الوسيط ،اللغة العربية المعاصرة ،الرائد ،لسان العرب ،القاموس المحيط - معجم عربي عربي صفحة 1". www.almaany.com (بالإنجليزية). Archived from the original on 2016-08-22. Retrieved 2020-04-10.
  22. ^ Steven G. (2010-04). An Episodic History of Mathematics: Mathematical Culture Through Problem Solving (بالإنجليزية). MAA. ISBN:978-0-88385-766-3. Archived from the original on 20 يونيو 2020. {{استشهاد بكتاب}}: تحقق من التاريخ في: |تاريخ= (help)
  23. ^ Howard (1983). Great Moments in Mathematics (before 1650) (بالإنجليزية). MAA. ISBN:978-0-88385-310-8. Archived from the original on 2020-06-20.
  24. ^ Tobias (2 Oct 2012). Mathematics in Ancient Greece (بالإنجليزية). Courier Corporation. ISBN:978-0-486-14998-1. Archived from the original on 2020-04-15.
  25. ^ أ ب ت ث ج Boyer, Carl B. (1991). A History of Mathematics (Second ed.). John Wiley & Sons, Inc. (ردمك 0-471-54397-7).
  26. ^ Toomer، G. (1998)، Ptolemy's Almagest، Princeton University Press، ISBN:978-0-691-00260-6
  27. ^ موسوعة تاريخ العلوم العربية - ثلاثة مجلدات. مؤرشف من الأصل في 2016-10-12.
  28. ^ O'Connor، J. J.؛ Robertson، E. F. "Madhava of Sangamagrama". School of Mathematics and Statistics University of St Andrews, Scotland. مؤرشف من الأصل في 2006-05-14. اطلع عليه بتاريخ 2007-09-08.
  29. ^ Gingerich، Owen (1986). "Islamic Astronomy". ساينتفك أمريكان. ج. 254. ص. 74. مؤرشف من الأصل في 2013-10-19. اطلع عليه بتاريخ 2010-07-13.
  30. ^ "History of Trigonometry - Part 3". nrich.maths.org. مؤرشف من الأصل في 2020-02-20. اطلع عليه بتاريخ 2020-04-05.
  31. ^ أ ب ت Jacques Sesiano, "Islamic mathematics", p. 157, in Selin، Helaine؛ D'Ambrosio، Ubiratan، المحررون (2000). Mathematics Across Cultures: The History of Non-western Mathematics. Springer. ISBN:1-4020-0260-2.
  32. ^ أ ب "trigonometry". Encyclopedia Britannica. مؤرشف من الأصل في 2015-05-12.
  33. ^ أبو الريحان البيروني (1 يناير 2002). القانون المسعودي 1-3 ج1. دار الكتب العلمية. ص. 225. ISBN:978-2-7451-3305-2. مؤرشف من الأصل في 2020-06-22.
  34. ^ Adolph P. Yushkevich. История математики. С древнейших времен до начала Нового времени (بالروسية).
  35. ^ مجلة تاريخ العلوم العربية (بالإنجليزية). Institute for the History of Arabic Science, University of Aleppo. 1977. Archived from the original on 2020-06-20.
  36. ^ إبراهيم (1 يناير 2002). دليل الأوائل. ktab INC. مؤرشف من الأصل في 2020-06-20.
  37. ^ المعلم الجديد. ج. المجلد 30. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  38. ^ Florian (1898). A History of Elementary Mathematics (بالإنجليزية). Macmillan.
  39. ^ Ravi P.; Sen, Syamal K. (11 Nov 2014). Creators of Mathematical and Computational Sciences (بالإنجليزية). Springer. ISBN:978-3-319-10870-4. Archived from the original on 2020-05-18.
  40. ^ مصطفى (1 يناير 2005). موسوعة علماء العرب والمسلمين وأعلامهم. Al Manhal. ISBN:9796500011424. مؤرشف من الأصل في 2020-04-12.
  41. ^ أ ب Dirk Jan (1967). A Concise History of Mathematics (بالإنجليزية). Courier Corporation. ISBN:978-0-486-60255-4. Archived from the original on 2020-03-03.
  42. ^ Donald Routledge Hill (1996), "Engineering", in Roshdi Rashed, Encyclopedia of the History of Arabic Science, Vol. 3, p. 751–795 [769].
  43. ^ O'Connor، John J.؛ Robertson، Edmund F.، "Abu Arrayhan Muhammad ibn Ahmad al-Biruni"، تاريخ ماكتوتور لأرشيف الرياضيات
  44. ^ أ ب Elias C.; Tonias, Constantine N. (28 Apr 2016). Geometric Procedures for Civil Engineers (بالإنجليزية). Springer. ISBN:978-3-319-24295-8. Archived from the original on 2020-06-21.
  45. ^ نوال حسن؛ الخليج، دار (1 يناير 2017). العلوم عند العرب والمسلمين. دار الخليج للنشر والتوزيع / daralkhalij for Publishing and Distribution. ISBN:978-9957-519-85-8. مؤرشف من الأصل في 2020-04-12.
  46. ^ Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (بالإنجليزية). Sterling Publishing Company, Inc. ISBN:978-1-4027-5796-9. Archived from the original on 2020-05-15.
  47. ^ قرقور، يوسف. "ملك سرقسطة المؤتمن بن هود ومبرهنة فيثاغورس: مصادرها وامتداداتها" (PDF). ISSN:0210-8615. مؤرشف من الأصل (PDF) في 2017-06-29. {{استشهاد بدورية محكمة}}: الاستشهاد بدورية محكمة يطلب |دورية محكمة= (مساعدة)
  48. ^ Marlow Anderson, Victor J. Katz، Robin J. Wilson (2004)، Sherlock Holmes in Babylon and Other Tales of Mathematical History، جمعية الرياضيات الأمريكية، ص. 139، ISBN:0883855461
  49. ^ George Gheverghese (2011). The Crest of the Peacock: Non-European Roots of Mathematics (Third Edition) (بالإنجليزية). Princeton University Press. ISBN:978-0-691-13526-7. {{استشهاد بكتاب}}: |archive-date= requires |archive-url= (help) and يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (help)
  50. ^ Katz 2007، p. 308
  51. ^ O'Connor، John J.؛ Robertson، Edmund F.، "دوال مثلثية"، تاريخ ماكتوتور لأرشيف الرياضيات
  52. ^ Carl B. (9 Oct 2012). The History of the Calculus and Its Conceptual Development (بالإنجليزية). Courier Corporation. ISBN:978-0-486-17538-6. Archived from the original on 2020-04-12.
  53. ^ "Fincke biography". مؤرشف من الأصل في 2017-01-07. اطلع عليه بتاريخ 2017-03-15.
  54. ^ Bourbaki، Nicolás (1994). Elements of the History of Mathematics. Springer. مؤرشف من الأصل في 2020-02-16.
  55. ^ Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.
  56. ^ أبو الريحان البيروني. القانون المسعودي. ج. 1. ص. 321. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  57. ^ Nielsen (1966, pp. xxiii–xxiv)
  58. ^ Glen Van (23 Jan 2020). Trigonometry: a Very Short Introduction (بالإنجليزية). Oxford University Press. ISBN:978-0-19-881431-3. Archived from the original on 2020-04-12.
  59. ^ أ ب ت ث ج ح خ د George Brinton; Weir, Maurice D.; Hass, Joel (2010). Thomas' Calculus (بالإنجليزية). Pearson. ISBN:978-0-321-64363-6. Archived from the original on 2020-02-19.
  60. ^ أ ب ت Richard A. (15 Apr 2014). Modern Calculus and Analytic Geometry (بالإنجليزية). Courier Corporation. ISBN:978-0-486-79398-6. Archived from the original on 2020-02-25.
  61. ^ Lindeburg, Michael R. (2012). Civil Engineering Reference Manual for the PE Exam. Professional Publications, Inc. ص. 78-7. ISBN:978-1-59126-380-7. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  62. ^ Benjamin (1861). Elements of Plane and Spherical Trigonometry: With Practical Applications (بالإنجليزية). R. S. Davis. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (help)
  63. ^ أ ب ت ث Tim (23 May 2019). The Essential Calculus Workbook: Trigonometric Functions (بالإنجليزية). Questing Vole Press. Archived from the original on 2020-02-28.
  64. ^ Geoffrey C.; Rockett, Andrew M. (1 Jan 2015). Applied Calculus (بالإنجليزية). Cengage Learning. ISBN:978-1-305-46505-3. Archived from the original on 2020-02-24.
  65. ^ أ ب ت ث Protter & Morrey (1970, pp. APP-2,APP-3)
  66. ^ Heng, Cheng and Talbert, "Additional Mathematics" نسخة محفوظة 2015-03-20 على موقع واي باك مشين., page 228
  67. ^ أ ب ت ث ج ح خ د ذ ر ز س Coxford, Arthur (1987). Trigonometry.
  68. ^ Bityutskov, V.I. (7 Feb 2011). "Trigonometric Functions". Encyclopedia of Mathematics (بالإنجليزية). Archived from the original on 2017-12-29. Retrieved 2017-12-29.
  69. ^ Weisstein, Eric W. "Circular Functions". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2017-04-03. Retrieved 2020-03-01.
  70. ^ د فرانك؛ موير، د روبرت (1 مارس 2004). سلسلة ملخصات شوم ايزي ; حساب المثلثات. international house for cultural investments. ISBN:978-977-282-145-7. مؤرشف من الأصل في 2020-02-25.
  71. ^ أ ب Larson، Ron (2013). Trigonometry (ط. 9th). Cengage Learning. ص. 153. ISBN:978-1-285-60718-4. مؤرشف من الأصل في 2018-02-15. Extract of page 153 نسخة محفوظة 2018-02-15 على موقع واي باك مشين.
  72. ^ Schaumberger، Norman (1 يناير 1974). "A Classroom Theorem on Trigonometric Irrationalities". The Two-Year College Mathematics Journal. ج. 5 ع. 1: 73–76. DOI:10.2307/3026991. مؤرشف من الأصل في 2019-10-13.
  73. ^ Niven، Ivan (1956). Irrational Numbers. The Carus Mathematical Monographs. Mathematical Association of America. ص. 41. MR:0080123. مؤرشف من الأصل في 2020-06-09.
  74. ^ A proof for the cosine case appears as Lemma 12 in Bennett، Curtis D.؛ Glass، A. M. W.؛ Székely، Gábor J. (2004). "Fermat's last theorem for rational exponents". American Mathematical Monthly. ج. 111 ع. 4: 322–329. DOI:10.2307/4145241. JSTOR:4145241. MR:2057186.
  75. ^ يتم الحصول على قيم دقيقة للدوال باستخدام متطابقات مجموع أو فرق زاويتين، على سبيل المثال: cos(15°)=cos(60° - 45°)
  76. ^ أ ب Weisstein, Eric W. "Trigonometry Angles--Pi/9". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2019-12-30. Retrieved 2020-04-04.
  77. ^ M. Ram; Rath, Purusottam (24 Jun 2014). Transcendental Numbers (بالإنجليزية). Springer. ISBN:978-1-4939-0832-5. Archived from the original on 2020-04-12.
  78. ^ Abramowitz, Milton and Irene A. Stegun, p.74
  79. ^ Milton; Stegun, Irene A. (1 Jan 1965). Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (بالإنجليزية). Courier Corporation. ISBN:978-0-486-61272-0. Archived from the original on 2020-02-25.
  80. ^ أ ب ت ث "«FORMULAS FOR nth ORDER DERIVATIVES OF HYPERBOLIC. AND TRIGONOMETRIC FUNCTIONS»" (PDF). NASA. مؤرشف من الأصل (PDF) في 2017-03-12.
  81. ^ Timothy; Barrow-Green, June; Leader, Imre (18 Jul 2010). The Princeton Companion to Mathematics (بالإنجليزية). Princeton University Press. ISBN:978-1-4008-3039-8. Archived from the original on 2020-02-19.
  82. ^ Trigonometric functions. V.I. Bityutskov (originator), Encyclopedia of Mathematics. نسخة محفوظة 19 فبراير 2020 على موقع واي باك مشين.
  83. ^ أ ب "Sine: Introduction to the trigonometric functions (subsection Trigonometrics/05)". functions.wolfram.com. مؤرشف من الأصل في 2016-05-02. اطلع عليه بتاريخ 2020-04-14.
  84. ^ أ ب William E. Boyce, Richard C. DiPrima, Douglas B. Meade. Elementary Differential Equations and Boundary Value Problems (بالإنجليزية).{{استشهاد بكتاب}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  85. ^ Thomas & Finney 1996، §8.9
  86. ^ Thomas & Finney 1996, §8.9.
  87. ^ Ahlfors, pages 43–44.
  88. ^ Michael T. (18 Jun 2007). Introduction to Mathematical Physics (بالإنجليزية). John Wiley & Sons. ISBN:978-3-527-40627-2. Archived from the original on 2020-04-12.
  89. ^ Abramowitz; Weisstein.
  90. ^ Weisstein, Eric W. "Pole". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2020-03-18. Retrieved 2020-04-09.
  91. ^ Stanley, Enumerative Combinatorics, Vol I., page 149
  92. ^ Green، Robin. "Faster Math Functions" (PDF). ص. 6–7. مؤرشف من الأصل (PDF) في 2020-03-23.
  93. ^ Aigner، Martin؛ Ziegler، Günter M. (2000). Proofs from THE BOOK (ط. Second). سبرنجر. ص. 149. ISBN:978-3-642-00855-9. مؤرشف من الأصل في 2014-03-08.
  94. ^ Remmert، Reinhold (1991). Theory of complex functions. Springer. ص. 327. ISBN:978-0-387-97195-7. مؤرشف من الأصل في 2015-03-20. Extract of page 327 نسخة محفوظة 2015-03-20 على موقع واي باك مشين.
  95. ^ Omar (9 Feb 2016). Introduction to Calculus and Classical Analysis (بالإنجليزية). Springer. ISBN:978-3-319-28400-2. Archived from the original on 2020-04-12.
  96. ^ أ ب Luis Manuel Braga da Costa (4 Apr 2012). Transcendental Representations with Applications to Solids and Fluids (بالإنجليزية). CRC Press. ISBN:978-1-4398-3431-2. Archived from the original on 2020-03-03.
  97. ^ Kannappan، Palaniappan (2009). Functional Equations and Inequalities with Applications. Springer. ISBN:978-0387894911.
  98. ^ John H.; Howell, Russell W. (2006). Complex Analysis for Mathematics and Engineering (بالإنجليزية). Jones & Bartlett Learning. ISBN:978-0-7637-3748-1. Archived from the original on 2016-03-22.
  99. ^ Gandhi، Viswanathan (7 أكتوبر 2014). "Domain coloring for visualizing complex functions". مؤرشف من الأصل في 2020-04-12.
  100. ^ The Princeton Companion to Mathematics. ص. 307 - 308. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  101. ^ Olver, NIST Handbook of Mathematical Functions. ص. 122. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  102. ^ Elementary Differential Equations and Boundary Value Problems. ص. 376. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  103. ^ David W. (17 Jan 2008). A First Course in Fourier Analysis (بالإنجليزية). Cambridge University Press. ISBN:978-1-139-46903-6. Archived from the original on 2020-03-12.
  104. ^ Marcus (7 Jan 2010). Linear Partial Differential Equations and Fourier Theory (بالإنجليزية). Cambridge University Press. ISBN:978-0-521-19970-4. Archived from the original on 2020-04-13.
  105. ^ "More Approximations to Trigonometric Functions" (PDF). مؤرشف من الأصل (PDF) في 2020-03-23.
  106. ^ Kantabutra، Vitit (1996). "On hardware for computing exponential and trigonometric functions" – عبر IEEE Transactions on Computers.
  107. ^ Jurgen; Platzner, Marco (19 Aug 2004). Field Programmable Logic and Application: 14th International Conference , FPL 2004, Leuven, Belgium, August 30-September 1, 2004, Proceedings (بالإنجليزية). Springer Science & Business Media. ISBN:978-3-540-22989-6. Archived from the original on 2020-04-12.
  108. ^ "التنفیذ المادي باستخدام FPGA لخوارزمیتي كوردك وجدول المقارنة لحساب الدوال الریاضیة الأولیة". المجلات الأكاديمية العلمية العراقية. مؤرشف من الأصل في 2020-04-12.
  109. ^ P, BrentRichard (1 Apr 1976). "Fast Multiple-Precision Evaluation of Elementary Functions". Journal of the ACM (JACM) (بالإنجليزية). DOI:10.1145/321941.321944. Archived from the original on 2020-04-12.
  110. ^ "Weierstrass Substitution". Math24 (بالإنجليزية الأمريكية). Archived from the original on 2020-03-27. Retrieved 2020-03-27.
  111. ^ Selby 1970، pg. 190
  112. ^ Abramowitz and Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ص. 72.
  113. ^ غياث الدين الكاشي. مفتاح الحساب.
  114. ^ Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (بالإنجليزية). Sterling Publishing Company, Inc. ISBN:978-1-4027-5796-9. Archived from the original on 2017-03-30.
  115. ^ Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997). نسخة محفوظة 21 أبريل 2020 على موقع واي باك مشين.
  116. ^ W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
  117. ^ Todhunter، I. (1886). Spherical Trigonometry (ط. 5th). MacMillan. مؤرشف من الأصل في 2020-04-14.
  118. ^ أ ب The Universal Encyclopaedia of Mathematics, Pan Reference Books, 1976, page 529-530. English version George Allen and Unwin, 1964. Translated from the German version Meyers Rechenduden, 1960.
  119. ^ Daniel Zwillinger, CRC Standard Mathematical Tables and Formulae, 32nd Edition, CRC Press, 2011, page 219.
  120. ^ Modern calculus with analytic geometry, Volume 1. ص. 105-106.
  121. ^ Calculus and Analytic Geometry. ص. 138.
  122. ^ Olver, NIST Handbook of Mathematical Functions. ص. 116.
  123. ^ Ernest William (1891). A Treatise on Plane Trigonometry (بالإنجليزية). University Press. Archived from the original on 2020-04-12.
  124. ^ Michael Sullivan, Trigonometry, Dellen Publishing Company, 1988, page 243.
  125. ^ W. A. Beyer, J. D. Louck, and D. Zeilberger, A Generalization of a Curiosity that Feynman Remembered All His Life, Math. Mag. 69, 43–44, 1996.
  126. ^ أ ب ت ث Arthur Graham؛ Frink، Fred Goodrich ([c1909]). Plane trigonometry. New York : Henry Holt. مؤرشف من الأصل في 13 أبريل 2020. {{استشهاد بكتاب}}: تحقق من التاريخ في: |تاريخ= (مساعدة)
  127. ^ Weisstein, Eric W. "Inverse Trigonometric Functions". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2020-04-13. Retrieved 2020-04-13.
  128. ^ أ ب ت ث V. G.; Argunov, B. I.; Skornyakov, L. A.; Boltyanskii, V. G. (7 Nov 2013). Hyperbolic Functions: with Configuration Theorems and Equivalent and Equidecomposable Figures (بالإنجليزية). Courier Corporation. ISBN:978-0-486-17005-3. Archived from the original on 2020-04-12.
  129. ^ أ ب "Hyperbolic functions" (PDF). Mathcentre. 9 يناير 2006. مؤرشف من الأصل (PDF) في 2019-09-09.
  130. ^ Árpád (25 May 2010). Generalized Bessel Functions of the First Kind (بالإنجليزية). Springer Science & Business Media. ISBN:978-3-642-12229-3. Archived from the original on 2020-03-14.
  131. ^ United States National Bureau of (1952). Tables of Chebyshev Polynomials (بالإنجليزية). U.S. Government Printing Office. Archived from the original on 2020-03-14.
  132. ^ Robert; Halliday, David; Krane, Kenneth S. (16 Mar 1992). Physics (بالإنجليزية). Wiley. ISBN:978-0-471-80457-4. Archived from the original on 2020-02-19.
  133. ^ "Area Formulas". www.math.com. مؤرشف من الأصل في 2020-05-15. اطلع عليه بتاريخ 2020-05-21.
  134. ^ "Area of Triangle Using Trigonometry - MathBitsNotebook(Geo - CCSS Math)". mathbitsnotebook.com. مؤرشف من الأصل في 2019-10-29. اطلع عليه بتاريخ 2020-05-21.
  135. ^ Aaron (1875). Plane and Spherical Trigonometry and Mensuration (بالإنجليزية). American Book Company. Archived from the original on 2020-05-22.
  136. ^ Max; Association, Research and Education (1 Jan 1984). Handbook of Mathematical, Scientific, and Engineering Formulas, Tables, Functions, Graphs, Transforms (بالإنجليزية). Research & Education Assoc. ISBN:978-0-87891-521-7. Archived from the original on 2020-05-22.
  137. ^ Ron; Edwards, Bruce H. (1 Jan 2010). Calculus of a Single Variable: Early Transcendental Functions (بالإنجليزية). Cengage Learning. ISBN:978-0-538-73552-0. Archived from the original on 2020-05-22.
  138. ^ Isaac (1878). Spherical Trigonometry, for the Use of Colleges and Schools: With Numerous Examples (بالإنجليزية). Macmillan.
  139. ^ Gilbert (1 Jan 1991). Calculus (بالإنجليزية). SIAM. ISBN:978-0-9614088-2-4. Archived from the original on 2020-04-12.
  140. ^ Milton; Stegun, Irene A. (30 Apr 2012). Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (بالإنجليزية). Courier Corporation. ISBN:978-0-486-15824-2. Archived from the original on 2020-02-19.
  141. ^ An Elementary Treatise on Plane and Spherical Trigonometry with their applications to navigation, surveying heights and distances, and spherical astronomy; and particularly adapted to explaining the construction of Bowditch's Navigator ... Third edition, with additions (بالإنجليزية). 1845. Archived from the original on 2020-04-12.
  142. ^ Michael; Backman, Dana (5 Jan 2009). Astronomy: The Solar System and Beyond (بالإنجليزية). Cengage Learning. ISBN:978-0-495-56203-0. Archived from the original on 2020-04-12.
  143. ^ عاصی، محمدرضا. نقشه‌برداری (ژئوماتیک) (ویراست چهارم) (بالفارسية). انتشارات علمی دانشگاه ضنعتی شریف. ISBN:978-964-208-008-3.
  144. ^ "Solving ASA Triangles". www.mathsisfun.com. مؤرشف من الأصل في 2018-07-01. اطلع عليه بتاريخ 2020-05-28.
  145. ^ Геометрия. 7-9 классы. Учебник. ФГОС, размер 165x220 мм. Атанасян Левон Сергеевич (بالروسية). ISBN:978-5-09-021136-9.
  146. ^ N. K. (12 May 2014). A Treatise on Trigonometric Series: Volume 1 (بالإنجليزية). Elsevier. ISBN:978-1-4832-2419-0. Archived from the original on 2020-04-12.
  147. ^ Weisstein, Eric W. "Fourier Transform". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2020-03-18. Retrieved 2020-04-14.
  148. ^ Gerald B Folland. Fourier Analysis and its Applications. ص. 225–234. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  149. ^ "JPEG (Transform Compression)". www.dspguide.com. مؤرشف من الأصل في 2020-01-20. اطلع عليه بتاريخ 2020-04-11.
  150. ^ James R. (8 Nov 2010). Differential Equations with Boundary Value Problems: An Introduction to Modern Methods & Applications (بالإنجليزية). John Wiley & Sons. ISBN:978-0-470-59535-0. Archived from the original on 2020-03-03.
  151. ^ Morris; Pollard, Harry (1 Oct 1985). Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences (بالإنجليزية). Courier Corporation. ISBN:978-0-486-64940-5. Archived from the original on 2020-03-03.
  152. ^ Farlow، Stanley J. (1993). Partial differential equations for scientists and engineers (ط. Reprint of Wiley 1982). Courier Dover Publications. ص. 82. ISBN:978-0-486-67620-3. مؤرشف من الأصل في 2015-03-20.
  153. ^ Gerald B Folland. Fourier Analysis and its Applications. ص. 77ff. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  154. ^ Peter J. (8 Nov 2013). Introduction to Partial Differential Equations (بالإنجليزية). Springer Science & Business Media. ISBN:978-3-319-02099-0. Archived from the original on 2020-04-12.
  155. ^ Lawrence (25 Sep 2013). Advanced Engineering Mathematics (بالإنجليزية). CRC Press. ISBN:978-1-4398-3447-3. Archived from the original on 2020-04-12.
  156. ^ "Parametric Equation of a Circle - Math Open Reference". www.mathopenref.com. مؤرشف من الأصل في 2019-11-18. اطلع عليه بتاريخ 2020-05-25.
  157. ^ أ ب "Welcome to CK-12 Foundation | CK-12 Foundation". www.ck12.org. مؤرشف من الأصل في 2017-02-17. اطلع عليه بتاريخ 2020-05-25.
  158. ^ Weisstein, Eric W. "Lissajous Curve". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2019-11-15. Retrieved 2020-05-25.
  159. ^ Francis A.; White, Harvey E. (1937). Fundamentals of Optics (بالإنجليزية). Tata McGraw-Hill Education. ISBN:978-1-259-00229-8. Archived from the original on 2020-02-24.
  160. ^ Vasiliĭ Petrovich (1963). Navigation Instruments (بالإنجليزية). Foreign Technology Division. Archived from the original on 2020-02-24.
  161. ^ Halliday, Resnick and Krane ,Physics
  162. ^ "Parametric Equations and Projectile Motion" (PDF). Classzone. مؤرشف من الأصل (PDF) في 2020-04-12. {{استشهاد ويب}}: line feed character في |عنوان= في مكان 25 (مساعدة)
  163. ^ "Contemporary Physics". مؤرشف من الأصل في 2020-04-22.
  164. ^ أ ب King 1986، صفحة 83.
  165. ^ الصيغة التي تكافئها موجودة في Hadi Bashori 2015، صفحة 119
  166. ^ Hadi Bashori 2015، صفحة 119.
  167. ^ أ ب ت Mark (3 Dec 2009). Professional English in Use Engineering with Answers: Technical English for Professionals (بالإنجليزية). Cambridge University Press. ISBN:978-0-521-73488-2. Archived from the original on 2020-03-12.
  168. ^ أ ب ت بررسی سیستم‌های قدرت (بالفارسية). طهران. ISBN:964-454-394-7. {{استشهاد بكتاب}}: يحتوي الاستشهاد على وسيط غير معروف وفارغ: |بواسطة= (مساعدة)
  169. ^ "Electrical Power in AC Circuits and Reactive Power". مؤرشف من الأصل في 2019-07-12.
  170. ^ Alan V.; Willsky, Alan S.; Nawab, Syed Hamid (1997). Signals & Systems (بالإنجليزية). Prentice-Hall International. ISBN:978-0-13-651175-5. Archived from the original on 2020-04-12.
معلومات الكتب كاملة

ملحق: مسرد المصطلحات الإنجليزية

مَسرد المفردات وفق الترتيب الأبجدي الإنجليزي
A
إحداثي x Abscissa
قدرة فعالة Active power
زاوية حادة Acute angle
إضافة Addition
ضلع مجاور Adjacent side
عدد جبري Algebraic number
تيار متناوب Alternating current
مطال موجة Amplitude of a wave
تضمين المطال Amplitude modulation
إشارة تشابهية Analog signal
زاوية Angle
متطابقات مجموع وفرق زاويتين Angle sum and difference identities
تردد زاوي Angular frequency
زخم زاوي Angular momentum
مشتق عكسي Antiderivative
تقريب Approximation
قوس Arc
مساحة Area
عُمدة Argument
متوسط حسابي هندسي Arithmetic–geometric mean
B
عدد بيرنولي Bernoulli number
دالة بيسل Bessel function
دالة تقابلية Bijective function
C
حساب التفاضل والتكامل Calculus
موجة حاملة Carrier wave
معادلة مميزة Characteristic equation
تقريب تشيبيشيف Chebyshev approximation
متعدد الحدود لشيبيشيف Chebyshev polynomial
دالة الوتر Chord
زاوية دائرية Circular angle
حركة دائرية Circular motion
قطاع دائري Circular sector
محيط دائرة/قطع ناقص (منحنى مغلق بشكل عام) Circumference
مضلع محيط Circumscribed polygon
مستقر دالة Codomain of a function
تصادم Collision
قناة اتصال Communication Channel
فرجار Compass
زوايا متتامة Complementary angles
تحليل مركب/عقدي Complex analysis
عدد مركب/عقدي Complex number
مستوي مركب/عقدي Complex plane
دالة مستمرة Continuous function
إحداثيات Coordinates
لازمة Corollary
جداء متجهي/ضرب متجهي Cross product
جذر تكعيبي Cube root
سهم التمام Coversine
رباعي دائري Cyclic quadrilateral
إحداثيات أسطوانية Cylindrical coordinates
D
صيغة دي موافر De Moivre's formula
درجة Degree
مقام Denominator
مشتق Derivative
قطر الدائرة Diameter
فرق Difference
تفاضل Differential
معادلة تفاضلية Differential equation
دالة ديراك Dirac function
تيار مستمر Direct Current
متطابقات ضعف الزاوية Double-angle identities
مجال دالة Domain of a function
جداء قياسي Dot product
E
تباعد مركزي Eccentricity
أحرف متعدد السطوح Edges of a polyhedron
دالة ذاتية Eigenfunction
قطع ناقص/إهليلج Ellipse
تكامل اهليلجي Elliptic integral
دالة كاملة Entire function
معادلة حركة Equation of motion
مثلث متساوي الأضلاع Equilateral triangle
متطابقة أويلر Euler's identity
عدد أويلر Euler number
دوال زوجية وفردية Even and odd functions
قاطع التمام الخارجي Excosecant
قاطع خارجي Exsecant
دالة أسية Exponential function
F
عاملي عدد Factorial of a number
وحدة الفاصلة العائمة Floating Point Unit
متسلسلة فورييه Fourier series
تحويل فورييه Fourier transform
G
نظرية غالوا Galois theory
كسر مستمر معمم Generalized continued fraction
تشابه هندسي Geometric similarity
تمثيل بياني لدالة Graph of a function
تسارع الجاذبية Gravitational acceleration
H
متطابقات نصف الزاوية Half-angle identities
مضاعف العتاد Hardware multiplier
نصف السهم Haversine
لولب Helix
المعالِجات الراقية Higher-end Processors
دالة تامة الشكل Holomorphic function
قطع زائد Hyperbola
زاوية زائدية Hyperbolic angle
دوال زائدية Hyperbolic functions
قطاع زائدي Hyperbolic sector
وتر المثلث Hypotenuse
منحنى عجلي تحتي Hypotrochoid
I
وحدة تخيلية Imaginary unit
متباينة Inequality
دالة متباينة Injective function
مضلع محاط Inscribed polygon
تكامل Integral
عدد صحيح Integer number
مجال/فترة Interval
تقاطع مستقيمين Intersection of two lines
متسلسلة الجداء اللانهائي Infinite product expansion
قدرة لحظية Instantaneous power
دالة عكسية Inverse function
نقطة معزولة Isolated point
L
تحويل لابلاس Laplace transform
مؤثر لابلاسي Laplace operator / Laplacian
قانون جيب التمام Law of cosines
قانون حفظ الزخم Law of momentum conservation
قانون الجيب Law of sines
ساق مثلث Leg of a triangle
طول Length
نهاية دالة Limit of a function
مستقيم Line
منحنى ليساجو Lissajous curve
M
متسلسلة ماكلورين Maclaurin series
مقدار Magnitude
معيار عدد مركب Magnitude of a complex number
إسقاط الخرائط Map projection
دالة جزئية الشكل Meromorphic function
تضمين Modulation
صيغة مولفيده Mollweide's formula
زخم Momentum
دالة رتيبة Monotonic function
قانون موري Morrie's law
دالة متعددة القيم Multivalued function
N
مقابل عدد Negative of a number
بسط Numerator
جذر نوني nth root
O
ضلع مقابل Opposite side
إحداثي y Ordinate
نقطة الأصل Origin
دوال متعامدة Orthogonal functions
P
تقريب بادي Padé approximant
متوازي السطوح Parallelepiped
متوازي أضلاع Parallelogram
معادلة وسيطية Parametric equation
جسم / جسيم Particle
حركة رقاصية/حركة بندولية Pendular motion
محيط (مضلعات) Perimeter
دالة دورية Periodic function
دورية Periodicity
طور Phase
تقدم وتأخر الطور Phase leading and lagging
إحداثيات قطبية Polar coordinates
زاوية القدرة Power angle
معامل القدرة Power factor
متسلسلة قوى Power series / Power expansion
مبرهنة بطليموس Ptolemy's theorem
متطابقة فيثاغورس Pythagorean identity
مبرهنة فيثاغورس Pythagorean theorem
Q
ربع الدائرة Quadrant
قاعدة ناتج القسمة Quotient rule
R
نسبة Ratio
نصف القطر Radius
نصف قطر التقارب Radius of convergence
تقليص المدى Range reduction
سرعة التقارب Rate of convergence
دالة كسرية Rational function
عدد كسري/نسبي/ناطق/جذري Rational number
قدرة غير فعالة Reactive power
عدد حقيقي Real number
علاقة استدعاء ذاتي Recurrence relation
إنعكاس Reflection
انكسار الضوء Refraction of light
خماسي منتظم Regular pentagon
باقي (متسلسلة) Remainder term
زاوية قائمة Right angle
مثلث قائم الزاوية Right-angled triangle / Right triangle
جذر معادلة/جذر دالة Root
دوران Rotation
S
عمق القوس Sagitta
موجة سن المنشار Sawtooth wave
نصف المحور الأكبر Semi-major axis
نصف المحور الأصغر Semi-minor axis
مجموعة القيم الرئيسية Set of principal values
حركة توافقية بسيطة Simple Harmonic Motion
موجة جيبية Sine wave
قانون سنيل Snell's law
حل المثلثات Solution of triangles
زوايا خاصة Special angles
دوال خاصة Special functions
إحداثيات كروية Spherical coordinates
مثلث كروي Spherical triangle
حساب المثلثات الكروية Spherical trigonometry
نابض Spring
جذر تربيعي Square root
موجة مربعية Square wave
مبرهنة الساندويتش Squeeze theorem / Sandwich theorem
مسطرة Straightedge
طرح Subtraction
مجموع Sum
تناظر/تماثل Symmetry
T
مماس Tangent
تعويض بظل نصف الزاوية Tangent half-angle substitution
متسلسلة تايلور Taylor series
حدود Terms
مبرهنة طاليس Thales theorem
تيارات ثلاثية الطور Three-phase current
عدد متسامي Transcendental numbers
مسح اجتيازي Traverse
تثليث Triangulation
علم المثلثات/حساب المثلثات Trigonometry
متطابقات ثلاثية الزاوية Triple-angle identities
دورة (وحدة قياس الزوايا) Turn
U
دائرة الوحدة Unit circle
V
متجه Vector
سهم/ جيب منكوس Versine
W
تعويض فايرشتراس Weierstrass substitution
X
محور السينات x-axis
Y
محور الصادات y-axis
3
قياس بصري ثلاثي الأبعاد 3D Optical measurement

وصلات خارجية